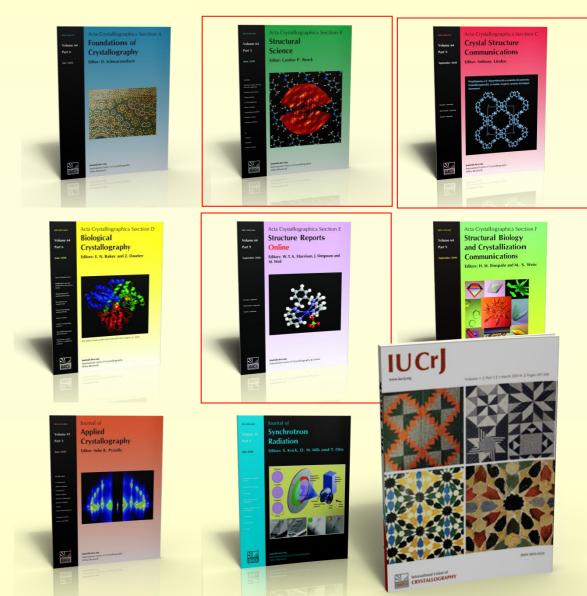
Structure validation in the submission, review and publication process

Michael Hoyland, Nicola Ashcroft APD - IV, Gaithersburg, 2013

International Union of Crystallography 5 Abbey Square Chester CH1 2HU UK

IUCr CIF (Crystallographic Information File) Validation checkCIF Tools


Part 1

International Union of Crystallography

- International Scientific
 Union
- Publishes 8 research journals:
 - New title in preparation: IUCrJ
- Major reference work International Tables for Crystallography
- Volume H: Powder Diffraction

 Promotes standard crystallographic data file format (CIF)

Volume 1 | Part 1 | 1 January 2014 | Pages 1-106

ISSN 2052-2525

IUCrJ

The new open-access high-influence journal from the IUCr www.iucrj.org to celebrate the International Year of Crystallography

Inaugural issue to be published in 2014

International Union of CRYSTALLOGRAPHY

CIF – A timeline (1)

- 1983,1988 Standard Crystallographic File Structure I.D. Brown
- 1990 Checking of data in Acta Cryst. C papers
- 1991 Publication of first CIF dictionary
- 1991 Techniques developed for processing CIF data First article typeset from a CIF file. Willis *et al.*
- 1992 First unsolicited CIF submission
- 1994 Faster processing for CIF submissions
- 1994 First email versions of checkCIF/printCIF
- 1996 Acta Cryst. C CIF submission only

CIF – A timeline (2)

- 1997 Release of powder CIF dictionary (ver. 1.0)
- 1998 Automated submission by email use of the VRF (validation response form)
- 1998/9 web version of checkCIF/printCIF
- 1997-2000 Electronic only section in Acta Cryst. C
- 2001 Expanded checkCIF to include full PLATON validation test
- 2001 First edition of Acta Cryst. E
- 2007 Full online submission of CIF, structure factors and figures
- 2008 Acta Cryst. E became an open-access journal

CIF dictionaries

- core CIF 1991
- powder diffraction CIF (pdCIF) 1997
- modulated and composite structures (msCIF) 2002
- electron density (rhoCIF) 2003
- restraints 2011

CIF as a vehicle for article submission

Experimental

FesMn(CaHChOn)

Crystal data

(H₂O)al $M_{\tau} = 1058.34$

Triclinic PI

a = 9.380(1)Å b = 13.316(1) Å

c = 15.432 (1) Å

 $\alpha = 90.131 (1)^{\circ}$

Data collection

Refinement

S = 1.03

 $wR(F^2) = 0.207$

8543 reflections.

440 narameters

35 restraints

Bruker SMART APEX

 $R[F^2 > 2\sigma(F^2)] = 0.063$

(SADABS: Sheldrick, 1996)

 $T_{min} = 0.540, T_{max} = 0.753$

diffractometer

publ section title

Diaquahexa-\m~2~-dichla tetrahydrofurandiiron(:

loop

:\

ALC: NO

6

-

publ author name publ author address 'Sadeghi, Omid' Department of Chemist General Campus Shahid Beheshti Unive Tehran 1983963113 Iran

'Ng, Seik Weng' Department of Chemist University of Malaya 50603 Kuala Lumpur Malaysia

publ section abstract ; In the oxido-centered [Fe~2~Mn (C~2~HC1~2~O~2 the central O atom is] which are themselves ea dichloroacetate anions configuration. Two of t coordinated by a water is coordinated by a tet the crystal, adjacent r 0---H...0 and 0---H...(centers of inversion, o chain along the <i>c</:

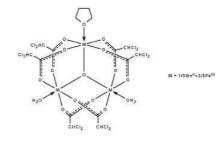
Acta Crystallographica Section E Structure Reports Online

ISSN 1600+5368

Diaguahexa-µ2-dichloroacetato- μ_3 -oxido-tetrahydrofurandiiron(III)manganese(II)

Omid Sadeghi,^a Mostafa M. Amini^a and Seik Weng Ng^{b*}

*Department of Chemistry, General Campus, Shahid Beheshti University, Tehrar 1983963113, Iran, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my


Received 17 December 2009; accepted 17 December 2009

Key indicators: single-crystal X-ray study; 7 = 295 K; mean o(C-C) = 0.012 Å; disorder in main residue; R factor = 0.063; wR factor = 0.207; data-to-parameter ratio = 19.4.

In the oxido-centered title compound, [Fe2Mn(C2HCl2O2)6-O(C4H8O)(H2O)2, the central O atom is linked to three metal atoms, which are themselves each linked to four dichloroacetate anions, and is in a triangular configuration. Two of the metal atoms are each coordinated by a water molecule, whereas the third is coordinated by a tetrahydrofuran molecule. In the crystal, adjacent molecules are linked by O-H...O and O-H...Cl hydrogen bonds across centers of inversion, generating a hydrogen-bonded chain along the c axis. The Mn^{II} atoms are disordered with respect to the Fe^{III} atoms, and the same metal site is occupied by 1/3Mn + 2/3Fe.

Related literature

For aquabis(tetrahydrofuran)hexakis(trifluoroacetato)(µ3oxido)M(II)diiron(III) (M = copper, zinc), see: Amini et al. (2004a,b).

eO(C4HaO)-	$\beta = 100.067 (1)^{\circ}$
	$\gamma = 97.677 (1)^{\circ}$
	V = 1880.1 (2) Å
	Z = 2
	Mo Ka radiation
	$\mu = 2.01 \text{ mm}^{-1}$

T = 295 K0.35 × 0.15 × 0.15 mm

metal-organic compounds

15425 measured reflections 8543 independent reflections Absorption correction: multi-scan 5788 reflections with $l > 2\sigma(l)$ $R_{\rm int} = 0.025$

> H atoms treated by a mixture of independent and constrained refinement $\Delta\rho_{\rm max}=1.64~{\rm e}~{\rm \AA}^{-3}$ $\Delta \rho_{min} = -0.90 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å *)

$D - H - \cdots A$	D-H	HereA	$D \cdots A$	D-H···A
O1w-H11O3t	0.85(1)	2.01 (3)	2.809 (6)	158 (5)
O2w-H22O8 ¹¹	0.85(1)	2.06 (4)	2.821 (5)	149 (7)
02W-H21010F	0.84 (6)	2.19 (7)	2,950 (6)	150 (6)
OIW-HI2···CII*	0.85 (3)	2,47 (4)	3.288 (4)	160 (6)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics; X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2991).

References

Amini, M. M., Yadavi, M. & Ng, S. W. (2004a). Acta Cryst. E60, m492-m494. Amini, M. M., Yadavi, M. & Ng, S. W. (2004b). Acta Cryst. E60, m495-m497. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191. Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, 115.4

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). publCIF. In preparation.

SHELXL-97

C

oacetato-\m~3~-oxido-\ I) manganese (II)

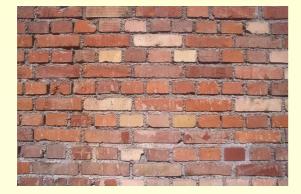
)6 O (C4 H8 O) (H2 O)2]'

C16 H18 Cl12 Fe2 Mn 016' 1058.34

	triclinic
me_H-M	'P -1'
me_Hall	'-P 1'

xyz z'

- 9.380(1)13.316(1)15.432(1)
- 90.131(1)
- 100.067(1)
- 97.677(1)
- 1880.1(2)


Črystallography Journals Online

Acta Cryst. (2010), E66, m101

m101 Sadeghi et al.

Validation with checkCIF

OR

Brick Wall

Useful set of tools

What is validation?

Comparison against a set of test criteria

- Are all the usually expected data and information present?
- Are related parameters consistent?
- Is the space group correct?

- Has the refinement converged?
- Are the assigned atom types correct?
- Is the structure reasonable?
- Has the structure been determined before?

Is validation needed?

CIF made possible the automated checking of structure determinations.

- Incomplete CIFs
- Syntax errors in CIFs
- Too many avoidable oversights
- Doesn't meet accepted standards
- More non-experts determining structures
- Still some avoidable mistakes

Automation of validation

- Allows authors to get anonymous and instant feedback
- Detect and fix problems prior to submission
- Fewer and shorter revision cycles
- Consistent application of criteria
- Known application of criteria (no hidden hurdles to jump)

Crystallography

lournals

- Allows editors and referees to focus on the science
- Benefit faster publication times!

What does validation software do?

- Identifies possible problems via ALERTs
- Provides explanations of ALERTs
- Suggests interpretations and possible solutions
- A tool to help the author
 - efficiently check their work
 - avoid simple mistakes
- Not intended as a hurdle to make life difficult
- Not intended to hinder publication of correct results
- Also a useful tool for reviewers

Alert indicators

380 ALERT 4 C Likely Unrefined X(sp2)-Methyl Moiety C18 412 ALERT 2 C Short Intra XH3 .. XHn : H19B .. H30A = 1.81 Ang. 720 ALERT 4 C Number of Unusual/Non-Standard Label(s) 1

Alert numbers 1-5 indicate the <u>type</u> of issue

Residence of Crystellageste Crystell Alerts levels A, B, C and G indicate the <u>severity</u> of the issue

Alert levels and types

ALERT level A = Most likely a serious problem – resolve or explain ALERT level B = A potentially serious problem, consider carefully ALERT level C = Check. Ensure it is not caused by an omission or oversight ALERT level G = General information/check it is not something unexpected

ny lord Bolig of Grouphants manual attac

ALERT type 1 CIF construction/syntax error, inconsistent or missing data ALERT type 2 Indicator that the structure model may be wrong or deficient ALERT type 3 Indicator that the structure quality may be low ALERT type 4 Improvement, methodology, query or suggestion ALERT type 5 Informative message, check

Alert level A

Alert A Most likely a serious problem – resolve or explain

Required item omitted, large deviation from usually expected value, or inconsistent values

- Alert A No crystal dimensions have been given
- Alert A Atom C58A ADP max/min Ratio 18.00
- Alert A H...A calc 5.82(3); rep 1.915; dev 3.91 Å
- Alert A Space group symbol does not match sym. ops.

Alert level B

Alert B A potentially serious problem, consider carefully

Item is a significant or unexpected outlier

- Alert B The formula has elements in wrong order
- Alert B ADDSYM detects Cc to Fdd2 transformation
- Alert B Refined extinction parameter < 1.9σ
- Alert B Structure contains VOIDS of 130.00 Å³

Validation Response Form

- Indicates that there are issues which have triggered a level A alert
- Provides a field for the author to respond to the alert

PLAT355_ALERT_3_A Long O-H Bond (0.82A) O22 - H220 ... 1.14 Ang.

_vrf_PLAT355_I ; PROBLEM: Long O-H Bond (0.82A) O22 - H22O ... 1.14 Ang. RESPONSE: The H22O atom participates in a very strong nearly symmetric hydrogen bond which is discussed in details in the paper.

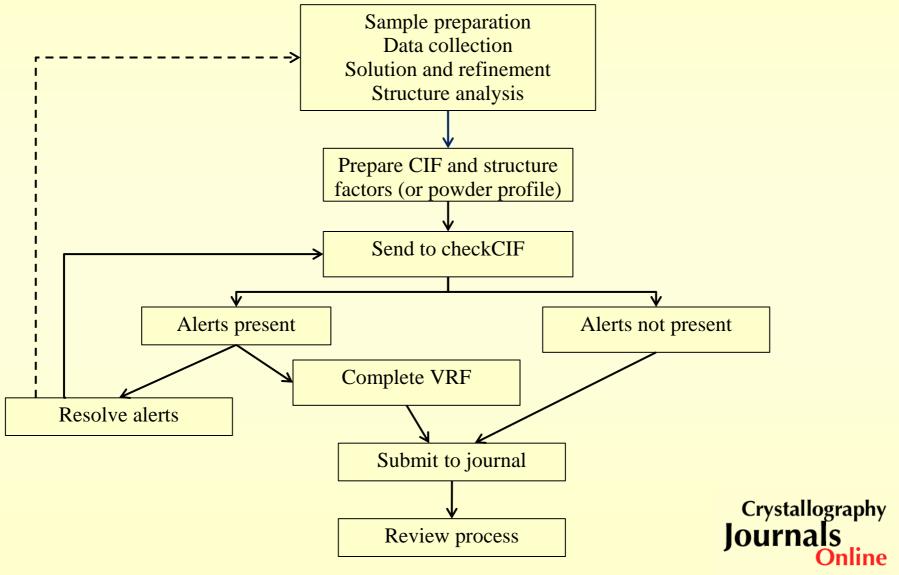
Example of an unsuitable VRF

Alert AGiven & expected crystal density differAlert AGiven & expected absorption co-efficient differ
Calculated density = 3.377Calculated density = 3.377density in CIF = 1.689
mu in CIF = 1.031

Author Response:

And Andrews

It appears that the absmu- and the density-problem are related. No explanation other than it is related to the disordered triflate groups and the refinement over several partially occupied sites


Actual cause of alert:

Molecule sits over inversion centre in $P2_1/n$ Z given as 4, instead of 2

checkCIF workflow

All .

ALC: NO

Limitations of validation

- Test is not yet implemented
- Test is not practical in these circumstances
- Error is not a validation issue
- Mistake cannot be detected from data in the CIF
- Nonsense entries in the CIF

Authoring tools (1) *publCIF*

Desktop CIF publishing editor, validator and formatter for small-molecule, powder, modulated and incommensurate structure CIFs

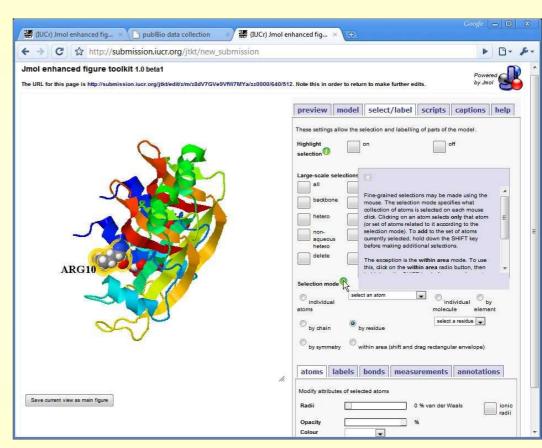
6

Ed	it Prepri	int	Tools	Help																				
	1	\$	(I)			6	Cif	et:al (2005)	-pub	i ĝ	ê 🕻		>	Acta (: prep	rint 🔻	A	dd ref	inement o	details				
Ð		N	3	œ₿	В	1	аъ	ab	ab	Ē	Ð (] []]	E	Z	z Z	te							
	;												0	•										-
	Fig. 1.	Mol	ecula	ir str	uctur	e sh	owind	r 504	t pr	obak	oilit	v dist	lacer		Crys	tal da	ata							
	atoms a						000000	1.18101	540 . 5276			1 100000			[CoF	Re(C1	2H2	2P))((CO)₀].(0.5CH	I₃OH	γ = 111	1.87 (2)°	•
	Fig. 2. molecul								e <i< td=""><td>>a<!--</td--><td>/i> a:</td><td>xis. N</td><td>lote t</td><td></td><td><i>M</i>_r =</td><td>823</td><td>.7</td><td></td><td></td><td></td><td></td><td>V= 176</td><td>63.8 (8)</td><td>ų</td></td></i<>	>a </td <td>/i> a:</td> <td>xis. N</td> <td>lote t</td> <td></td> <td><i>M</i>_r =</td> <td>823</td> <td>.7</td> <td></td> <td></td> <td></td> <td></td> <td>V= 176</td> <td>63.8 (8)</td> <td>ų</td>	/i> a:	xis. N	lote t		<i>M</i> _r =	823	.7					V= 176	63.8 (8)	ų
	;												C		Triclin	nic, P	7					<i>Z</i> = 2		
	_publ_s	ecti	on_ex	mptl_p	rep										a =	10.4	52 ((3) Å				Mo Ka i	radiation	
	Synthes HP(C~6-														b =	11.66	64 ((4) Å				μ = 4.0)3 mm ⁻¹	
	glass t	ube.	Recr	ystal	lizat	ion	was i	rom	MeO	н.					c =	15.64	41 ((4) Å				<i>T</i> = 293	3 K	
	_publ_s	ecti	.on_ex	mptl_r	efine	ment									a =	94.37	7 (2	<u>2)</u> °				0.50 × mm	0.34 × 0	0.28
	The end Cyclohe	xyl	H ato	ms we	re fi	xed a	at ic	ieal	pos	itic	ons w	ith co			β =	89.75	5 (2	<u>2)</u> °						
	displac ;	emen	it par	amete	rs (<	1>U<,	/i>~i	.90~	= 0	.08	\\$A^:	2^).												
	******	****	*****	*****	*****	****	*****	****	****	****	****	*****	*****		Data	a colle	ectio	on						
	data_(]	0941														nens l					6813 4σ(<i>F</i>	reflection	ns with <i>F</i>	->
	_ chemic ; Hexao	al_r	ame_s				bia		diau	- lak		nh e anh			Abso	Series	n c	orrec	tion: ψ	r.	R _{int} =	= 0.022		
												phospr olvate				th et	: al.,	, 196	8)					
	_chemic _chemic _chemic	alf	ormul	a_sum	1	'C30						(C H4 6.5 P2			7 _{min} 0.32	= 0.: 0	131	, <i>T</i> m	_{ax} =		θ _{max}	= 27.5°		
			1	in adp		2 8)1	110	318	D.:	SG B	13 0 1	·		-	1518	39 me	eas	ured			4 sta	andard ref	flections	

Authoring tools (2) printCIF

Online CIF publishing validator and formatter for small-molecule, powder, modulated and incommensurate structure CIFs

http://publcif.iucr.org/services/tools/printcif.php


() printCIF	×			- 8	23
	.org/services/tools/p	rintcif.php		ដ	4
	Geometric para	meters (Å, º)		- 1	*
PDF of article	Fe1—013 Fe1—07	I) Fe1-01	3 1.84	39 (7) 32 (7)	
Article + supplement	Fe1—O1 Fe1—O5			41 (7) 44 (6)	
checkCIF	Fe1—O3 Fe1—O1w			22 (7) 41 (7)	
Upload another CIF	Fe2—013 Fe2—012	🗩 🍂	- Car	19 (9) 42 (8)	
😼 Jmol	Fe2			5 (1) 5 (1)	
	Fe2-04 Fe2-014		ST A	5 (1) 5 (1)	
Abstract Related literature Experimental Structure (I)	Fe3—013 Fe3—02		Bond selection	28 (8)	
Computer programs Acknowledgements References	Fe3—011 Fe3—02w	2.148 (4) 2.155 (4)	C3—C4 C4—H4	1.541 (8) 0.98	
Supplementary materials	Fe3—010 Fe3—08	2.178 (4) 2.216 (4)	C5-C6 C6-H6	1.516 (8) 0.98	
	C11—C2 C12—C2	1.773 (8) 1.740 (9)	C7C8 C8H8	1.542 (8)	
	Cl3—C4	1.725 (8)	C9—C10	1.534 (8)	
	C14—C4 C15—C6	1.781 (9) 1.740 (10)	C10—H10 C11—C12	0.98 1.538 (8)	
	C16—C6 C17—C8	1.774 (10) 1.779 (8)	C12—H12a C13—C14	0.98 1.519 (9)	ш
	C18—C8 C19—C10	1.717 (7) 1.736 (7)	C13—H13A C13—H13B	0.97 0.97	
	C110—C10 C111—C12	1.751 (7) 1.751 (8)	C14—C15 C14—H14A	1.493 (9) 0.97	
	C112—C12 O1—C1	1.752 (8) 1.250 (7)	C14—H14B C15—C16	0.97 1.521 (9)	
	02—C1 03—C3	1.217 (7) 1.240 (6)	C15—H15A C15—H15B	0.97 0.97	
	04—C3 05—C5	1.226 (7) 1.236 (7)	C16—H16A C16—H16B	0.97 0.97	
	06—C5	1.240 (7)	1000 1000 1000	SC3255. 572	

Authoring tools (3) Enhanced figure toolkit

Create interactive threedimensional visualisations with *Jmol*, a viewer that allows direct interaction with the underlying data

These figures form an *integral* part of the online published article

http://submission.iucr.org/jtkt

Authoring tools (4) checkCIF

 checkCIF reports are generated following the upload of a CIF to the checkCIF service

• For single-crystal studies the structure factors are also validated

 Within the submission system the checkCIF report is made available to the reviewers

http://checkcif.iucr.org/

Back Forward Reload Stop Home (http://journals.iucr.org/e/issues/2010/11/00/bh23	
	08/bh2308checkcif → - 🖓 - Google
💥 (IUCr) Crystallography Journals Onlin	
$\sim \sim \sim$	
Na L	
MeO OMe NH F	
Me St.	
MeO OMe F	
F	
Acta Cryst. (2010). E66, o2699-o2700 [doi:10.1107/81600536810038559]	
Pentafluorophenyl (3R,4R,5S)-5-{[(3R,4R,5S)-5-azidomethyl-3,4-dimethoxy-2,3,4,5-t	etrahydrofuran-
3-carboxamido]methyl}-3,4-dimethoxy-2,3,4,5-tetrahydrofuran-3-carboxylate	3 10
M. I. Simone, A. A. Edwards, S. G. Parker, G. E. Tranter, G. W. J. Fleet and D. J. V	Vatkin
0.1. 1.0. 1. 2010	
Online 2 October 2010	
Key indicators	
 Single-crystal X-ray study 	
• $T = 150 \text{ K}$	
 Mean σ(C-C) = 0.009 Å Disorder in main residue 	
 R factor = 0.057 	
• wR factor = 0.159	
 Data-to-parameter ratio = 6.3 	
Alert level A	
PLAT910_ALERT_3_A Missing # of FCF Reflections Below Th(Min)	57
Author Response: To avoid possible systematic errors in the intensities of reflections in the p	
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstróm (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning.	it is 27.5 degrees. This means that the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALert level B	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper in systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PAIntt lovel B PLAT242_ALERT_2_B Check Low Useq as Compared to Neighbors for	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALIENT LOVEL B PLAT242_ALERT_2_B Check Low Useq as Compared to Neighbors for PALIENT LOVEL C	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper in systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALert level B FLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for PALert level C DIFRX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
<pre>default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. •Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for •Alert level C DIFEXO1_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 refine_diff_density_max given = 0.900</pre>	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALET LEVEL B PLAT242_ALERT_2_B Check Low Useq as Compared to Neighbors for PALET LEVEL C DIFENCIQ_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the
<pre>default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper in systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PAIert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for PAIert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*2MAX*0.75</pre>	it is 27.5 degrees. This means that the titional 108 reflections were rejected during the N23
default low-resolution limit is 4 Angstróm (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. •Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for •Alert level C DIFNK01_ALERT_2_C The maximum difference density is > 0.1*ZKAX*0.75 	nt is 27.5 degrees. This means that the thional 108 reflections were rejected during the N23
default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper in systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALET Lovel B PLAT242_ALERT_2_B Check Low Used as Compared to Neighbors for PALET Lovel C DIFRX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75	0.96 6.26
default low-resolution limit is 4 Angstróm (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. •Alert level B PLAT242_ALERT_2_B Check Low Deq as Compared to Neighbors for •Alert level C DIFEXC01_ALERT_2_C The maximum difference density is > 0.1*2KAX*0.75	0.96 6.26 2.09
default low-resolution limit is 4 Angstróm (5 degrees with Mo radiation). Our normal upper in systematically unitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for PALert level C DIFNX01_ALERT_2_C The maximum difference density is > 0.1*ZNAX*0.75 refine diff_density_max_given = 0.900 Test value = 0.675 DIFNX02_ALERT_3_C Other maximum difference density is > 0.1*ZNAX*0.75 The relevant atom site should be identified. PLAT039_ALERT_3_C C hair Reported Maximum / Minimum Residual Density PLAT034_ALERT_2_C Large Reported Max. (Positive) Residual Density	0.96 6.26
<pre>default low-resolution limit is 4 Angstrom (5 degrees with Mo radiation). Our normal upper in systematically unitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. PALert level B PLAT242_ALERT_2_D Check Low Used as Compared to Neighbors for PALert level C DIFRX01_ALERT_2_C The maximum difference density is > 0.1*ZNAX*0.75 Test value = 0.475 DIFRX01_ALERT_3_C diffram measured fraction thets full Low PLAT034_ALERT_3_C Cation of Maximum / Minimum Residual Density PLAT034_ALERT_2_C Large Reported Max. (Positive) Residual Density PLAT034_ALERT_2_C Large Non-Solvent C Useq (max)/Useq (min) PLAT230_ALERT_2_C Charge Non-Solvent C Useq (max)/Useq (max)/Useq (max)/Useq (max)/Useq (max) PLAT230_ALERT_2_C Non-Solvent C Useq (max)/Useq (max)/Useq</pre>	0.96 6.26 2.09 0.90 eA-3
default low-resolution limit is 4 Angstróm (5 degrees with Mo radiation). Our normal upper lin systematically omitted reflections only occupy 0.7% of the observed reciprocal lattice. An add image processing, possibly because of the twinning. •Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for •Alert level C DIRNKO1_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 refine diff_density max given = 0.900 Test value = 0.675 DIFNKO2_ALERT_3_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT029_ALERT_3_C Coor Data / Parameter Ratio (Zmax_LT. 18) PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density PLAT205_ALERT_2_C Large Reported Max.	0.96 6.26 2.09 0.90 eA-3 3.03 Ratio

Authoring tools (5) Experimental tables

Online service for formatting complex geometry and experimental tables for smallmolecule, powder, modulated and incommensurate structure CIFs

Output available in rtf format

http://publcif.iucr.org/services/tools/

	/deselect a group of parameters by dragging the	mouse over them.
ove a single parameter by dragging its icon 🌣		mouse over them.
ove a single parameter by dragging its icon 🌣		
	ion state by holding down the SHIFT key before	e dragging the icon of the first
rameter in the group. ove a structure block by dragging its icon 🜣		
a subclure block by dragging its icon	I) Co-I	Re-C1 134.8
Bonds Angles Hydrogen bonds	*	
		2
⊂ (I) ⊂		
Select Jmol	Contraction of the second seco	
	1966	
© Co—Re—P1 46.4(1)	Co-P2-C41 120.1(2	- Jones
© Co-Re-P2 46.5(1)	C31-P2-C41 109.3(~ 74
Co-Re-C1 134.8(2)	Re-C1-01 177.6(5)	🍠 🍗
Co_Re_C2 86.9(2) Drag to move 88.9(2)	Re-C2-O2 178.7(5)	6
	Re-C3-O3 180.0(9)	
Co-Re-C4 135.1(2)	Re-C4-O4 178.3(5)	Angle selection
0 P1—Re—P2 92.9(1)	Co-C5-O5 175.5(7)	
P1—Re—C1 88.4(2)	Co-C6-O6 176.2(6)	
P1—Re—C2 90.4(2)	P1-C11-C12 117.1(4)	
P1—Re—C3 87.6(2)	P1-C11-C16 114.2(3)	
P1—Re—C4 177.4(1) P2—Re—C1 178.6(2)	C12-C11-C16 110.5(5) C11-C12-C13 111.3(5)	

Duplication query

The system checks the article against an internal database to determine if the structure has been submitted to or published by the IUCr previously.

In addition an automated check is performed against the CCDC database.

If duplicates occur, then the author is able to note why their article should be considered for publication.

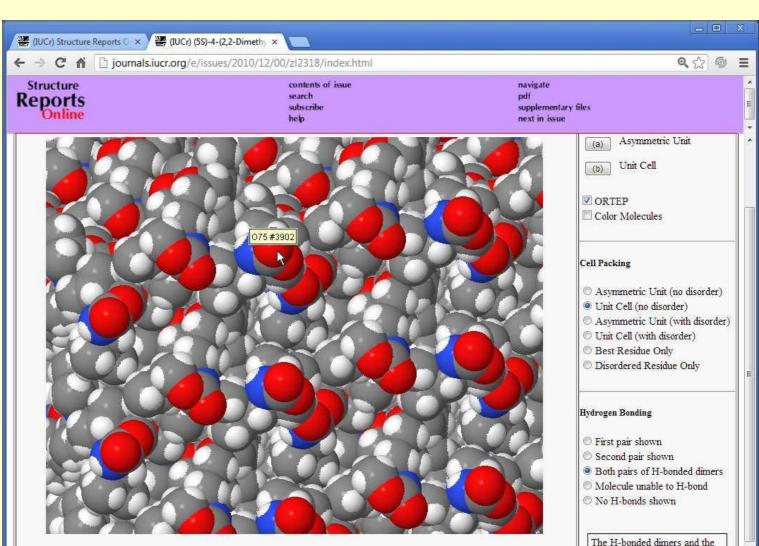
				20 M	
🚱 🔵 🗢 🙋 http://submissiontest.iucr.org:8	600/submit/e/process_cif_submiss	ion	👻 🐼 🍫 🗙 🛃 Google		۰ م
File Edit View Favorites Tools Help					
x Google	💌 🛃 Search 🔹 🐡 🍽	🦴 🔹 🥚 Sign In 🔹	x 👿 Secure Search	P McAfee	I
🚖 Favorites 🦷 🌈 (IUCr) checking CIF using ch	eckCIF		🏠 🔻 🗟 👻 🚍 🖶 🔻 Pa	age ▼ Safety ▼ Tools ▼ (? - ~
 duplication query Our records show that your submission is s Phillips, D. C., Ahmed, F. R. & Bar [Cell: 16.292,18.831,6.072(90,95.0) Braga, D., Grepioni, F., Maini, L., M CCDC code: ACRDIN07 	nes, W. H. (1960). Acta Crys)7,90) <i>R</i> =14.6 <i>T</i> =Room Temp	st.13, 365-377 details p.(283-303)]			ſ
[Cell: 6.0693,18.8181,16.283(90,9 If you wish to continue, please justify below		• • •			
[Cell: 6.0693,18.8181,16.283(90,9		• • •	*		I

Why publish data?

Some reasons:

- To enhance the reproducibility of a scientific experiment
- To verify or support the validity of deductions from an experiment
- To safeguard against error
- To safeguard against fraud
- To allow other scholars to conduct further research based on experiments already conducted
- To allow reanalysis at a later date, especially to extract 'new' science as new techniques are developed
- To provide example materials for teaching and learning
- To provide long-term preservation of experimental results and future access to them
- To permit systematic collection for comparative studies

Reading the data


Interactive figures as an *integral* part of the article

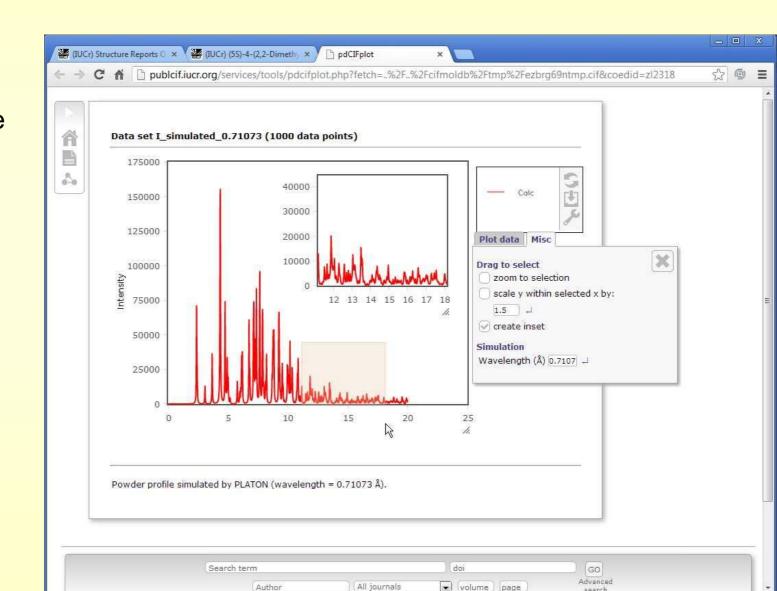
Author views

1

e

Reader freedom to explore

fifth molecule, which is incapable of H-bonding, can be seen by toggling the radiobutton group "Hydrogen Bonding".


Working with the data

For any published structure, the reader can generate a predicted powder diffraction pattern

-

<u></u>

-

search

CIF for powder studies Current perspective The future

Advantages of CIF for powder studies

- Data in CIF ideally written directly by refinement software fewer errors
- Forms a complete record of the experiment
- Data validation possible
- Can use to typeset experimental details, coordinates, bond lengths, angles etc. for journal article or thesis – fewer errors
- Easier and quicker for authors

Successful?

- Single-crystal studies yes (aided by a small number of refinement programs)
- Single phase
- Single data set
- Straightforward experiment
- Can validate with checkCIF useful results

Powder studies

- Several refinement programs
- Different output (different residuals etc.)
- One phase/multiple phases
- One data set/multiple data sets (and weighting)
- Multiple wavelengths (Cu Kα, synchrotron, neutron, time of flight...)
- Diverse experiments (but all can be described using the powder CIF dictionary)

- Refinement program might not write all necessary details to CIF
- CIF may have to be created by hand errors!
- checkCIF struggles with multiple phase studies, time of flight experiments, 'non-standard' wavelengths...
- Powder diffractionists go elsewhere...

Short term – improve checkCIF

- Suppress irrelevant tests
- Add powder-specific tests
- Develop checkCIF so can handle multiple data blocks/`non-standard' wavelengths
- Expertise requested for validation of powder data based structures and incommensurate structures
- Feedback and suggestions welcome

Long-term measures

- Could existing refinement programs write more details to the CIF?
- Could we ask for other file formats as a record of the experiment?
- Develop a tool to read the most common file formats (which are these?) and convert them to powder CIF

Data deposition

- Raw data? (Too unwieldy?)
- Profile (not necessarily in CIF format)
- Structure factors, if available?
- IUCr Data Deposition Working Group suggestions welcome

International Tables for Crystallography

- Volume H on powder diffraction
- Editors: Chris Gilmore, Jim Kaduk and Henk Schenk
- Due 2014 (International Year of Crystallography)

Thank you

A.