

Developments in Synchrotron Instrumentation A. Fitch

Synchrotron Radiation and Powder Diffraction

High intensity, collimation and λ tunability \downarrow

- High angular resolution, i.e. narrow peak widths;
- Rapid data collection / good statistics;
- Highly monochromatic X-rays, or energy dispersive;
- Narrow well defined intrinsic instrumental peak shape;
- Tunable: measure at absorption edges, or well away; optimise for the experiment.

Main technical developments since APD III

- Many new 3rd generation synchrotrons with powder diffractometers
- Analyser stages, multi-analyser stages, and multi-multi-analyser stages
- Mythen curved 1d PSD
- Dedicated insertion device sources (e.g. undulators)
- Hard energy operation
- Large 2d on-line detectors
- Focussing by refractive lenses
- Robotic sample changers
- Self aligning capillary spinners
- Radiation damage
- Beam heating
- + Raman, etc.
- Energy dispersive
- Etc.

Diamond, 3 GeV

Australian, 3 GeV

Petra, 6 GeV

Shanghai, 3 GeV

Accurate data \Rightarrow use Analyser crystal(s)

Cox, Hastings, Thomlinson, Prewitt, Finger *et al*. at BNL and CHESS.

X16C at NSLS

XPD diffractometer at LNLS, Brazil

European Synchrotron Radiation Facility

Analyser crystal

Analyser crystal narrow peaks (sample limited) and accurate peak

Stringently defines a true 2θ angle rather than infers 2θ from the *position* of a slit or pixel of a PSD.

positions

- Peak positions insensitive to misalignment, transparency, specimen-size/shape/surface effects, etc.;
- widths independent of any $\theta/2\theta$ parafocusing condition;
- supresses fluorescence, Compton, parasitic scatter.
- but <u>SLOW</u> (scanning + very selective)

Nine channel multianalyser (MAC) stage

Thanks to J.-L. Hodeau, M. Anne, P. Bordet, A. Prat, CNRS, Grenoble

ID31 powder diffractometer, ESRF

Beamline 11–BM at APS, 12 analyser crystals with individually adjustable θ and χ

Beamline I11at Diamond, 45 analyser crystals

Mythen curved 1d PSD

- Developed at the Swiss Light Source.
- Modular Si-strip photon-counting detector
- 1280 channels, 50µm step, unit ≈4.83°, (≈0.004° strip⁻¹)
- Read out $\approx 250 \ \mu s$
- The best 1d PSD for soft and intermediate energies
- Excellent statistical quality in minutes or even seconds
- * $10 10^2 \times faster than MAC$

J. Synchr. Rad. 2010, 17, 653

Australian

Alba (Spain) Mythen and MAC detectors

I11 Diamond

Thompson et al., J. Sync. Rad. (2011)

Ex-vacuum & in-vacuum undulators

ESRF (6 GeV) u35 undulator,11 mm gap

Damping wiggler for NSLS-II PD beamline (2014)

Hard energy operation

- "Hard energy" \geq 30 keV ; λ < 0.41 Å
- Manageable absorption for all capillary samples
- Adjust capillary diameter (2*r*) so that $\mu r < 1.5$

Capilliary: scattered intensity vs µr

Hard energy operation

- Spinning capillary ⇒ fewer problems with preferred orientation so accurate intensities
- Capillary perfect for multi-analyser stage
- Reduced radiation damage ?
- PDF measurements
- Access useful K edges
- Less far to scan for a *Q* range
- Obtain full *Q* range in one shot with large 2d detector and ≥ 60 keV (e.g. fast-PDF)
- Downside: peaks are at lower angle ⇒ more asymmetry (unless using 2d detector)

2D detectors

ESRF designed and constructed Frelon (Fast Readout Low Noise) camera ID11 ESRF Xdomain_30s_rot0000.edf to Xdomain_30s_rot0036.edf

Medical imaging pixel detectors

41× 41 cm² 200 µm pixel Readout 15 – 30 Hz

GE Healthcare detector (11-ID-B/C)

Perkin– Elmer (PETRA–III 11–ID–B/C)

Based on amorphous Si + CsI(TI) scintillator

Rapid (30 Hz) PDF analysis nano-PtO₂ \rightarrow Pt

Chupas et al. J. Appl. Cryst. (2007) 40, 463

NSLS-II future powder station

Si-based pixel detectors (structural biology)

Dectris 2M detector BM01A (SNBL) ESRF

Bending magnet beamline

Study of PbS nanoparticles grown in annealed silicate glass

	a (Å) expected	a (Å) fitted	Crystal size (nm) (Lorentzian shape)
Pb	4.9506	4.951()	39.8
PbS	5.9315	5.9315 (fixed)	3.2

European Synchrotron Radiation Facility

Focussing

- Best resolution with a 1d or 2d PSD is obtained by focussing the beam onto the detector
- Traditionally via a curved metal-coated mirror (set at grazing incidence)
- With an undulator, refractive lenses can be employed because the high horizontal collimation directs much of the beam into the lens's limited aperture.

Life at the beamline

- Synchrotron experiments are (often) hard work
- Many samples, quick scans, varying sample conditions, long days and longer nights
- Need to minimise human intervention; maximise automation
- To collect accurate data fit for purpose requires keeping on top of things
- 1) Use the 11-BM mail-in service and let an expert-designed system run it
- 2) Robotic sample changers
- 3) Auto aligning capillaries

ID31's robotic sample changer

Robots also at 11–BM; Swiss Light Source; 111

45 capillaries filled and ready to run

111

Parker et al. J. Appl. Cryst. (2011) 44, 102

Auto capillary spinner alignment

Good enough for analyser crystal

Video-controlled goniometer head at Australian synchrotron; excellent alignment essential for Mythen or other PSD.

111: Automatic capillary filler; "48 capillaries in 30 mins"

Parker *et al.* J. Appl. Cryst. (2011) 44, 102

Radiation damage

- High photon densities (ID31 has ≈1.5×10¹² mm⁻² s⁻¹) at 31 keV
- Even greater flux at softer energies where absorption is also higher
- Loss of peak intensity, peak broadening, and anisotropic shifts in positions
- Really complicates things

Automatic sample translation between scans to expose fresh sample to the beam.

Anisotropic peak shifts can use useful

- because they change the degree of overlap between reflections increasing the overall information content, (c.f. anisotropic thermal expansion, Shankland *et al.* 1997)
- Exploited by Margiolaki *et al.*, e.g. in solving and refining SH3 domain of protein "Ponsin"

Ponsin: variation of lattice parameters with exposure

Degree of "completeness" with increasing number of datasets

Beam heating

- This can be a problem at low temperature
- Consider a 31 keV beam with 10¹² photons mm⁻² s⁻¹
- μ for Si = 0.31 mm⁻¹ (so normally we'd ignore it)
- A 1µm³ cube intercepts 10⁶ photons and absorbs 310 s⁻¹
- Absorbed power = 1.54×10^{-12} W
- Mass of Si cube = 2.33×10^{-15} kg
- Specific heat capacities: $300 \text{ K} = 704.6 \text{ J kg}^{-1} \text{ K}^{-1}$

 $10 \text{ K} = 0.3 \text{ J kg}^{-1} \text{ K}^{-1}$ $300 \text{ K} = 0.9 \text{ K s}^{-1}$ $10 \text{ K} = 2200 \text{ K s}^{-1}$

• Heating rate:

- Obviously absurd prediction!
- Some energy is lost by re-emission (20%)
- and by the gas surrounding the grains transporting heat to the capillary walls.

PROBLEM

- Seal your capillary under air, N₂, Ar, etc, these solidify below ≈ 50 K leaving a vacuum in the capillary.
- On ID31 we have seen diffraction patterns from sealed capillaries behave wholly unpredictably at low temperatures; weird peak shifts; broadening, irreproducible behaviour.

SOLUTION

 Seal capillaries under He, or leave unsealed to allow entry of He exchange gas in the cryostat

ID31 is moving in late 2013 to ID22

- Reduced horizontal divergence ⇒ more photons on the sample
- In-vacuum undulator ⇒ more flux at 30 40 keV; increase upper energy range from 63 keV (now) to 80 keV (90 keV ??)
 - improved data for absorbing samples, PDF analysis, studies at lanthanide K edges (e.g. for lanthanide glasses), strain mapping, etc.
 - penetration into steels (as well as Ti and Al), dense ceramics, etc.

Summary

- Explosion of new facilities and beamlines, offering
- high resolution and accuracy via multianalyser stages;
- very fast acquisition / excellent statistics via Mythen or 2d detectors;
- Some of the latest machines offer both capabilities.
- Experiments are done with intermediate or hard energies ($\lambda \le 1$ Å, $\lambda \le 0.41$ Å) exploiting insertion device sources where possible.
- Watch out for radiation damage, and beam heating at low T.
- Don't forget it's only powder X-ray diffraction data (so don't over-interpret in the analysis).