

#### ICDD Headquarters, Newtown Square, PA, USA

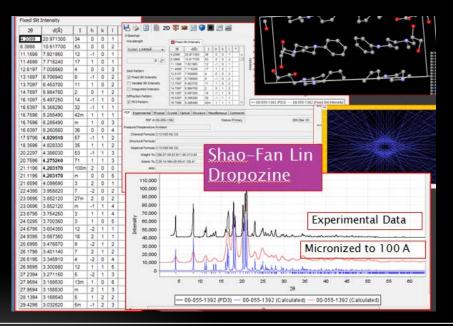
## POWDER DIFFRACTION FILE: RECENT DEVELOPMENTS IN QUALITY CONTROL

<u>Soorya N Kabekkodu (</u>suri), Timothy Fawcett International Centre for Diffraction Data Newtown Square PA, USA

#### DATABASE OVERVIEW

- Quality Marks
- Database Status of a given entry
- Structural Classification
- Subfile Designation

#### QUALITY MARKS


- Quality marks are essential while working with larger database with similar diffraction patterns
- Data validation and the quality mark assignments is the most important step in the editorial process

## DATA QUALITY

#### 1941 Data Entry by Don Hanawalt Set 1, card 1

#### 2005 Data Entry by Shao-Fan Lin Set 55, entry 00-055-1392

| d                                      | 20.0 | 9.9       | 2.67                                 | $\begin{array}{c} d \text{ in } A \\ \lambda = .708 \end{array}$ | $\frac{\mathbf{I}}{\mathbf{I}_{i}}$  | $\begin{array}{c} d \text{ in } A \\ \lambda = .708 \end{array}$ | $\frac{\mathbf{I}}{\mathbf{I}_{1}}$ |
|----------------------------------------|------|-----------|--------------------------------------|------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|-------------------------------------|
| <u>I</u><br><u>I</u> ,                 | 1.00 | 0.18      | 0.10                                 | 20.0<br>9.9<br>3,40<br>5,22<br>3,15                              | 1.00<br>0.19<br>0.05<br>0.03<br>0.03 |                                                                  |                                     |
| I                                      | 40   | 7         | 4                                    | \$.22<br>3,15                                                    | 0.03                                 |                                                                  |                                     |
| Bi Oa. Cio Hi<br>Bismuth beta-naphthal |      |           | 2.98<br>2.67<br>2.06<br>1.93<br>1.89 | 0.03<br>0.10<br>0.03<br>0.05<br>0.10                             |                                      |                                                                  |                                     |
|                                        |      |           | Z =                                  | 1.61<br>1.57<br>1.52<br>1.330<br>1.240                           | 0.05<br>0.03<br>0.03<br>0.03         |                                                                  |                                     |
| $a_{\circ} =$<br>A =<br>D =            | b. = | с.<br>С = | .=                                   | 1.190                                                            | 0.05                                 |                                                                  |                                     |
| n=                                     | ω=   | 8         | =                                    |                                                                  |                                      |                                                                  | H                                   |



Data quality improves with time, historical data were typically recorded on photographic film with visual estimates for peak positions and intensities. Modern data are typically recorded with an automated diffractometer where digital patterns are recorded using position sensitive detectors (both 1D and 2D) and processed by automated programs with embedded data corrections for instrumental and specimen errors.

## **Powder Diffraction File**

- Contains (Inorganic+Organic) more than 760,000 entries
- 214,882 with atomic coordinates
- All the entries have quality mark indicating the reliability
- Powder Diffraction File is the ONLY crystallographic database that classifies entries based on quality mark
- Assignment of structural prototype and their classification
- Entries are classified based on subfiles
- Data validation, quality mark assignments, structure prototyping are the most important step in the editorial process

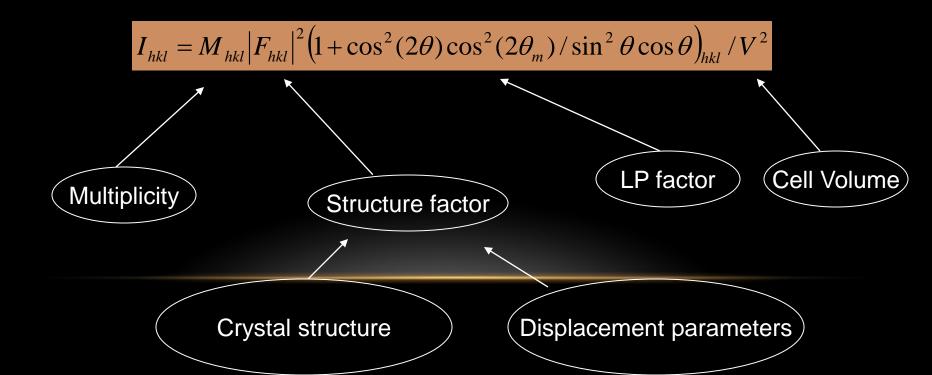
### EDITORIALIZED DATABASE FILTERS

- Database contains multiple experimental determination of a given phase on account of
  - Different experimental condition
  - Publication from different research groups (these materials are obviously of high research/industrial interest)
- Editorially assigned quality marks and database status flags are vital in optimizing queries dealing with phases having multiple determination

## QUALITY MARK (QM) TYPES

- Experimental patterns
- Calculated Patterns (based on experimentally determined crystal structures)

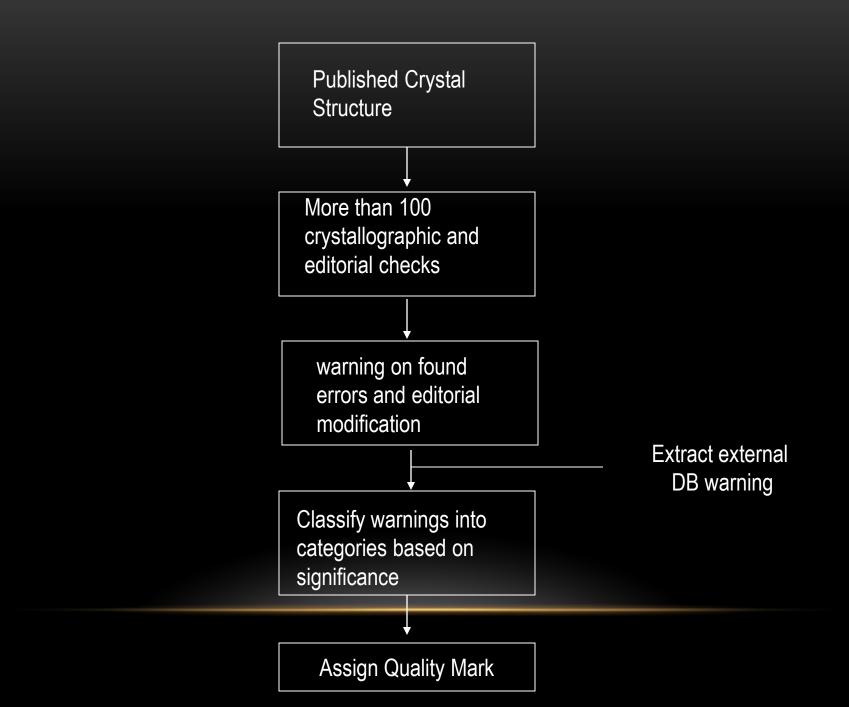
## QM FOR EXPERIMENTAL PATTERNS


- Star (Well characterized chemically and crystallographyically, No unindexed lines, $\Delta 2 \Theta \le 0.03^{\circ}$ )
- R (d values from whole pattern fitting, like Rietveld, Le Bail refinement)
- I (Well characterized chemically No unindexed strong lines, $\Delta 2\Theta \leq 0.06^{\circ}$ )
- B (Do not meet the criteria for \*, I)
- O (Poorly characterized, with editorial comment explaining the reason)
- C (author calculated d values)
- H (Hypothetical)
- M (Minimally acceptable non crystalline pattern)
- G (Good non crystalline pattern, usually has additional characterization other than XRD)

## QM FOR EXPERIMENTAL PATTERNS

- Each and every pattern editorially reviewed including visual comparison of raw data vs d-l list
- Undergoes more than 100 data validation checks before gets published

#### CALCULATED PATTERNS


If we know the crystal structure, we can calculate the diffraction pattern using the equation



It is extremely important to make sure that the crystal structure used for the calculation is correct. In fact it is the rate determining step in the editorial process

## THE METHOD

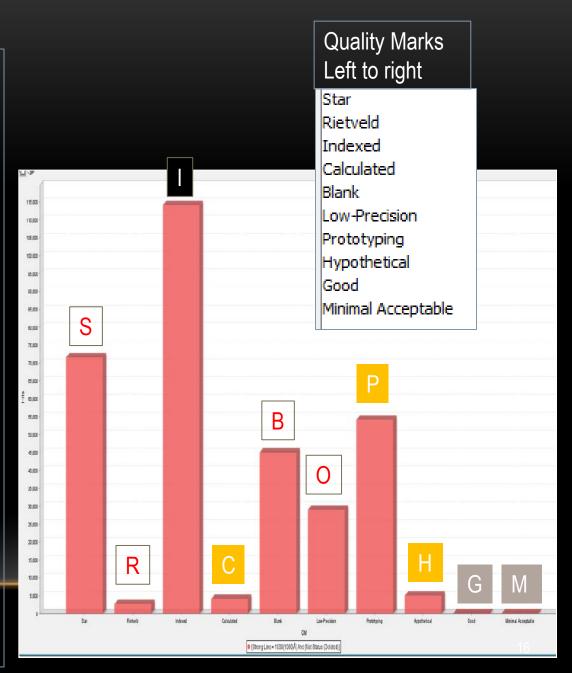
- Editor classifies and flags warnings
  - Minor warning (W1)
  - Significant warning (W2)
  - Major warning (W3)
- QM will be assigned SQL query based on type of warning code(s).



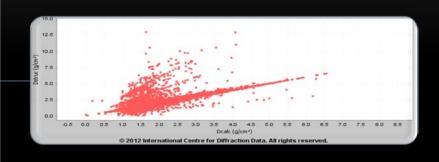
## CALC. QM NOTATIONS

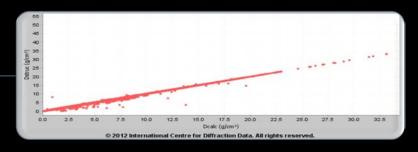
| Category                          | QM |
|-----------------------------------|----|
| No Warning                        | *  |
| Minor Warning                     | Ι  |
| Significant warning               | В  |
| Assigned structure<br>(Prototype) | P  |
| Hypothetical                      | Н  |
| Major warning                     | 0  |

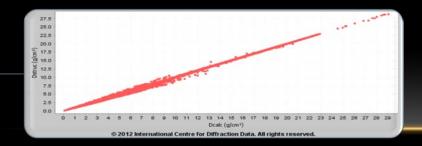
#### **Overall quality**

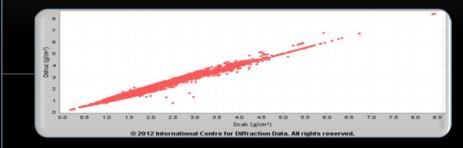

This is the quality mark distribution for

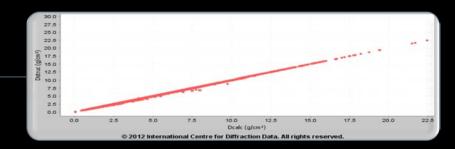
340,653 entries published in PDF-4+ Release 2013. Quality is defined by the ability to produce an accurate powder pattern with known and consistent chemistry, physical properties, and unit cell parameters. The ICDD does over 100 separate checks in its quality review.

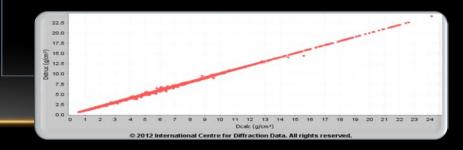

Star (S), Indexed (I), and Blank (B) marks are in decreasing order of quality. In these cases there is a unit cell and calculated d-spacings which can be compared to experimental d-spacings. Low precision data (O) tend to be historical in nature where d-spacings and intensities were visually estimated resulting in low precision. Rietveld (R) quality marks result from Rietveld refinements where there is a strong agreement with the structure and powder patterns resulting in high quality.


Calculated (C), Prototype (P) and Hypothetical Data (H) all result from calculation *and do not have corresponding experimental data*. The quality of these data are more difficult to ascertain. The user should be cautious using these data.


Good (G) and Minimal Acceptable (M) are new quality marks being used for non-crystalline or partially crystalline solids. The descriptors (G or M) describe the quality of supporting analytical data and the reproducibility of the reference powder pattern.





# ICDD QUALITY SYSTEMS – STRUCTURAL VS CALC DENSITY After Quality Mark (2005)



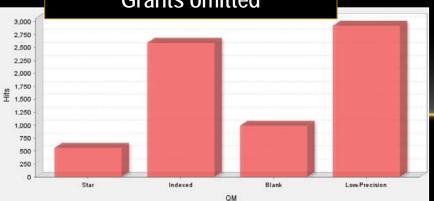






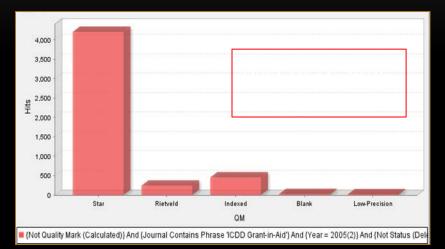




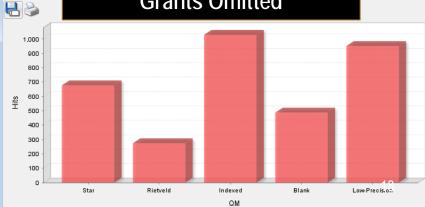


#### QUALITY IN POWDER DIFFRACTION DATA

**Quality Mark Distribution** 

ICDD Grantees 1973-1977


File Edit Help 83 350 325 300 275 250 225 200 Hits 175 150 125 100 75 50 25 Star Indexed Blank Low-Precision QM Kot Quality Mark (Calculated) And (Journal Contains Phrase "CDD Grant-in-Aid" And (Year = 1976(2)) And (Not Status (Delated))

#### Quality Mark Distribution All Powder Data 1973-1977 Grants omitted

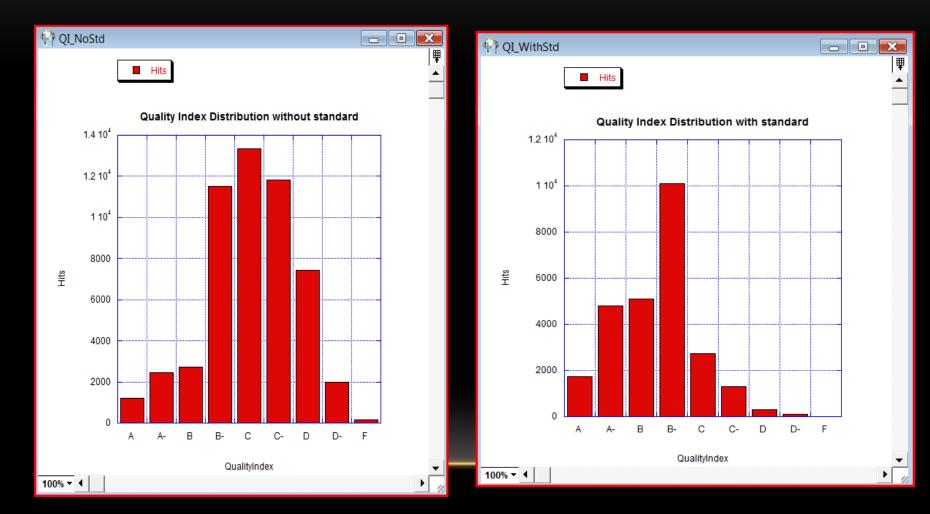



Quality Mark Distribution

#### ICDD Grantees 2003-2007



#### Quality Mark Distribution All Powder Data 2003-2007 Grants Omitted




## QUALITY INDEX

 Quality Index in Powder diffraction file is a measure of average error (parts per 10<sup>5</sup>) associated with unit cell dimensions usually denoted by a letter

| 0-1       | А  |
|-----------|----|
| 2-5       | A- |
| 6-10      | В  |
| 11-50     | B- |
| 51-100    | С  |
| 101-500   | C- |
| 501-1000  | D  |
| 1001-5000 | D- |
| 5001-9999 | F  |

#### QUALITY INDEX DISTRIBUTION COMPARISON

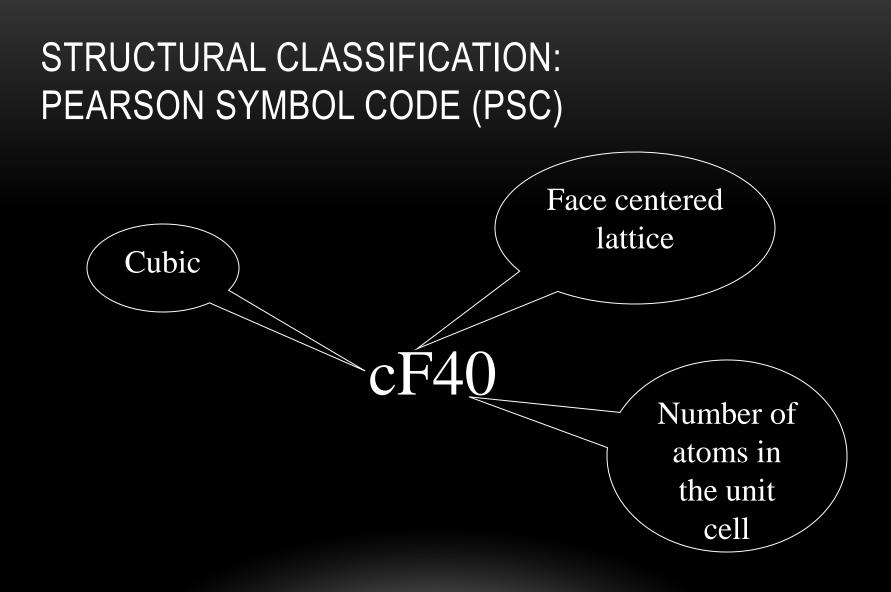


#### **Quality and Phase Identification Results**

This is a copy of an ICDD alpha test where we evaluate the ability of the database to identify unknowns using test data sets. In this case, the test data sets were mixtures of vitamin pills, minerals, fertilizers and cements. We record the phase identified, the match score (higher is better) and the reference quality.

The highest quality reference data (S,R) was used in the identification of 44% of the phases even though these data represent 21.7 % of the database. S, R and I quality data were used for 88 % of the identifications.

|        | Phase         | Score | QM |        | Phase               | Score | QM |
|--------|---------------|-------|----|--------|---------------------|-------|----|
| Test 1 | Calcite       | 6412  | S  | Test 5 | C3S                 | 5393  | R  |
|        | zincite       | 5399  | S  | (csto  | Anhydrate           | 4906  | ï  |
|        | Ascorbic Acid | 6176  | C  |        | CaSO4-0.5 H2O       | 3354  | 1  |
|        | KCL           | 5854  | 1  |        | Brownmillerite      | 2862  | S  |
|        | Monetite      | 5853  | 1  |        | Dolomite            | 3243  | S  |
|        | cellulose     | 3504  | S  |        |                     |       |    |
|        | Brushite      | 3080  | S  | Test 6 | Muscovite           | 6977  | I  |
|        |               |       |    |        | Chlorite serpentine | 5733  | L  |
| Test 2 | Calcite       | 6181  | 1  |        | Quartz              | 5259  | I. |
|        | Vit C         | 5871  | I. |        | Rutile              | 4745  |    |
|        | KCI           | 5854  | 1  |        |                     |       |    |
|        | Monetite      | 5473  | 1  | Test 7 | Urea                | 5177  | S  |
|        | zincite       | 5853  | S  |        | Ammonim H Phosphate | 4914  | P  |
|        | cellulose     | 3708  | S  |        | Sulfer              | 4160  | 1  |
|        |               |       |    |        | KCI                 | 3898  | 1  |
| Test 3 | C2S           | 4784  | R  |        |                     |       |    |
|        | SiO2          | 3447  | В  | Test 8 | Calcite             | 5767  | 1  |
|        | MgO           | 3128  | н  |        | Monetite            | 5645  | 1  |
|        |               |       |    |        | Zincite             | 6110  | S  |
| Test 4 | quartz        | 5140  | S  |        | Sylvite             | 5316  | 1  |
|        | Azurite       | 4577  | S  |        | Ascorbic Acid       | 3963  | С  |
|        | (Pb) Barite   | 5708  | S  |        | Brushite            | 3047  | S  |
|        | Florite       | 3376  | 1  |        | Iron Fumarate       | 1401  | R  |
|        | Malachite     | 2268  | S  |        | MgO                 | 1400  | 1  |
|        |               |       |    |        | Cellulose           | 1466  | S  |


For several consecutive years, similar results have been obtained in alpha tests of ICDD products (PDF-2, PDF-4+, and PDF-4/Organics databases). Higher quality references most frequently match higher quality data produced by modern instrumentation and software.

The averaged test scores have also increased with time as higher quality references replace

lower quality references with time, producing higher scores. These tests have also been repeated with major commercial search/match software used by large global manufacturers of XRD equipment.

### DATABASE STATUS

- When multiple entries are available, database status is assigned editorially to avoid nearly duplicate result set
- Primary
  - Primary pattern for a given phase usually best quality, room temperature data
- Alternate
  - Alternate to primary. Not necessarily mean of poor quality
- Deleted
  - Unresolved errors
  - Duplicated entry



## STRUCTURAL CLASSIFICATION: STRUCTURE TYPE NOTATION

#### Popular structure type descriptions are

- Traditional Notation
  - Based on unit cell, Pearson Symbol and chemistry (usually assigned manually by comparing the diffraction patterns)
- ANX Formula
  - Based on type of ion and their site occupation
  - Example
    - Ca Ti O3 is of ABX3 type
    - Fe3O4 is of AB2X4 type
- Long descriptive Notation following Parthe's method
  - Based on detailed crystallographic analysis
  - Example Cu3 As,cl64,220 (Structure Type Formula, Pearson Symbol, Space group number)
  - Sensitive to prototype branching based on atomic environment

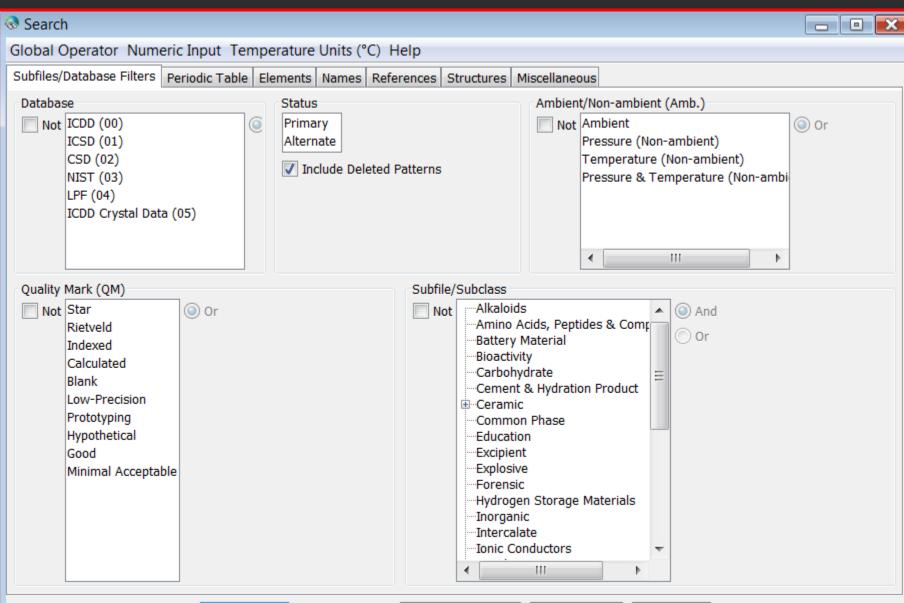
#### STANDARDIZATION OF CRYSTAL STRUCTURE

- First proposed by Parthe and Gelato (*Acta Cryst.* (1984), A40, 169-183)
- The method uses standardization parameter

$$\Gamma = \sum_{i=1}^{N} \left( x_i^2 + y_i^2 + z_i^2 \right)^{1/2}$$

N is number of atom sites, x,y,z are fractional coordinates

#### WHY STANDARDIZED DATA FOR COMPARISON?

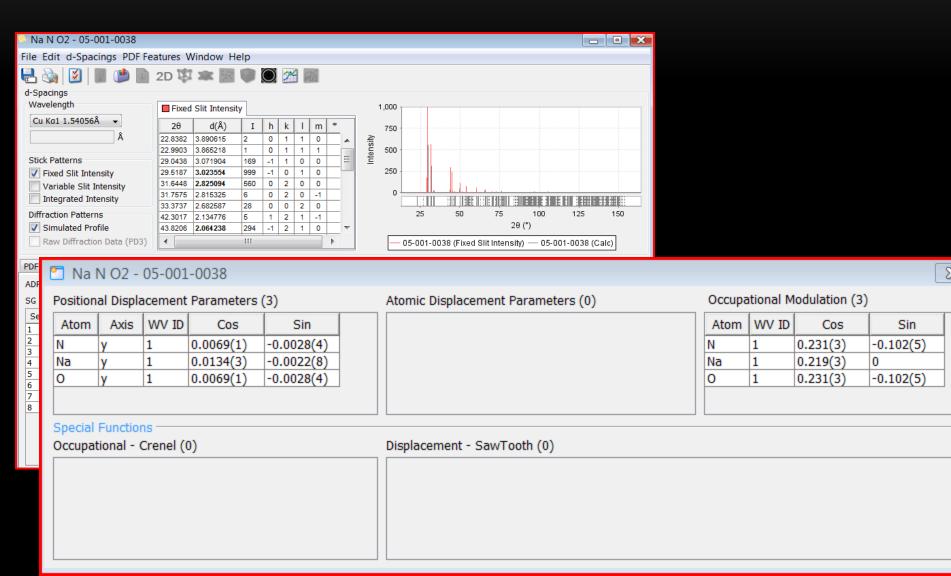

```
CeCu2, Imma, a=4.425,b=7.057,
                                       KHg2, Imma, a=8.10,b=5.16,
c=7.475
                                       c = 8.77
Cu (8h) 0 0.051 0.1648
                                       Hg (8i) 0.190 0.25 0.087
Ce (4e) 0 0.25 0.5377
                                       K (4e) 0
                                                    0.25 0.703
                Standardization
                                                         Standardization
                                      KHg2, Imma, a=5.16,b=8.10,
CeCu2, Imma, a=4.425,b=7.057,
c=7.475
                                      c=8.77
Cu (8h) 0 0.051 0.1648
                                      Hg (8h) 0 0.06 0.163
Ce (4e) 0 0.25 0.5377
                                      K (4e) 0 0.25 0.547
```

## SUBFILES

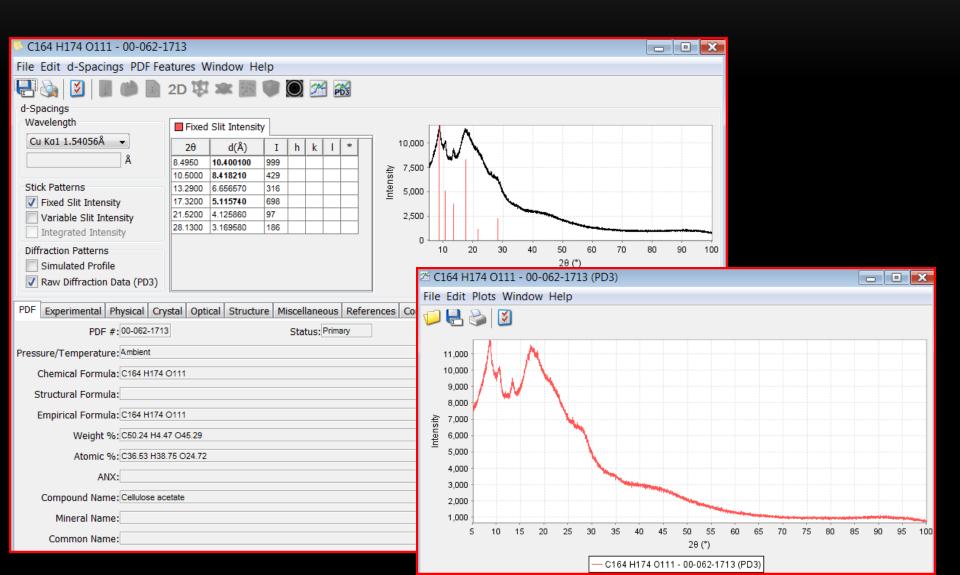
- Classified into various categories based on chemistry, properties and application
- Each subfile is defined by set of rules approved by the concerned subcommittee
- Subcommittee members review the file and continuously improvise it
- Examples: Cement, Pharmaceutical, Ion Conductor, Forensic etc

#### THE POWER OF SUBFILE SEARCHING

- This feature allows you to search a user-specified subset created using the many search criteria of DDView.
- You may 'limit' the database to just ceramics, or iron-containing minerals, or cubic perovskites, or pharmaceuticals, or superconductors containing copper, or primary patterns, or ...
- By focusing the database in such a manner, the number of coincidental 'near-hits' is correspondingly reduced and the speed of search/match is correspondingly increased.




#### RECENT DEVELOPMENTS IN POWDER DIFFRACTION FILE

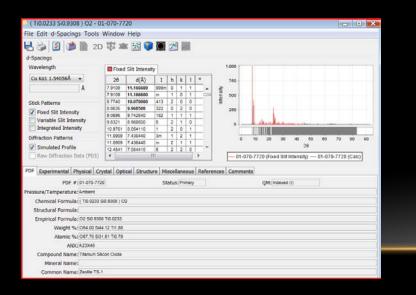

#### INCLUSION OF MODULATED STRUCTURES

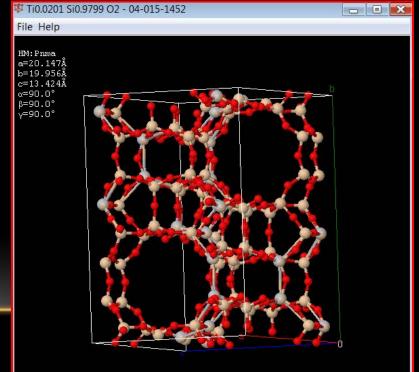
| Na N O2 - 05-001-0038                         |                     |                               |                                                           |  |  |  |  |
|-----------------------------------------------|---------------------|-------------------------------|-----------------------------------------------------------|--|--|--|--|
| File Edit d-Spacings PDF Features Window Help |                     |                               |                                                           |  |  |  |  |
| 🛃 🍇 🕺 📗 🕐 🛅                                   | 2D 🕸 🕷 🧱            | I 🖤 💟 🎢 📰                     |                                                           |  |  |  |  |
| d-Spacings                                    |                     |                               |                                                           |  |  |  |  |
| Wavelength                                    | Fixed Slit Intensi  | sity                          | 1,000                                                     |  |  |  |  |
| Cu Ka1 1.54056Å 🛛 👻                           | 20 d(Å)             | I h k l m *                   | 750                                                       |  |  |  |  |
| Â                                             | 22.8382 3.890615    | 2 0 1 1 0                     |                                                           |  |  |  |  |
|                                               | 22.9903 3.865218    |                               | 500                                                       |  |  |  |  |
| Stick Patterns                                | 29.0438 3.071904    | 169 -1 1 0 0 =                |                                                           |  |  |  |  |
| Fixed Slit Intensity                          | 29.5187 3.023554    | 999 -1 0 1 0                  | 250                                                       |  |  |  |  |
| Variable Slit Intensity                       | 31.6448 2.825094    | 560 0 2 0 0                   |                                                           |  |  |  |  |
| Integrated Intensity                          | 31.7575 2.815325    | 6 0 2 0 -1                    |                                                           |  |  |  |  |
|                                               | 33.3737 2.682587    | 28 0 0 2 0                    |                                                           |  |  |  |  |
| Diffraction Patterns                          | 42.3017 2.134776    | 5 1 2 1 -1                    | 25 50 75 100 125 150                                      |  |  |  |  |
| Simulated Profile                             | 43.8206 2.064238    | 294 -1 2 1 0 🔻                | 20 (°)                                                    |  |  |  |  |
| Raw Diffraction Data (PD3)                    | •                   |                               | — 05-001-0038 (Fixed Slit Intensity) — 05-001-0038 (Calc) |  |  |  |  |
| PDF Experimental Physical Crys                | stal Optical Struct | ture Miscellaneous Reference  | ces Comments                                              |  |  |  |  |
| SYS: Orthorhombic                             |                     | Cell Wave Vector 1: q = (0.10 | 08)a* W Matrix (Subsys 2)                                 |  |  |  |  |
| Superspace Group: 12mm(a00)ss0                |                     | Cell Wave Vector 2:           |                                                           |  |  |  |  |
| Aspect:                                       |                     |                               |                                                           |  |  |  |  |
| Author's Cell (See Reference tab t            | for source) 🛃 —     |                               |                                                           |  |  |  |  |
| a: 3.66(4) Å                                  |                     | b: 5.65(8)                    | Å c: 5.365(1) Å                                           |  |  |  |  |
| a: 90 °                                       |                     | β: 90                         | o <u>v</u> :90 o                                          |  |  |  |  |
| Volume: 110.9(2) Å3                           |                     | Z:2                           | MolVol:                                                   |  |  |  |  |
| Author's Cell Axial Ratio                     |                     |                               |                                                           |  |  |  |  |
| c/a:                                          |                     | a/b:                          | c/b:                                                      |  |  |  |  |
| Density                                       |                     |                               |                                                           |  |  |  |  |
| Dcalc: 2.065                                  | g/cm³               | Dmeas:                        | g/cm <sup>3</sup> Dstruc: 2.065 g/cm <sup>3</sup>         |  |  |  |  |
| SS/FOM:                                       |                     |                               |                                                           |  |  |  |  |
| R-factor: 0.063                               |                     | Error:                        |                                                           |  |  |  |  |

#### MODULATED STRUCTURES



## INCLUSION OF POORLY CRYSTALLINE MATERIALS





#### NEW CROSS REFERENCES

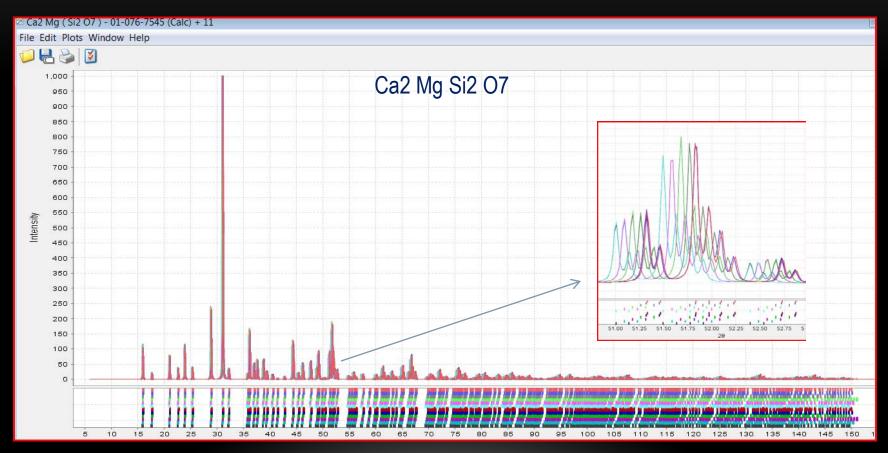
- Three new cross references have been introduced to Powder Diffraction File
  - Cross reference to atomic coordinates
  - Cross reference to related phase
  - Grouping of non-ambient temperature data

## ATOMIC COORDINATE CROSS REFERENCE

- This cross reference focuses on mapping entries with no atomic coordinates to ones with atomic coordinates
- PDF-4+ 2013 will have 183,193 atomic coordinates out of 340,653 entries
- 36,252 atomic coordinate cross references have been indentified resulting in total number of entries with atomic coordinates to 219,445
   Ti0.0201 Si0.9799 O2 - 04-015-1452






#### CROSS REFERENCING RELATED PHASES

- When there is no crystal structure available for a given phase, cross referencing has been implemented to relate to the compositionally closest phase
- 13,975 phases with no atomic coordinates have been mapped to the closet composition with atomic coordinates in PDF-4+ 2013

#### **TEMPERATURE SERIES DATA**

- For a given chemical composition all the diffraction data collected at various temperatures are grouped together
- Good tool to study coefficient of thermal expansion and phase transition
- Grouping was done for phases that have at least two non-ambient temperature diffraction data
- When temperature is absent, 293 K is assumed and flagged accordingly

#### NON-AMBIENT TEMPERATURE DATA



There are 4845 distinct temperature series data in PDF-4+ 2013