Acquisition of Diffusion Data from Ab Initio Part II: Representation of *ab initi***o results in a database**

Patrice Turchi (turchi1@llnl.gov)

NIST Diffusion Workshop, May 9-10, 2013, Gaithersburg, MD

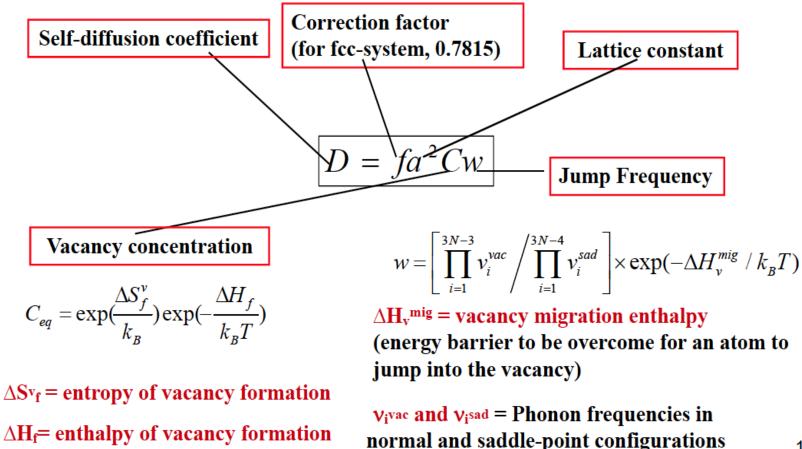
Lawrence Livermore National Laboratory

LLNL-PRES-636062

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

From

Yong Du, W. B. Zhang, D. D. Liu, S. L. Cui, D. D. Zhao, L. J. Zhang, and H. H. Xu


"Atomic Mobility and Diffusivity in Al Alloys"

NIST Diffusion Workshop, March 23-24, 2010

Self-diffusion: M.Mantina, Y.Wang, R.Arryave, L.Q.Chen, Z.K.Liu, PRL, 100,215901(2008)

Self-diffusion coefficient is calculated by the following equation:

Impurity-diffusion:

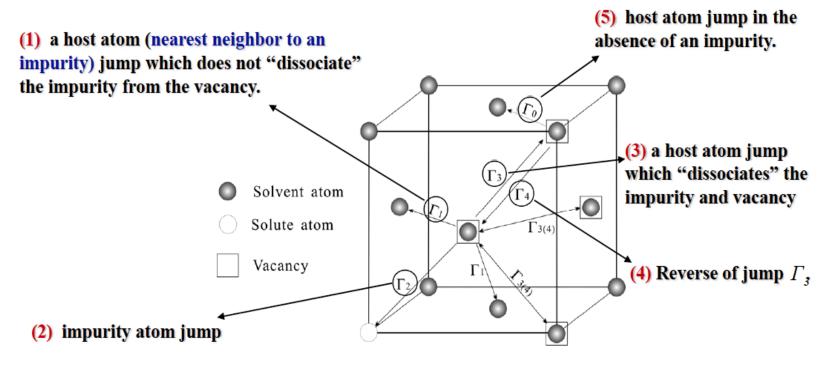
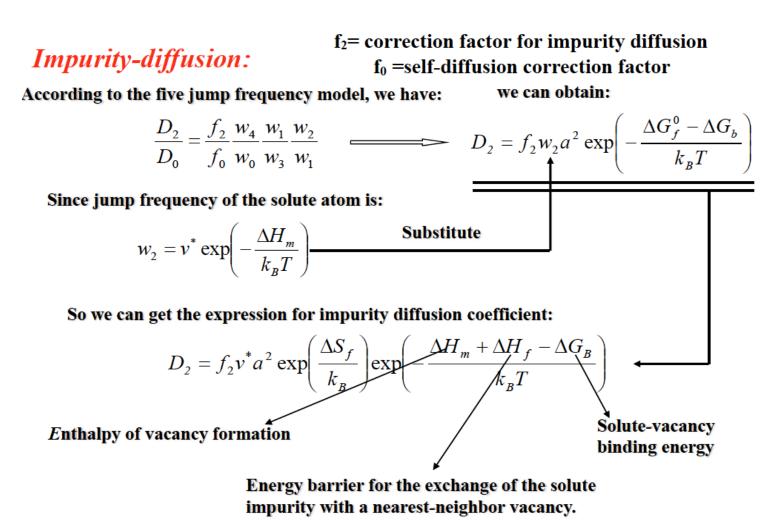



Fig .3. Five frequency model illustration for the case of an fcc system with a dilute impurity concentration. The arrows indicate the direction of the vacancy jump.

A.D. LeClaire and A.B. Lidiard, Phil. Mag., 47, 518 (1970)

16

17

DFT Method (VASP – Transition State Theory) First-Principles Calculation of Self-Diffusion Coefficients M. Mantina, Y. Wang, R. Arroyave, L. Q. Chen, Z. K. Liu, and C. Wolverton Phys. Rev. Lett. **100**, 215901-1 to 4 (2008). In fcc Al

Impurity diffusion activation energies in AI from first principles D. Simonovic and M. H. F. Sluiter Phys. Rev. B **79**, 054304-1 to 12 (2009)

First principles impurity diffusion coefficients M. Mantina, Y. Wang, L.Q. Chen, Z.K. Liu, and C. Wolverton Acta Materialia **57**, 4102-4108 (2009). Mg, Si, Cu in fcc Al

Vacancy mediated substitutional diffusion in binary crystalline solids Anton Van der Ven, Hui-Chia Yu, Gerbrand Ceder, and Katsuyo Thornton Progress in Materials Science 55, 61-105 (2010)

Atomistic modeling of As diffusion in ZnO B. Puchala and D. Morgan Phys. Rev. B **85**, 064106-1 to 8 (2012).

Ab initio calculations of rare-earth diffusion in magnesium Liam Huber, Ilya Elfimov, Jörg Rottler, and Matthias Militzer Phys. Rev. B **85**, 144301-1 to 7 (2012). Al, Ca, RE (Gd, Sm, Nd, Pr, Ce, La, Eu) in Mg

Other Methods

Molecular Dynamics Kinetic Monte Carlo

Requirement The information should be self-contained so that over time the results can be reproduced by anyone

So besides the output files that summarize the relevant data, there is a need to provide:

 the critical input files associated with the *ab initio* code (especially the pseudo-potential file),

 a short description (in words) of the major approximations that have been made, and

a "sense" of the accuracy of the results.

The *ab initio* code should be specified by its version, and the method that has been considered to generate the relevant data

What Are We Talking About?

There is a suite of popular pseudo-potential codes available:

Abinit – www.abinit.org

Pseudo-potentials and plane-wave basis set

CAMPOS – www.fysik.dtu.dk/CAMP/CAMPOS_welcome.html

Pseudo-potentials and plane-wave basis set.

CASTEP – www.tcm.phys.cam.uk/castep

Pseudo-potentials and plane-wave basis set

FHI96MD – www.fhi-berlin.mpg.de/th/fhimd

Pseudo-potentials and plane-wave basis set, with molecular dynamics capabilities based on the Car-Parrinello technique

PWSCF – www.pwscf.org

Pseudo-potentials and plane-wave basis set. DFT codes include response function (phonon) features.

Quantum Expresso – www.democritos.it/scientific.php

Pseudo-potentials and LCAO basis set. Open-source package for research in electronic structure, simulation, and optimization.

SIESTA – www.uam.es/depatamentos/ciencas/fismateriac/siesta

Pseudo-potentials and LCAO basis set

ELECTRONIC STRUCTURE METHODS: What are they for?

Ab initio Approaches: "Trends & Understanding" versus "Numbers"

Equilibrium Properties:	Lattice parameter(s) 样 Structural energy difference
Elastic Properties:	Bulk modulus, elastic constants 벑 Phonon spectrum 🙀
Electronic Properties:	Density of states (γ of specific heat) N.B.: low n(E _F) is not a necessary condition for stability Charge density Spectroscopic data (UPS,XPS,PAS,ARPES,)
Transport Properties:	Conductivity (DC and AC) Reflectivity
Magnetic Properties:	Magnetic ordering Moments
Defect Properties:	Energetics (defect formation energy, energy barrier, etc.) ≭
Surface Properties:	Structure (reconstruction, chemical order) Energetics
Alloy Properties:	All of the above Formation energy Ordering energy Stacking fault and anti-phase boundary energies

Electronic Structure Methods

Ab initio Approaches:

"Wave" versus "Green Function"

or

"Order" versus "Disorder"

Pseudo-potential-based Methods:

VASP (http://cms.mpi.univie.ac.at/vasp)

Pseudo-potentials and plane-wave basis set

Siesta (http://www.uam.es/depatamentos/ciencias/fismateriac/siesta)

Pseudo-potentials and LCAO basis set

ABINIT (http://www.abinit.org)

Pseudo-potentials and plane-wave basis set

Full-potential Methods:

Wien97 (<u>http://www.tuwien.ac.at/theochem/wien97</u>), replaced now by: Wien2k (<u>http://www.wien2k.at</u>) Linear Augmented Plane Wave (LAPW) and local orbital method LmtART (<u>http://www.mpi-stuttgart.mpg.de/andersen/LMTOMAN/Imtman.pdf</u>) Full-Potential Linear Muffin-Tin Orbital (FP-LMTO) Full-Potential Linearized-Augmented Plane Wave (FP-LAPW)

Other Methods:

KKR

TB-LMTO-ASA (http://www.mpi-stuttgart.mpg.de/andersen/LMTODOC/LMTODOC.html)

Electronic Structure Methods (cont'd)

Ab initio Approaches:

"Wave" versus "Green Function" or "Order" versus "Disorder"

Methods Limited to Ordered Structures: (Wave Methods)

- Pseudo-Potential
- LAPW or FP-LAPW
- LMTO or FP-LMTO
- ASW
- FP-LASTO

Methods that can also handle Disordered Structures (via, e.g., the CPA): (Green's function Methods)

- KKR
- TB-LMTO

Electronic Structure Methods (cont'd)

Ab initio Approaches: What does "Accuracy" mean?

Most ab initio methods are based on "Density Functional Theory (DFT)"

Approximations:

Exchange and correlation effects

Local Density Approximation (LDA)

Von Barth & Hedin Hedin and Lundqvist Wigner Vosko Ceperley and Alder (Perdew and Zunger)

Beyond LDA

GGA LDA+U SIC GW DMFT

Other Approximations:

Shape of the potential function Muffin-tin ASA (Equal versus non-equal sphere radii) Full potential Core versus Valence electrons Scalar relativistic versus Fully relativistic

Collinear versus Non-collinear magnetism Born-Oppenheimer approximation

Hence an energy can be obtained within less than 1 J/mol and at the same time be off by several kJ/mol

Electronic Structure Methods (cont' d)

"Accuracy" versus "Precision" Structural stability of Mo and Ru

Method	$\Delta E_{Mo}^{fcc-bcc}$	∆E ^{fcc-bcc} ∆ERu
LMTO-ASA+CC LMTO-ASA TB-LMTO (F.R.) LAPW (NRL) FP-LASTO FP-LAPW	+31.42 +28.00 +48.00 +25.64 +30.10 +31.52	-39.43 -34.00 -34.40 -44.59 -35.98

Energies in mRy/atom

Why Pseudo-potentials?

- Reduction of the basis set size.
- Reduction of the number of electrons.

Critical Approximations:

One-electron picture

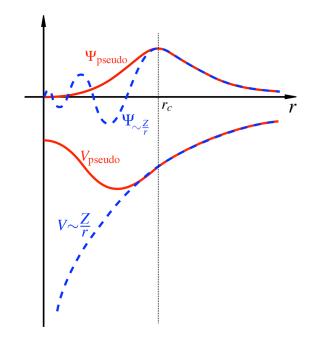
SPEED

No significant overlap between core and valence wavefunctions (frozen core)

The only role of the core electrons is to provide an effective external potential (or pseudo-potential) in which the outer electrons move.

versus ACCURACY and TRANSFERABILITY

Results from a pseudo-potential-based code are as good as the pseudo-potentials are.



Norm-conserving pseudo-potentials: outside r_c the norm of each pseudowavefunction is identical to its corresponding all-electron wavefunction.

Ultra-soft pseudo-potentials: relax the norm-conserving constraint to reduce the basis set size (other related technique: PAW).

Critical Approximations (true for most DFT-based methods and codes):

- Exchange and correlation potential (LDA, LSDA, GGA, SIC, GWM, DMFT)
- Relativistic effects (scalar relativistic, fully relativistic, spin-orbit coupling)
- In most DFT-based codes, the zero-point motion contribution to the total energy is absent.

Why Construct a Pseudo-potential?

- There is a handful of repositories with prefabbed pseudo-potentials:
- Abinit's web site: http://www.abinit.org
- Rappe Group: http://lorax.chem.upenn.edu
- Vanderbilt's library of ultrasoft pseudo-potentials: http://www.physics.rutgers.edu/~dhv/uspp/uspp-734.html
- But, it is very likely that you may want to make your own:
 - All elements may not be available
 - Pseudo-potential may not give accurate results
 - Pseudo-potential may be too expensive to use for your problem
- Furthermore, having the ability to construct pseudo-potentials can be an important research tool.

• For a pseudo-potential to be useful, it must be both accurate and efficient

accuracy - reproduction of all-electron atomic properties

efficiency - cost of using the pseudo-potential in solid-state calculations

 Need a self-contained program to construct and test the accuracy and efficiency of pseudo-potentials

Open-source Pseudo-potential Interface and Unification Module (J. Bennett & A.M. Rappe) http://opium.sourceforge.net/index.html

Requirement The information should be self-contained so that over time the results can be reproduced

Let us consider VASP as an example 4 main input files: POSCAR INCAR POTCAR KPOINTS

These are the files that are used to generate the main results

The **INCAR** file is the central input file of VASP. It determines "what to do and how to do it". There is a relatively large number of parameters that may be set by means of tags in the INCAR file. Most of these parameters have convenient defaults, and a user unaware of their meaning should not change any of the default values.

5 637706381/003038

POSCAR

(Example of Al₂Cu, C16)

5.6377963814923238			
1.00000000000000000	0.0000000000000000	0.0000000000000000	
0.00000000000000000	1.00000000000000000	0.0000000000000000	
0.00000000000000000	0.0000000000000000	1.00000000000000000	
Cu Al			
4 8			
d			
0.00000000000000000	0.0000000000000000	0.2500000000000000	
0.00000000000000000	0.0000000000000000	0.7500000000000000	
0.50000000000000000	0.5000000000000000	0.7500000000000000	
0.5000000000000000	0.5000000000000000	0.2500000000000000	
0.2500000000000000	0.7500000000000000	0.0000000000000000	
0.7500000000000000	0.2500000000000000	0.0000000000000000	
0.2500000000000000	0.2500000000000000	0.0000000000000000	
0.7500000000000000	0.7500000000000000	0.0000000000000000	
0.75000000000000000	0.2500000000000000	0.5000000000000000	
0.2500000000000000	0.7500000000000000	0.5000000000000000	
0.7500000000000000	0.7500000000000000	0.5000000000000000	
0.2500000000000000	0.2500000000000000	0.5000000000000000	

The **INCAR** file is the central input file of VASP. It determines "what to do and how to do it". There is a relatively large number of parameters that may be set by means of tags in the INCAR file. Most of these parameters have convenient defaults, and a user unaware of their meaning should not change any of the default values.

INCAR

SYSTEM = for sample bulk (R.S)

PREC = H Medium=default, Low, High; affects ENMAX, mesh, pspot # NSW = 3 max number of geometry steps # IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG # ISIF = 2 LORBIT = 11 ISMEAR = -5 -4-tet -1-fermi 1=Methfessel/Paxton 1.order SIGMA = .13 broadening in eV ALGO = FAST EDIFF = 1e-5
 # NELM = 60 # LREAL = AUTO real-space projection LREAL=.FALSE.
<pre># NBANDS = 12 # of bands; default = 1.2 * #elec/2 + 4 # ISPIN = 2</pre>
KPAR = 12 # NCORE = 1
write WAVECAR # LWAVE=.FALSE.
IALGO = 48 LPLANE = .TRUE. LSCALU = .FALSE. NSIM = 4 NPAR = 4

The **POTCAR** file contains the pseudo-potential for each atomic species used in the calculation. If the number of species is larger than one simply concats the POTCAR files of the species.

POTCAR	Description I E TYP RCUT TYP RCUT
PAW_PBE Cu 05Jan2001 11.00000000000000 parameters from PSCTR are: VRHFIN =Cu: d10 p1 LEXCH = PE EATOM = 1390.9800 eV, 102.2341 Ry	2 .000 23 2.300 2 .000 23 2.300 0 .000 23 2.300 0 .000 23 2.300 1 200 23 2.300 1 .000 23 2.300 3 .000 7 .000
,	Error from kinetic energy argument (eV)
TITEL = PAW_PBE Cu 05Jan2001 LULTRA = F use ultrasoft PP ?	NDATA = 100 STEP = 20.000 1.050
IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no	109. 107. 107. 105. 104. 103. 101. 100.
RPACOR = 2.000 partial core radius POMASS = 63.546; ZVAL = 11.000 mass and valenz	98.3 96.3 95.3 93.2 91.0 88.7 86.3 83.9
RCORE = 2.300 outmost cutoff radius	81.3 78.7 76.1 72.1 69.4 66.6 62.5 59.8 57.0 52.9 48.9 46.3 42.4 38.7 35.1 31.7
RWIGS = 2.480; RWIGS = 1.312 wigner-seitz radius (au A)	28.5 25.5 22.6 20.0 16.7 14.5 11.9 10.2
ENMAX = 273.214; ENMIN = 204.910 eV	8.20 6.49 5.05 3.87 2.91 2.14 1.55 .993
RCLOC = 1.712 cutoff for local pot	.677 .403 .230 .144 .805E-01 .493E-01 .351E-01 .324E-01
LCOR = T correct aug charges	.322E-01 .315E-01 .287E-01 .242E-01 .187E-01 .135E-01 .919E-02 .577E-02
LPAW = T paw PP	.414E-02 .333E-02 .317E-02 .315E-02 .295E-02 .256E-02 .195E-02 .137E-02
EAUG = 516.456	.935E-03 .701E-03 .618E-03 .611E-03 .587E-03 .509E-03 .381E-03 .272E-03
DEXC =008	.197E-03 .172E-03 .169E-03 .159E-03 .131E-03 .952E-04 .697E-04 .595E-04
RMAX = 2.789 core radius for proj-oper	.584E-04 .539E-04 .420E-04 .308E-04 .246E-04 .238E-04 .221E-04 .174E-04
RAUG = 1.300 factor for augmentation sphere	.126E-04 .110E-04 .107E-04 .919E-05
RDEP = 2.302 radius for radial grids	END of PSCTR-controll parameters
QCUT = -4.481; QGAM = 8.962 optimization parameters	local part
/	81.2582175088937078 .11614773E+03 .11612882E+03 .11607207E+03 .11597758E+03 .11584543E+03 .11567580E+03 .11546888E+03 .11522490E+03 .11494414E+03 .11462690E+03

Conclusions

Yes, there are plenty of "good" user friendly pseudo-potentialbased codes out there

The question is: are the pseudo-potentials for a given set of elements designed to tackle a problem never looked at before?
 Pseudo-potentials must be checked out within a new atomic configuration space against full potential-based electronic structure results (the same way EAM potentials should) to make sure that accuracy is preserved

 There will always be a trade off between speed and accuracy (and therefore transferability)