High-Throughput and Ab Initio Molecular Dynamics approaches for Developing Alloy Diffusion Databases (with an Application to Radiation Induced Segregation in Ni-Cr Alloys)

Dane Morgan, Leland Barnard, Tam Mayeshiba, Tom Angsten

Department of Materials Science and Engineering Materials Science Program University of Wisconsin – Madison, USA <u>ddmorgan@wisc.edu</u>

Multicomponent Diffusion Data and Its Impact on the Materials Design Process: Data Needed; Data Acquisition; and Data

Application May 2-3, 2012 NIST, Washington DC

Outline

- Some thoughts on Ab-Initio Diffusion Calculations
- Simple Diffusion in Elements/Dilute alloys
 High-throughput approaches
- Screening for Fast Oxygen Migration in Perovskites

High-throughput and datamining

- Ni-Cr Radiation Induced Segregation
 - Ab initio MD approach
- Summary

Some Thoughts on Opportunities in Ab-Initio Diffusion Calculations

- Simple diffusion (no or limited structural/chemical disorder)
 - Pure elements, pure sublattices in ordered phases, dilute impurities, simple surfaces, ...
 - Ab initio (CNEB + Phonons) + Analytic models => D
 - Opportunities for high-throughput/datamining approaches
- Complex diffusion (structural/chemical disorder)
 - Concentrated alloys, grain boundaries, interfaces, clusters, ...
 - Ab initio (CNEB + Phonons) + Kinetic Monte Carlo => D
 - Molecular Dynamics (for "low" barriers ~0.5 eV) => D

Simple Diffusion in Elements/Dilute Alloys: High-Throughput Approaches

Basic Vacancy Diffusion for Pure Elements, Dilute Alloys

- Diffusion in pure elements:
 - Dominated by a single defect formation and migration energy taking ~10 hours to predict
- **Diffusion in dilute alloys:** multifrequency models can predict D accurately
 - Dominated by ~5 defect and migration energies taking few days to predict

$$D = a^2 f v \exp\left(-\left(E_{vf} + E_m\right)/kT\right)$$

Cr Solute

Opportunity for database development with high-throughput calculations High-Throughput for Pure Elements, Dilute Alloys – A Materials Genome Opportunity

> Determine D* for pure A and $A_{1-x}B_x$ (x<<1) for all elements in the FCC, BCC, and HCP crystal structures

Resource needs

- ~40 viable pure elemental systems in each structure \rightarrow 2,500 alloy-structure systems
- to complete (years) 1 system takes ~5 day on 100 cores (= \$20k). **Fime**
- So need about 3,500 Core-Years, 1 postdoc.

Present Efforts: High-Throughput for Pure Elements

Evaluate diffusion activation energy for all pure elements in all three crystal structures (HCP, BCC, FCC)

Status

- Written automation codes to perform high-throughput computations
- # Completed Evac calculations = 47 hcp + 48 fcc = 95
- # Completed Emig calculations = 24 hcp + 43 fcc = 67
- Rate of Completion has been ~ 1 system/day on 100 cores
- All calculations with DFT from VASP, GGA, PAW
- Work done with one undergraduate guided by a graduate student

Trends vs. Experiment

¹ A. Mattsson, et al., PRB (2002)

FCC Evac versus Ecoh/atom

FCC Emig versus Ecoh/atom

Summary of Simple Diffusion in Elements/Dilute Alloys

- High-throughput approaches can enable comprehensive databases – Large scale impact for small scale costs
 - Scale of 3 years/\$700k.
 - Addition of phonons for attempt frequencies, thermal expansion (See Chelsea Zacherl talk for efficient methods) and interstitial diffusion also practical.
- Provide critical data for CALPHAD models, trend identification.
- Have written software and are running initial database at UW.

Screening for Fast Oxygen Migration in Perovskites

Motivation

- Oxygen diffusion is important in
 - solid oxide fuel cells (esp. low T)
 - sensors (response time)
- Fast diffusion characterized by high diffusion coefficient

$$D \propto exp\left(-\frac{E_m}{kT}\right)[V_0^{++}]$$

 Fast diffusion corresponds with low migration barrier E_m

ES-5000 Energy Server

Welcome to clean, quiet electricity that's always on. Welcome to the ES-5000 Energy Server.

Planar SOFC - Courtesy of Siemens Westinghouse Power Corp.

Oxygen sensor for fuel injection system http://www.rockauto.com

Modeling Perovskite Oxygen Migration Barriers

- Perovskites: A³⁺B³⁺O₃
- [A = La, Pr, Y][B = 3d transition metal, Sc, Ga]O₃ = 27 systems, 54 barriers (compensated and uncompensated)
- Using VASP with PAW-GGA, PW-91, High-throughput NEB scripts
- 40-atom supercell with 4x4x4 Monkhorst-Pack kpoint mesh
- Climbing Image Nudged Elastic Band method, 3 images
- Using only one position and jump direction gives 100-200 meV error
- High-spin ferromagnetic start (high temperature operation above magnetic transition temperature)

Perovskite Migration Energies

- Wide range, from 0.4-2.4 eV
- Challenging to explore whole perovskite space (>10,000 systems with A and B site alloying)
- Can we identify easy to determine descriptors to understand and predict these values?

Do Migration Barriers Trend with any Bulk or Endpoint Characteristics (Descriptors)?

Slow Calculations: NEB-calculated

migration barrier

Fast calculations: Descriptors derived solely from the bulk and vacancy

Search for Descriptors with Partial Least Squares (PLS) Regression

• PLS is a linear regression on descriptors

PLS barrier = c_0 + c_1^* (value of descriptor 1) + c_2^* (value of descriptor 2) + c_3^* (value of descriptor 3) + ...

• Also returns a Variable Importance for the Projection (VIP) for each descriptor.

de Jong, Chemometrics and Intelligent Laboratory Systems **18**, 251-263 (1993).

Choosing Descriptors

All 177 descriptors

angles radii total charges orbital occupancies lattice vectors interatomic distances cohesive energies free volumes ...

PLS regression over all NEB barriers, remove descriptors with VIP < 0.75, repeat until Test combinations of 3 and 4 descriptors

Non-rigorous method, but fruitful

PLS Derived Descriptors

VIP	Coeff.	Description
0.00	-45.613	Intercept
1.42	0.127	O-B-O 1
1.07	-0.074	O-B-O 2
0.80	0.239	O-B-O 3
0.71	-0.030	Bulk avg. B-O-B

PLS Regression on All Data

Max error: 0.50 RMS: 0.16

Predicting PrBO₃ and YBO₃ from LaBO₃

Predicting All Data from Random Subset (Fit to 10 systems)

Max error: 0.58 RMS: 0.24

Summary of Screening for Fast Oxygen Migration in Perovskites

- Migration barriers of 54 ABO₃ perovskites can be represented with only
 - three O-B-O bond angles in the first endpoint
 - the average relaxed B-O-B bond angle in the bulk
- Data from bulk and vacancy can now be used to screen for low barriers.
- May be many similar ways to accelerate migration energy calculations on complex structures with mining of descriptors.

Ni-Cr Radiation Induced Segregation Ab initio Molecular Dynamics Approach

What is Radiation Induced Segregation (RIS)?

A change in composition at a defect sink (grain boundary, void, dislocation, surface, ...) due to unequal transport of species to the sink by radiation induced defects

RIS in Fe-Cr-Ni Steels

Norris, et al., ASTM STP 1125 '92; Ashworth, et al. JNM '92; Ardell, Materials Issues for Generation IV Systems '08

Why Does RIS Matter?

- Linked to Radiation Induced Precipitation (RIP)
- Linked with intergranular failure and void swelling
- Potentially contributes irradiation assisted stress corrosion cracking (IASCC)
- Particular interest in Cr RIS in steels as Cr is key for corrosion protection

RPV Steel DBTT due to P RIS

The Atomic Level View of RIS

Possible RIS Mechanism to Enrich Blue

- Migrates preferentially as interstitials
- Exchanges preferentially with vacancies
- Defect-solute interaction, e.g. vacancies drag species to sink

 $D_{Blue}^{I} > D_{\text{Re}d}^{I}$

 $D_{Rlue}^V < D_{\text{Re}d}^V$

 $D_{VRlue} > 0$

Modeling RIS

Obtain flux from diffusion coefficients

$$J_i = -\sum_{j=1}^N D_{ij} \nabla n_j$$

Wiedersich, et al., J. Nucl. Mater. '79

Solve for time evolution of concentrations with standard generation/annihilation terms and perfect sink boundary

Existing RIS Models for FCC Steels

- Many existing Cr RIS models in steels
- Mixed success in quantitative agreement on RIS prediction
- Poor qualitative agreement on mechanism
 - Ni-solute interstitial binding: N. Q. Lam, Proceedings of the Symposium on Radiation Damage Analysis for Fusion Reactors (1983)
 - Vacancy exchange mechanism: J.M. Perks and S.M. Murphy (BNES, London, 1987)
 - Vacancy exchange mechanism: S. Watanabe, et al., J. Nucl. Mater. (1995):
 - Cr-Interstitial repulsion: R.G. Faulkner, International Workshop on Defect Production, Accumulation and Materials Performance in an Irradiation Environment (1997)
 - Vacancy exchange mechanism, concentrations dependent D: T.R. Allen and G.S. Was, *Acta Materialia* (1998)
 - Vacancy-Cr binding for TNES: E. P. Simonen and S. M. Bruemmer (MRS Proceedings, 1999)
- Present best model is vacancy exchange mechanism (Inverse Kirkendall)* but more fundamental understanding of active mechanisms is needed

*G.S. Was, et al. JNM (2012)

Dilute Diffusion from Multifrequency Models

Ab Initio Energetics (E_v)

Thermodynamics (stat. mech. Models) **Kinetic rates** (transition state theory)

Atomic scale concentrations, rates

$$C_V = e^{-E_{Vf}/kT} \quad R_V = v e^{-E_{Vm}/kT}$$

*A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solids, '96

Ratio of Tracer Diffusion Coefficients

J.D. Tucker, R. Najafabadi, T.R. Allen, D. Morgan, J. Nuclear Materials (2010)

- For vacancies D*(Cr)/D*(Ni)
 ~ 8 (700K), typically ~ 2-3
 from models. Cr much
 faster than expected!
- First insight into species dependent interstitials flux. Cr must faster!
- Suggest new idea
 - Vacancies deplete / Interstitial enrich Cr
 - Cr RIS a balance of vacancy and interstitial contributions

$$\Delta c_{cr} \sim \left\{ -\frac{D_{cr,Vac}^*}{D_{Ni,Vac}^*} + \frac{D_{cr,Int}^*}{D_{Ni,Int}^*} \right\}$$

Interstitial vs. Vacancy Contributions to RIS

- Vacancy values consistent with experiments but too strong
- Interstitials seem to be far too strong
- Missing composition dependence of interstitials!

Systems Accessible to Ab Initio Molecular Dynamics (AIMD)

Cr and Ni Interstitial Diffusion in Ni-Cr Alloys

- Dramatic change in interstitial D_{Cr}/D_{Ni} with composition, cannot use dilute values!
- Perhaps dip seen near Ni₂Cr phase (forms experimentally at 863 K)₃₆

RIS Prediction from AIMD Result

- Semi-quantitative agreement with experiments.
- Validates ab initio informed model that shows coupled effect of interstitials and vacancies.
- Further fitting to experiment can yield quantitative model

Summary of Ni-Cr RIS: Ab initio Molecular Dynamics Approach

- Ab initio based model provides new insights for Ni-Cr RIS
 - Vacancy mechanism: Cr much faster than Ni than previously thought.
 - Interstitial mechanism: Strong interstitial bias for Cr over Ni – not previously included in any model.
 - Observed Cr RIS in steels likely a balance of strong interstitial and vacancy RIS tendencies
- Concentration dependent diffusion coefficients obtained from ab initio molecular dynamics – powerful tool for low-barrier systems (~0.5eV)

Overall Summary

- High-throughput ab initio simulations can provide massive diffusion coefficient databases at fraction of the cost of experiment
 - DFT accuracy an issue
 - Level of detail of simulation (attempt frequencies, G_{mig} vs. E_{mig})
- Diffusion in simple systems is now accessible to high-throughput and datamining approaches
 - Database of Evac, E_{mig} in dilute alloys in standard structures (3 years/\$700k)
 - Perovskites predicting of E_{mig} with just 4 descriptors can speed searches
- Diffusion in alloys amenable to direct ab initio MD for low barrier systems ~(0.5 eV)
 - Demonstrated semi-quantitative model for RIS
 - Could enable straightforward database development with enough computing time

Acknowledgements

COMPUTATIONAL MATERIALS GROUP Faculty

* Izabela Szlufarska * Dane Morgan Assistant Scientist

* Chao Jiang

* Ridwan Sakidja

Postdocs

- * Amelia Bengtson
- * Brian Puchala
- * Ming-Jie Zheng
- * Saumitra Saha
- * Bing Zheng
- * Chao Shen
- * Heather Jacobsen
- * James Gilbert
- * Leland Bernard
- * MarcinWojdyr
- * Milind Gadre
- * Ryan Jacobs
- * Tam Mayeshiba
- * Xing Wang
- * Zhizhang Shen

- * Alehandro Londono * Mehdi Benhassine
 - * Narasimhan Swaminathan
 - * Yeuh Lin Lee
 - * Shujiang Yang

Graduate Students

- * Erman Erdogan
 - * Huibin Ke
 - * Kai Huang
 - * Maneesh Mishra
 - * Mehrdad Arjmand
 - * Nathan Pinney
 - * Shenzen Xu
- * Yun Liu

Visiting students

- * Riza Dervisoglu
- * Jing Han

* Oscar Fajardo * Jianhong Dai

Undergraduate student

* Tom Angsten

- * Wei Xie

http://matmodel.engr.wisc.edu/

Funding Acknowledgements

U.S. Department of Energy

Rickover Fellowship Program in Nuclear Engineering

Graduate Fellowship Program (DGE-0718123)

UW-Madison Graduate Engineering Research Scholars Program, UW-MadisonRaymond G. and Anne W. Herb Endowment for Physics

Extreme Science and Engineering Discovery Environment

Computing time provided by NSF TG-DMR110074 and NSF TG-DMR090023

Backup Slides

Integrating with Other Tools

Perform job-specific functions

Use ASE¹, aconvasp², or other code to:

- Generate crystal structures
- View and manipulate supercells
- Interpolate NEB images
- Extract and compare energies

Manage sequence of jobs

- Use our code to:
- Queue jobs
- Monitor jobs
- Call job-specific functions as needed
- Advance job sequence
- Restart unfinished sequence at any step

Obtain and store migration barriers and VFEs

Integrate results with another database project (Materials Project)³ or present them in a common format (Computational Materials Repository)⁴

¹Atomic Simulation Environment: S. R. Bahn and K. W. Jacobsen, *Comput. Sci. Eng.* (2002); ²S. Curtarolo, et al., *Comp. Mat. Sci.* (2012); ³http://www.materialsproject.org/; ⁴https://wiki.fysik.dtu.dk/ase/, Computational Materials Repository at https://wiki.fysik.dtu.dk/cmr/

FCC Status 4/16/12

	57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05	71 174.97
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
l	LANTHANUN	CERIUM	FRASEODYMUN	NEODYMUM	PROMETHUM	SAMARUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBUM	LUTETIUM
1															
ĺ	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cí	Es	Fm	MId	N©	Lr

HCP Status 4/16/12

A	C	m	NT1	D	E		
2	-		-	-	-	1	-

89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
Ac	Th	Pa	U	Np	Pu	Am	$\mathbb{C}\mathbf{m}$	Bk	Cí	Es	Fm	MId	No	Lr
ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERCIUM	CURIUM	BERKELIUM	CALIFORNUM	ENSTEINIUM	FERMUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Trends with Descriptors: FCC H_{vf} Vs. Mendeleev Number

Trends with Descriptors: FCC H_{mig} Vs. Mendeleev Number

Trends with Descriptors: HCP H_{vf} Vs. Mendeleev Number

Trends with Descriptors: HCP Basil H_{mig} Vs. Mendeleev Number

HCP Evac versus Ecoh/atom

HCP Emig versus Ecoh/atom

Modeling the vacancy

- The crystal expects an O²⁻ at the vacancy site,
- so the vacancy is a 'positive' defect with a +2 charge.
- For charge neutrality, the creation of each vacancy requires the handling of two extra electrons, or two 'negative' defects.

Modeling the vacancy

- We model the 'negative' defects by:
- 1) Removing two electrons to simulate defects outside the supercell: "compensated"
- 2) Letting the supercell produce negative defects: "uncompensated"

Can we screen for low barriers before doing a complete barrier calculation?

Circle size approximates calculation time

Nudged elastic band (NEB) calculation

Bulk

Defected cell with vacancy at starting position Defected cell with vacancy at ending position

Descriptors That Did Not Correlate with Barrier

- Goldschmidt tolerance factor (cubic quality of unit cell, ability to form perovskite) and bulk cubic quality measures
- Kilner critical radius (defines triangle for oxygen to 'squeeze' through)
- B-site cation radius or electronegativity...
- But, some integrated effect of these and other factors may contribute to what we did find...

Sammells et al., Solid State Ionics **52**, 111-123 (1992). Mogensen et al., Solid State Ionics **174**, 279-286 (2004).

Shorter Travel Distance Correlates with Lower Barriers

- Shows that structural geometry is playing a key role.
- But path length is no easier to get than Emig, so need a descriptor easier to calculate.

Ni Vacancy Self Diffusion – *Ab initio* vs Experiment

J.D. Tucker, R. Najafabadi, T.R. Allen, D. Morgan, Journal of Nuclear Materials, 405, (2010), 216-234

Cr Vacancy Impurity Diffusion in Ni – Ab initio vs Experiment

•For Ni self diffusion and Cr impurity diffusion, the *ab initio* values agree well with experiment.

Dilute Cr Interstitial Diffusion in Ni: Multifrequency vs AIMD

- Excellent agreement discrepancy due to attempt frequency being approximated in multifrequency model
- The unusual T dependence of D_{Cr} in the dilute limit is reproduced.