Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo
Bookmark and Share

Kalman Migler

Research Highlights

My primary interest is the measurement of non-equilibrium phenomena in soft matter, with particular focus on those that occur in polymer processing.  

Additive Manufacturing (AM)

Measurement of the fundamentals of fused filament fabrication (FFF)Migler - IR Thermometry of Additive Manufacturing FFF

Additive Manufacturing (AM) refers to a rapidly growing set of technologies whereby custom objects are built up from 3D digital designs via computer-controlled addition of materials.  Currently, most materials used in AM were developed for traditional processing applications and most AM manufacturing does not employ feedback protocols based on multi-scale measurement and modeling of the processes. Additive Manufacturing can fundamentally transform manufacturing of goods by allowing for mass customization.  

We are measuring the fundamental processes and material parameters that are critical to understanding and furthering polymers-based AM. A primary problem in AM by fused filament fabrication concerns the low adhesive strength between adjacent strands. In order for a strong adhesive bond to form, polymers from adjacent strands must interdiffusive and entangle with each other before the polymers chains are frozen in-place by crystallization or by glass formation. The temperature profile of the FDM process is such that this interdiffusion is limited by low temperatures, short times and lack of shearing forces.  

In order to overcome these limitations, new materials and processes that allow more efficient fusion must be developed. We are guiding industry through the great "phase space" of materials, mixtures, and processing protocols  by development of the tools that link the molecular level considerations (polymer chain-length, polymer branching, polymer chemistry) with nano-scale processes (polymer interdiffusion and crystallization across the interface) to the ultimate properties (adhesive strength). 

We are measuring the temperature profiles during FFF with IR thermometry and correlating that with rheology, interdiffusion and ultimate weld strength. With J. Seppala, A. Kotula, C. Davis, R. Ricker, C. McIlroy, P. Olmsted

Meeting Abstract: Flow and thermal profiles of fused deposition modeling extrusion

Polymer Crystallization and Flow

Development of Rheo-Raman Microscopy

The mechanism of polymer crystallization under non-equilibrium conditions, such as those that occur in industrial processing, is still unknown and prevents a scientific approach to development of new materials. We are applying Raman spectroscopy to this problem because of its ability to measure molecular conformational changes that lead to the crystalline structures. We have teamed with a major vendor to realize "Rheo-Raman Microscopy" that performs simultaneous Raman microscopy, rheology and optical microscopy. This allows for for unprecedented measurement of the coupling between molecular conformation, microscopic structure and mechanical response. Beyond the immediate application of polymer crystallization, we intend to establish the instrument's suitability to problems in diverse areas such as nano-composites, curing, multi-component materials, and bio-materials. With A. Kotula, A. Hight Walker, D. Roy, M. Meyer, J. Plog, F. De Vito

Publication: Trans-Rich Structures in Early Stage Crystallization of Polyethylene

Migler Raman Rheometer


Rheology and processing of polymer nanotube composites

Migler MWCNT - die swellFirst in-situ measurements of "conductivity thinning" and die swell elimination We showed how these effects originate from negative normal forces that are induced by the nanotubes during flow. These measurements are important because they demonstrated the potential for nanotubes to impart improvements in both processing and material performance.

We developed the first system to simultaneously measure the rheological and dielectric response of a polymer to applied flow. We used it to show the intimate coupling between the two for carbon nanotube composites under flow, and raised interesting questions as to why rheological thinning proceeds conductivity thinning. Following this work, vendors now provide the option to add dielectric spectroscopy capability to their commercial rheometers. With S. Kharchenko, J. Obrzut, J. Douglas

Selected Publications:
Flow-induced properties of nanotube-filled polymer materials
Breakup of Carbon Nanotube Flocs in Microfluidic Traps
Shear-Induced Conductor-Insulator Transition in Melt Mixed Polypropylene-Carbon Nanotube Dispersions
Three Dimensional Cluster Distributions in Processed Multi-wall Carbon Nanotube Polymer Composites

Polymer processing lab on a chip

Developing a new paradigm for polymer processing measurements

Inspired by the advent of micro-fluidics, we asked if measurements of polymer processing parameters can be similarly reduced in size. We set out to develop a new R&D platform for polymer processing that reduces sample volume, and therefore waste, and significantly increase the speed of materials development. Termed the "polymer processing lab on a chip," we shrunk measurement and processing techniques so that typical experiments require 100 times less material. From the measurement perspective, we developed a rheological measurement that is similar in principle to capillary rheometry but can be conducted in parallel (at least four at a time) using only a single pellet of material. This micro‑rheometry method uses optical probes to monitor the flow front as the polymer fills a capillary channel. Even with the size reduction, the accuracy of this method is similar to standard rheological methods. Further, due to the reduced sample volume, these measurements are considerably less sensitive to the confounding effect of shear heating.

From the polymer processing perspective, we showed how to blend polymers at these greatly reduced volumes via a planar polymer micro-mixer. Utilizing a split-and-recombine approach, we generated numerous blend morphologies: multi-layers, domain/matrix, and telescopic structures. With D. Moon, M. Cicerone, Y. Lee.

Migler Polymer Mixing and B-CARS imaging

Selected Publications:
Multi-sample micro-slit rheometry
Measurement of Dynamic Capillary Pressure and Viscosity via the Multi-Sample Micro-Slit Rheometer
Forced Assembly and Mixing of Melts via Planar Polymer Micro-Mixing
Quantitative Image Analysis of Broadband CARS Microscopy Hyperspectral Images of Polymer Blends

MEMS and micro-rheometers

Migler MEMS rheometerDevelop of MEMS rheometer Our goal is to develop and promote the adoption of small-volume rheological methods for complex fluids including bio-fluids, where small volume capability is advantageous because it is the natural length scale, the sample size availability is small, or the technique is more sensitive. We have constructed and tested an oscillatory micro-rheometer using MEMS based fabrication technology to measure the frequency dependant modulli of complex fluids, such as bio-fluids. With G. Christopher, S. Hudson, J. Pathak and P. Sarangapani, J. Kasianowicz, J.Robertson, See project page

Selected Publications:
A Microliter Capillary Rheometer for Characterization of Protein Solutions
Development of a MEMS based Dynamic Rheometer
Rectification of the Ionic Current through Carbon Nanotubes by Electrostatic Assembly of Polyelectrolytes

Two component polymer blends

Discovered the droplet-string transition in confined blends under shear: Prior to our work, virtually all research on the flow of emulsions and two component blends was conducted in the unconfined limit, defined as the droplet size being much smaller than the smallest geometrical dimension. We showed that the effects of confinement are enormous; we mapped out a rich experimental landscape that included new structures; strings, layering of droplets and pearl- necklaces. We then considered the simpler system of a single confined droplet and found that the well-known Taylor diagram from the 1930s is strongly altered by confinement. Numerous researchers have followed up on these pioneering observations. These concepts form the basis for droplet based microfluidics. 

Discovered vorticity alignment in strongly sheared polymer blends We discovered that under certain circumstances that sheared droplets can align in the vorticity direction. This was an unexpected finding and counter to prevailing wisdom. We traced the effect back to droplet elasticity. We were able to make these vorticity observations in both model shear studies, as well as in extrusion based studies, showing how the laboratory results are relevant to industrial processing. With J. Pathak, S. Hudson, Y. Son, E. Hobbie, J. Douglas, N. Martys

 Migler droplet string transition under shear

Selected Publications:
String Formation in Sheared Polymer Blends: Coalescence, Breakup, and Finite Size Effects
Layered Droplet Microstructures in Sheared Emulsions: Finite-Size Effects
Droplet-String Deformation and Stability During Micro-Confined Shear Flow
Suppression of Capillary Instability of a Polymeric Thread via Parallel Plate Confinement
Droplet Vorticity Alignment in Model Polymer Blends
Vorticity elongation in polymeric emulsions  

Sharkskin and fluoropolymers

Settled debate over mechanism of the sharkskin Sharkskin (aka surface melt flow instability) is a manufacturing defect that causes a rippled texture on the surface of extruded polymers; the origins have been long debated. Most prior work employed indirect pressure/shear rate measurements coupled with off-line measures of extrudate strand waviness. We settled crucial aspects of the debate by visualizing the polymer melt flow in the immediate vicinity of the exit of a capillary die and conducted painstaking measurements of the velocity field in this region. We found compelling evidence that the sharkskin is caused by extensional rates exceeding critical values.

First measurement of Polymer/Polymer Slippage and the fluoropolymer elimination of sharkskin. We made the first direct and definitive measurement of polymer/polymer slippage and used it to demonstrate how fluoropolymers eliminate sharkskin in polyolefins. It was long known that addition of fluoropolymers in trace amounts to certain polyolefins can eliminate sharkskin, yet there had been no direct observations of how this occurs and only speculations as to why. We led teams that included Professor Macosko, 3M/Dyneon and Dow DuPont Elastomers (DDE). We developed direct velocimetry and evanescent-wave techniques that measure the coating of fluoropolymers onto the die wall with a sensitivity of 20 nm coating thickness. These unprecedented techniques provided definitive proof of how fluoropolymers coat the solid wall and then induce slippage of the polyolefin. We further showed that the fluoropolymer droplet size affects the coating kinetics, which formed the scientific basis for a new product launch. with C. Lavalle, C. Macosko, S. Kharchenko, D. Bigio, P. McGuiggan, M. Meillon, S. Oriani

sharkskin surface melt fracture during polymer extrusion
Selected Publications:
Visualizing the elimination of sharkskin through fluoropolymer additives: Coating and polymer-polymer slippage
Extensional Deformation, Cohesive Failure, and Boundary Conditions During Sharkskin Melt Fracture
Flow induced coating of fluoropolymer additives:Development of frustrated total internal reflection imaging
Coating Kinetics of Fluoropolymer Processing Aids for Sharkskin Elimination: the Role of Droplet Size

Polymer Processing Measurements: Temperature and Blend Morphology

Temperature Gradients We led Migler - microscopy and LS during polymer extrusion an industrial consortium whose goal was to accurately measure polymer temperature during processing operations. Industrial scientists had been unsuccessful in making accurate resin temperature measurements by methods such as IR or thermocouples because of shear heating, moving extruder screws and high resin viscosity. We thus employed a novel approach based on doping of fluorescence dyes that exhibit temperature dependent fluorescence into polymeric resins. We observed temperature excursions exceeding 20 °C, along with temperature gradients from the metallic wall into the resin. These methods were copied by consortium members and implemented in their home laboratories.  

Blend Morphology  We developed an in-situ microscope and light scattering apparatus for polymer blends extrusion. The measurements are conducted in the slit-die of a twin screw extruder. With AJ Bur, EJ Amis, CC Han & E Hobbie 

Selected publications:
Fluorescence based measurement of temperature profiles during polymer processing

Pre-NIST Research

Polymer slippage First definitive measurement of polymer slippage at a soMigler - Polymer Slippagelid surface. It is now well-understood that molten polymers can slip at solid surfaces – with major implication for rheology and processing - but in the 90's this notion was still under debate due to lack of direct evidence. Dr. Migler, with Liliane Leger, utilized fluorescent evanescent velocimetry to measure the polymer velocity in the first 70 nm from a solid substrate and made the first direct evidence of polymer slippage. This work led directly to the deGennes Brochard model of polymer slippage and was followed by a flourishing of slippage observations in complex fluids. With L. Leger & H. Hervet, P.G. de Gennes, F. Brochard  

Publication: Slip transition of a polymer melt under shear stress

Polymer Solutions under Shear Studied the correlation between stress overshoots in sheared polymer solutions and the amplitude of concentration fluctuations. With D. Pine

Publication: Structure Evolution of a Polymer Solution at High Shear Rates

Thesis Work:

My thesis research with Robert B Meyer concerned pattern formation in nematic liquid crystals. It was so long ago I can't really remember it, but it generated some really cool pictures :)Liquid crystal in rotating magnetic field  

Selected Publication: Solitons and pattern formation in liquid crystals in a rotating magnetic field


Brief Biography

Dr. Kalman Migler is a staff scientist in the Polymers and Complex Fluids Group of the Materials Science and Engineering Division of the National Institute of Standards and Technology (NIST). Previously, he was the Complex Fluids Group Leader following eight years as a Physicist in the Polymer Blends and Processing Group. Before joining NIST, he was a postdoctoral research fellow at Exxon’s Corporate Research Laboratory and at the Collège de France. He earned his Ph.D. in Physics from Brandeis University.

Awards, Honors and Activities

William P. Slichter Award, 1997. For developing novel optical probes of polymer properties and effectively transferring these measurement methods to industry to control processing.

Bronze Medal, Department of Commerce, 2003. For the development and application of flow visualization metrologies to polymeric materials

Best Paper Award, Society of Plastics Engineers, 2003. For the presentation of the paper “Flow Induced Coating of Polymer Processing Additives: Development of Frustrated Total Internal Reflection Imaging"

NIST Safety Award, 2011. For developing, as founding members of the Engineered Nanoparticle Safety Committee, a comprehensive program for the safe use of nanoparticles at NIST.

Silver Medal, Department of Commerce, 2014. For pioneering work in carbon nanotube purification, measurements, and standards that enable application of this remarkable material to U.S. industry.

Fellow of the American Physical Society, For definitive optical and rheological experiments concerning the physics of polymer flow to identify slippage and multiphase behavior.

Local Arrangements Chair for the 87th Annual Meeting of the Society of Rheology

Technical co-Chair for the 88th Annual Meeting of the Society of Rheology

Founding member of ANSI Working Group for Measurement and Characterization for Nanotechnology Standards, TC 229/WG2

Research Opportunities

Opportunities for post-doctoral research fellowships are available through the NRC postdoctoral program.

Kalman Migler


Materials Science and Engineering
Polymers and Complex Fluids

Employment History:

2013 - present
Staff Member, Polymers and Complex Fluids Group, MSED, NIST

2001 - 2012
Group Leader, Polymers Division, NIST

1994 - 2000
Staff Member, Polymer Blends and Processing, Polymers Division National Institute of Standards and Technology, Gaithersburg, MD

Post Doctoral Associate with Dr. David J. Pine , Exxon Research and Engineering Co., Corporate Research, Annandale, NJ 

Post Doctoral Associate with Profs. P.G. de Gennes and L. Leger, Laboratoire de Physique de la Matière Condensée at the Collège de France

1985 -1986
Research Associate, Physics Department, University of Pennsylvania


Ph. D., Physics (Professor Robert B. Meyer), Brandeis University, 1992 

B.A., Physics, University of Pennsylvania, 1984


Phone: 301-975-4876
Email: kalman.migler@nist.gov
Fax: 301-975-4924