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Preface 

This document describes the use of the extended logistic function and the associated 

software for conveniently estimating the position, width, and asymmetry of interfaces 

between dissimilar materials (such as might be measured in depth profiles and linescans 

in surface analysis) in an unbiased fashion from a set of discrete measurements. 

Section 1 provides a brief explanation of this function and a rationale for its use in 

describing interface profiles. Section 2 provides instructions on the use of the program 

LFPF (Logistic Function Profile Fit) for fitting profiles to the extended logistic function.  

The results of tests to investigate the performance of the algorithm using synthetic profile 

data are given in Section 3.  Section 4 gives a detailed account of the development of the 

algorithm to perform iterative least-squares fits efficiently with this function for those 

who wish to know more about how the program LFPF works or wish to develop their 

own algorithm for performing similar analyses. 

Those wishing to use and evaluate the LFPF software should read Section 2 which 

describes the functions of the program and its options. This software was developed by 

William H. Kirchhoff who also prepared the documentation. Any questions or comments 

on the software or the documentation should be sent to william.kirchhoff@nist.gov with 

copies to cedric.powell@nist.gov and david.simons@nist.gov.  

The Logistic Function Profile Fitting program is based on a Fortran program written for 

DOS and originally issued under the name LOGIT.  This program was successfully used 

to fit Auger sputter-depth-profile data [W. H. Kirchhoff, G. P. Chambers, and J. Fine, J. 

Vac. Sci. Tech. A 4, 1666 (1986)]. This approach and the associated software were 

applied in a number of laboratories, and formed the basis for an ASTM standard [E 1636-

04: Standard Practice for Analytically Describing Sputter-Depth-Profile Data by an 

Extended Logistic Function]. The logistic function (although not the specific LOGIT or 

LFPF software) has also been used to describe Auger linescans [S. A. Wight and C. J. 

Powell, J. Vac. Sci. Tech. A 24, 1024 (2006)].  

The name Logistic Function Profile Fit (LFPF) has been adopted because (1) LOGIT has 

come to signify a statistical package for analyzing logistic distributions, and  (2) LFPF 

more directly relates to its intended use in profile analyses. 

A compact disc is available that contains the LFPF software and documentation. The CD 

contains the software as an executable file LFPF.exe, the documentation (this manual, 

LFPFdoc.pdf), and a help file, LFPFHelp.chm. Various text files with test data, described 

in this documentation (Q25.txt, Q100.txt, Incomplete Gamma.txt, sharp_0_11_1.txt, 

CrSiSim.txt) are included on the CD so that the user can test the software and compare 

results with those in the documentation. It is suggested that these files be copied to an 

appropriate directory on the user's personal computer. 

If this program is installed from LFPF Setup.msi no further installation is required. 

LFPF.exe, Version 1.21, requires Version 2.0 of the .NET framework or higher.  All 

versions of the .NET framework can be installed by running the appropriate versions of 

mailto:cedric.powell@nist.gov
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dotnetfx.exe which can be downloaded without charge from Microsoft.  All versions can 

also be downloaded directly. 

If version 2.0 or higher of the .NET framework is not installed, attempting to run 

LFPF setup.msi to install LFPF or attempting to run LFPF.exe will result in an error 

message along the lines of: 

 

The LFPF software can be started simply by double clicking LFPF.exe in Windows 

Explorer. 

 

 

 

 

 

 

 

 

 

 

“All models are wrong; some models are useful”  George E.P. Box 

To run this application, you first must install one of the following versions of the .NET 
Framework: 

  v2.0.50727 

Contact your application publisher for instructions about obtaining the appropriate 
version of the .NET Framework. 
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1 The use of an extended logistic function for 
systematically analyzing interface profiles 

This document describes the use of an extended logistic function for systematically 

estimating the width and asymmetry of interfaces between dissimilar materials as measured, 

for example, by depth profile analyses.  Specifically, it describes the rationale for the choice 

of this particular function as an empirical description of an interface profile, how to use the 

function in a least squares fit of the function’s parameters to a measured profile, and how to 

interpret the statistics associated with the least squares fit. 

The logistic function in its simplest form is given by 
1

1 X
Y

e



.  As X varies from -∞ to +∞, 

Y varies from 1 to 0 with a sigmoidal shape. 

That the logistic function might provide a 

reasonable representation of an interface is 

suggested by the following argument.  If we 

represent an interface between spheres labeled A 

and B as in Figure 1-1 to the right., the 

probability that an exchange of two neighboring 

spheres in a horizontal direction will result in the 

interchange of an A sphere and a B sphere is 

(1 )AB A B A AP kf f kf f    , 

where Af  is the fraction of A in a particular layer 

at X,
 Af   and Bf   are the fractions of A and B in 

the neighboring layer X + δX, and k is some 

measure of the propensity for exchange.   

This, plus the fact that at some distance from the interface the material is either pure A or 

pure B, suggests that the change in Af   as a function of X can be expressed as  

 (1 )A
A A

df
kf f

dX
   (1-1) 

which, upon integration, gives 

 
1

1
A kX

f
e




 (1-2) 

Since k will have the units of 1/X, we can replace k by 1/D.  Furthermore, if Y is an 

instrument response to a measurement of species A so that Y is proportional to the 

fraction Af , then Y will be given by 

 
0( ) /

1
X X D

A
Y

e





 (1-3) 

Figure 1-1 Cartoon of an imagined interface 
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where X0 is the midpoint of the interface where Y = A/2.  Y varies from A to 0 through the 

interface.  The parameter D is seen to be a scaling parameter that defines the width of the 

interface.  As D→0, the profile of Y approaches a step function. 

The scaling parameter itself may not be constant.  If the spheres in the cartoon above were, 

for example, of a different size, the rate of change in Af  with X might well vary with X.  If 

we allow D to vary logistically with its own scaling factor, for example,  

 
0

0

( )

2

1
Q X X

D
D

e





 (1-4) 

the sigmoidal shape will be sharper at one side of the interface than the other.   

Equation (1-3) and (1-4) can be further generalized to  

 
0 0

2 2

0 0 0 0

( ) / ( ) /

( ) ( ) ( ) ( )

1 1
X X D X X D

A A X X A X X B B X X B X X
Y

e e
  

          
 

 
, (1-5) 

where the instrument response of the species of interest is allowed to vary with time (and 

therefore with X) as 2

0 0( ) ( )A A X X A X X      and, where a background signal remains 

when the species of interest is depleted, as 2

0 0( ) ( )B B X X B X X     .  The value of Y 

thus varies from 2

0 0( ) ( )A A X X A X X      to 2

0 0( ) ( )B B X X B X X     .  In 

practice, A  and B  are almost never included, Aor B is occasionally included, and the 

baseline A  or B can often be held fixed at 0.   

Substitution of Equation (1-4) into Equation (1-5) results in the extended logistic function. 

In addition to the three parameters that define the interface region, X0, D0, and Q,  the 

interface can also be characterized independently of an assumed functional form by a width 

W  and an asymmetry η (to be distinguished from the asymmetry parameter Q) in the 

following way.  We define the width as beginning where the interface is some fraction, f, of 

the distance between the pre-interface asymptote and the post-interface asymptote, and 

ending where the interface is the fraction (1 – f) of the distance between the two asymptotes.  

This is particularly useful when the beginning and ending points of the interface are 

ambiguous or difficult to determine. If we designate the corresponding values of X as Xf and 

X(1-f) then 

 1 f fW X X  . (1-6) 

The asymmetry η (as differentiated from the asymmetry parameter Q – repetition added for 

emphasis) is defined as the skewing of Xf and X(1-f) about the center of the interface X0, 

namely,  

 
0 1 0

1

( ) ( )f f

f f

X X X X

X X






  



. (1-7) 

(With this definition of η, η and Q have the same sign.)  Clearly, if Xf and X(1-f) are equally 

spaced about X0,  η = 0.  To emphasize the point that W and η are functions of the choice of f, 

they can be designated as Wf and ηf.  Wf and ηf  can be calculated graphically from the profile 
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using rulers or can be related to the interface parameters of the extended logistic function 

through 

 
0

0
0 ( )

2 1
ln

1 f
f Q X X

D f
X X

fe


 
   

  
 and 

1 0

0
1 0 ( )

2 1
ln

1 f
f Q X X

D f
X X

fe 
 

 
   

  
 (1-8) 

 

Depth profile measurements are complex processes (see, for example, S. Hoffman, Rep. 

Prog. Phys. 61 (1998) 827–888 and references quoted therein.)  This introduction in no way 

should suggest that the extended logistic function is being advocated as an atomic scale 

model for describing depth profile analyses.  It merely provides a rationale for the use of the 

logistic function as a convenient and reasonable means for estimating the position, width and 

asymmetry of the interfacial profile in a systematic fashion from a set of discrete 

measurements.  
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2 A program for obtaining a least squares fit of an 
extended logistic function to a measured profile 

A computer program for fitting an extended logistic function to depth profile measurements 

has been written in Microsoft Visual Basic.Net.  The following discussion serves as a “user 

manual” for that program.  Many features have been added to the program beyond fitting 

interfacial profiles, mostly for the benefit of program development and the testing and 

interpretation of the profile fits.  While some of these features may be of limited interest to 

the average user, we have decided retain them so that those who may be more concerned 

about details of the fitting process can do their own testing.  While this decision may leave 

the analysis options more extensive than necessary for many users, the display has been 

designed to be as intuitive as possible. In short, the name of a data file is entered,  an “OK” 

button is clicked after the data are listed in the LFPF window, and when the graph of the data 

is displayed, a button labeled “Fit (Converge)” clicked and that is it.  The following is a 

description of the operation of all the program features. 

An extensive Help file (LFPFHelp.chm) accompanies the program which contains most of 

the information contained in this documentation, albeit in very abbreviated form.  Several 

data files, most notably Q25.txt, are included with the program and the analyses of these data 

are described in this documentation. 

2.1 Program Startup 

The program is run in the usual Windows manner, either by double clicking the file name 

“LPFP.EXE” in Windows Explorer, or Clicking Start, Run, and entering “LPFP.exe” with its 

full path name, or clicking a shortcut icon to LPFP.exe on the desktop. 

Note:  The first time LFPF is run, two directories are created by the program.  The first, 

\NIST\LFPF is created in the user’s APPS directory (a hidden directory), either 

C:\Users\<username>\AppData\Roaming\NIST\LFPF\<version number> or C:\Documents 

and Settings\<username>\Application Data\NIST\LFPF\<version number> depending on the 

Windows operating system.  This directory is used to contain a text file with the list of the 

five most recent data files opened.  The second is in the user’s \Documents directory and is 

used as a fall back default directory for various program outputs as described later in this 

document. 

The program begins with a window that displays a text box, as in Figure 2-1 below, into 

which data can be pasted from another application and pasted.  Data can be copied and 

pasted from another application into the blank text box on the left.  Alternatively they could 

be entered directly into the text box from the keyboard. Up to five entries per line can be 

accepted which can be assigned, once entered, to the independent variable X, the dependent 

variable Y and optionally a weighting factor W.  The data entries in each line can be 

separated by spaces, commas, or semicolons.  Separators used in combination such as a 

comma followed by a space, or several spaces together, are considered as a single separator.  

Spaces are always interpreted as separators except when used in exponential notation such as 

nnn.nn Emm where the space before the E is ignored.  The text on the right in Figures 2-1 

and 2-2 summarize how data representing the profile measurements are to be entered into the 

program.  As soon as any entry is made an OK button and a Cancel button appear to the right 

of the values entered as in Figure 2-2 below. 
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Figure 2-1  Logistic Function Profile Fit (LFPF) opening display 

 

Figure 2-2  Entering data in the opening display text box 
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The data in the text box can be edited as with any text editor.  Clicking the Cancel button 

erases the entries in the text box.  Clicking the OK button clears the window and displays two 

lists as in Figure 2-4 below. 

Instead of copying and 

pasting, data contained 

in text files can be read 

by clicking “open…” in 

the file menu, 

whereupon the usual 

Windows open file  

dialog box appears 

(Figure 2-3). 

Once the file is opened, 

the same two lists 

appear as in Figure 2-4 

below.  Note that the 

title bar of the window 

now contains the name 

of the data file. 

 

Figure 2-4  Comparing data as read with data as parsed 

 

Figure 2-3  Open File Dialog Box 
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The list on the left in Figure 2-4 contains the data as entered without attempting to parse each 

entry as X,Y pairs.  The list on the right contains the interpretation of the values of X and Y.   

 The radio buttons above the unparsed list, 

magnified on the left, indicate which item 

is X and which is Y (and optionally which 

is the weighting factor W.)  Up to five 

items per line of text can be accepted and 

interpreted.  If the data file contains only two items of data per line of text, only the option of 

identifying which entry is X is given.   At this point, individual entries, such as titles, as in 

the top line of the unparsed list in Figure 2-4 can be deleted by double clicking the 

corresponding entry in either list.   If an entry is identified as “NaN”, i.e., not a number, as in 

the parsed list in Figure 2-4, it will be eliminated from the data table automatically when the 

OK button is pressed. 

It is important to emphasize the role of data separators when entering data or when reading 

data as lines of text in a text file.  Data separators can be spaces, commas, and semicolons 

and are always interpreted as such.  Combined separators such as a comma or semicolon 

followed by a space or several spaces together are considered to be a single separator.  In 

addition, in text files, tabs are considered to be separators and will appear as tabs in the 

unparsed list on the left of Figure 2-4.  The only time a space is not interpreted as a separator 

is when it precedes an E in numbers using exponential notation nnnnn.nn Emm.  Commas 

appearing as thousands markers will be ignored so that if they are used as data separators 

they should be followed by a space. 

Once the data as interpreted are deemed correct, clicking the OK button clears the window 

and replaces it with the data analysis display which includes a graph of the data, the list of 

data, a list of the extended logistic function parameters, buttons to initiate the least squares 

fit, and additional parameters associated with the fit as shown in Figure 2-5 below. 

Note:  For the routine that 

calculates the initial estimates 

of the parameters to work 

correctly, the data may have to 

be in order of increasing X.  

Consequently, the data are 

tested and if not in order of 

increasing X a warning message 

is printed and the option of 

sorting the data is offered after 

the OK button is clicked and 

before the analysis display 

appears: 

In the list of the logistic function parameters in the lower left hand side of the window shown 

in Figure 2-5, only those parameters whose boxes are checked will be evaluated by the least 

squares fit.  Any parameter, whether varied in the least squares fit or not, can be held at a 

fixed value entered by the user.  The default parameters to be evaluated are A, B, X0, D0, and 

Q.  Unless the check box below the list of parameters, labeled “Permit A΄ and/or B΄” is 
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checked, the routine determining the initial estimates does not attempt to give them values 

other than 0.  Additionally, the parameters accommodating curvature in the pre and post 

interface asymptotes, A˝ and B˝, cannot be varied until at least one least squares fit of the 

data has been performed.  

 

2.2 Data Selection and Identification 
Data can be identified by clicking the individual data points in the graph.  When a point on 

the graph is clicked with the left mouse button, a crosshair appears at that point and the 

values of X and Y are printed at the top of the graph.  If clicked near a data point, the 

crosshair is moved to that data point which is then highlighted in red while the corresponding 

values of X and Y are highlighted in the data list.  Similarly, if an entry in the data list is 

clicked, it is highlighted and the corresponding point on the graph is marked with a crosshair.  

If the data list is active (the selected item in the list is highlighted) the cursor keys (up, down, 

left, right) move the selected entry up and down the list and the crosshairs to the previous or 

next point in the graph.  If a data point on the graph is double clicked, its display changes 

(dimmed, replaced by a single screen pixel, or replaced by an X, See Section 2.6.15 View 

> Ignored Data) and it is ignored in the least squares fit of the data.  If an ignored data 

point is double clicked, its display returns to normal and it is subsequently included in the 

least squares fit of the data.  The entries for ignored data in the displayed list are dimmed. 

The delete and insert keys also mark data as ignored or not.   A range of data may be selected 

by employing the data selection box (See Section 2.6.10, View > Data Selection Box.) 

If a least squares fit of the data to the extended logistic function has been performed, the 

calculated value of the function is drawn on the graph.  When the calculated values are 

Figure 2-5  Initial graphical display of data along with the analysis options and parameter list 
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displayed, clicking on a data point displays the value of Y(observed) – Y(calculated) along 

with the standard deviation (not the confidence limits) of that difference.  If any point other 

than a measured point is clicked, the calculated value of Y for the selected value of X is 

printed on the top line along with its standard deviation (not its confidence limit.) 

2.3 The Least Squares Fit 

The least squares fit minimizes the sum 2

1

( )
n

obs calc

i i i

i

W Y Y


 where obs

iY are the measured 

values of the profile and calc

iY  are the values calculated from Equation (1-5).  If the weights, 

iW , are equal to the inverse square of the standard deviation of the measured values, then the 

sum of the squares should follow a chi square distribution.  If the weights are set equal to 

unity, 2 2

1

( ) / ( )
n

obs calc

i i

i

s Y Y n m


    is the estimate of the variance (square of the standard 

deviation) of the normally distributed errors in Y. 

The three buttons shown in Figure 2-5  FIT (Converge),   FIT (Step)  and  Initial Estimate 

control the least squares fit of the data to the extended logistic function.  The function is non-

linear in the parameters and the least squares fit is based on an iterative Newton-Raphson 

linearization of the function, that is, a Taylor series approximation cutting off at the linear 

term as described in Section 4 of this report.  Each iteration calculates corrections to the 

parameter values.  The rapidity of convergence, indeed whether the procedure converges at 

all, depends on the quality of the initial estimates of the parameters.  The calculation of initial 

estimates is also discussed in Section 4 of this report.  Briefly, the curvature parameters for 

the asymptotes, A˝ and B˝, are always assumed to be 0 and are not varied in the analysis 

unless explicitly requested by checking their boxes in the parameter list, and only after a least 

squares analysis of the data has been performed at least once.  Initial values of the slopes of 

the asymptotes, A΄ and B΄, will be calculated only if the box labeled “Permit A΄ and/or B΄” is 

checked and only if it appears that their values differ significantly from 0.  Preference is 

always given to evaluating Q over evaluating the slopes of the asymptotes with which the 

value of Q is usually highly correlated.  The remaining parameters are given initial estimates 

by examination of the data, identifying the asymptotic regions and the interface region.  If the 

data are well structured, the initial estimates routine is reasonably robust.  By well structured 

is meant at least 7 data points for which each asymptote has at least two values within 5% of 

its limiting value, and at least three values within the interface region that lie more than N 

standard deviations away from each asymptote, where N is the normal distribution 

confidence limit.  The confidence limits for both the normal and the student’s t distribution 

are calculated by the program.  

When  Initial Estimate  is clicked, the starting values of the parameters are estimated as 

described in Section 4.1 of this documentation and are reported and graphed on the analysis 

display as seen in Figure 2-6  below.  Next to the parameter names are the initial estimates of 

their values.  The “Data Scatter” is a model independent measure of the noise in the data (See 

Section 2.6.3, View > Data Scatter) and is estimated for the purpose of comparison with the 

standard deviation returned by the least squares fit of the data to the extended logistic 

function.  A standard deviation significantly greater than the data scatter indicates the likely 

influence of model errors.  Since the extended logistic function is an empirical representation 
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of the interface, it should always be assumed that model errors will likely be present along 

with random measurement errors. 

 

Figure 2-6 Display of initial estimates of the extended logistic function parameters 

The Residual Standard Deviation is that calculated from Equation (4-12), namely, 

2

1

( )
n

obs calc

i i i

i

W Y Y

s
n m









where n is the number of data points, m is the number of fitting 

parameters, Wi are the weights of each datum (= 1 if weights are not included in the data file) 

and calc

iY  are calculated from the extended logistic function using, in this case, the initial 

estimates of the parameters. In the case of the initial estimates, model errors are expected 

from the approximate nature of the initial, estimated values of the parameters and as seen in 

Figure 2-6, the data scatter was 1.389 compared with the calculated standard deviation of 

1.759.  This comparison is the only indication that the parameter values have not yet been 

optimized.  The fit of the initial values of the parameters to the data appears to be quite good.  

Inspection of the residuals, obs calc

i iY Y , shows no systematic trend. (Residuals can be 

displayed by clicking the Residuals item in the View menu as described below.)  The initial 

estimates are arrived at by using a variety of techniques depending on the structure of the 

data as described in Section 4.1.  (See also Section 2.6.10 View > Data Selection Box.)  

Notes on this process appear in the text box labeled “Analysis Notes” in the lower right of 

the window such as the following: 
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Because the check box labeled Permit A′ and/or B΄ below the list of parameters and their 

values was checked, the slope of the initial baselines, A΄and B′, were determined and found 

to be significantly different from 0.  

The central box on the graph in Figure 2-6 defines the interface region used for the initial 

estimate of D0 as determined by the program.  For poorly structured data, this region can be 

controlled by the user by clicking the “Select Data Box” item in the View menu.  This will be 

discussed below in Section 2.6.10. 

Two small text boxes labeled “Max Iterations” and “Profile Percentage limit” appear on the 

display:  

Max Iterations:  The iterative fit is curtailed at the specified maximum number of 

iterations if it has not yet converged.  A prime number for the maximum number of 

iterations is desirable to identify when the least squares fit is oscillating between two 

neighboring minima.  A value of 11 seems to be adequate for most cases tested and is the 

default value.  If convergence is not reached, re-clicking the FIT (Converge) button 

repeats another round of iterations beginning with the current values. 

Profile Percentage limit:  The profile percentage limits define the reported width and 

asymmetry of the interface.  Because of the exponential nature of the extended logistic 

function, the asymptotes are never reached.  The reported width of the interface is 

therefore taken as the spread in X from the value at which the interface is f percent 

complete to the value at which the interface is (1-f) percent complete. Sigmoidal depth 

profiles were originally fit to error functions as a way of parameterizing their width so 

that the values of X corresponding to x = ± σ in the normal probability function were 

used as a measure of the width.  These values of x correspond to f  =  15.87% and (1-f)  =  

84.13%, so the convention was adopted, regardless of how the width was measured, to 

use the difference between X at f = 16% and X at 1-f = 84% as the profile width.  In 

LFPF any value between 0 and 50 can be chosen and entered into the box labeled “Profile 

Percentage limit” with the default being 16.  This measure of the interfacial width is 

somewhat insensitive to, though not completely independent of, the functional form used 

to represent the interface profile.  The width and asymmetry values along with their 

confidence limits are printed in the Analysis Notes following the least squares fit. 

When the FIT (Converge) button is clicked, the values of the parameters are iteratively 

refined until convergence is achieved or the maximum number of iterations is reached, 

following which the display will resemble Figure 2-7.  The tests for convergence are based 

on the changes in the values of the parameters compared with their standard deviations and 

on changes in the standard deviation of the fit.  Convergence is declared when the following 

occurs:  (1) the corrections to the parameters are all less than 1 percent of the values of their 

standard deviations and (2) the standard deviation does not change from one iteration to the 

Initial estimates:  
 A  =  .3028667 
B  =  99.9795 
Xo =  49.144 
Do =  4.2 
Refined value for first asymptote determined from the first 7 points, X =  1 to  29:  A  =  5.2112 A' =  .1261202 
Refined value for second asymptote determined from the last 8 points, X =  69 to  97:  B  =  100.0594 B' =  .002253869 
Refined value for D0 = 3.894566 ± .1834962 determined by fitting all the data to Y-Y(Do)=(dY/dDo)δDo  
Initial value of Q = .01103739 ± .0105855 determined by fitting all the data to Y = (dY/dQ)Q 
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next by greater than 1 part in a thousand.  In some instances, most notably when exact data 

are being fit, the convergence limit may never be reached because of round off errors. 

Clicking the  FIT (Converge)  button always begins the iterative procedure starting with the 

current values of the parameters.  If no initial values have been estimated, they are first 

estimated as if the  Initial Estimate  button had been clicked.  To start over from scratch, the  

Initial Estimate  button must first be clicked. 

Clicking the  FIT (Step)  button performs one iteration of the least squares fit beginning with 

the current estimates of the parameters, which might be the initial estimates.  Repeated 

clicking of the  FIT (Step)  button differs from the  Fit (Converge)  button in that the slope 

parameters, A΄ and B΄, and the curvature parameters, A˝ and B˝, are evaluated (if their boxes 

are checked) even if their values do not differ significantly from 0.  The  Fit (Converge)      

button will set these parameters to 0 if their confidence limits include 0 as in Figure 2-7. 

 

Figure 2-7  Results of a least squares fit of the profile data to the extended logistic function 

Note:  The first time   FIT (Converge)  is clicked after starting LFPF, the least squares 

analysis may take a second or two.  After that, the analysis is almost instantaneous. 

2.4 Parameter Values, Associated Statistical Statements, 
and Analysis Notes 

 

Following Fit (Converge)  or FIT (Step), the graph of  the extended logistic function 
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is drawn on the graph of the data as in Figure 2-7. 

The values of the parameters are printed with their confidence limits.  The confidence limits 

are based on the confidence level which is under the control of the user. (Default value = 

0.95) If the measurement errors in the values of Y are normally distributed, the values of the 

determined parameters should follow a student’s t distribution.  The confidence limits 

reported for the parameters are calculated by multiplying their standard deviations returned 

by the least squares fit by the value of t, labeled on the display “t distribution confidence 

limit,” that satisfies the stated confidence level entered in the box labeled “Confidence 

Level” (see Equation (4-25) and accompanying discussion).  Note: The values for the 

normal distribution confidence limit and the t distribution limit, as reported in the 

LFPF program are both two-tailed limits.  If the confidence level is 95% then 2.5% of 

the distribution fall above the confidence limit and 2.5% fall below the negative value of 

the confidence limit.  The value of t will depend only on the number of degrees of freedom 

(number of data being fit minus the number of parameters varied) and the confidence level.  

The confidence limit for the normal distribution does not depend on the number of degrees of 

freedom and it is the limiting value for t as the number of degrees of freedom approaches 

infinity and the student’s t distribution approaches the normal distribution.  Note that the 

errors in the parameters are correlated, the values and correlations being contained in the so-

called variance-covariance matrix (Equation (4-15).)  It cannot be stressed often enough 

that the confidence limits are based not only on the assumption of normally distributed 

errors in Y, but also on the assumption that the values of X are error free. 

As mentioned above, the reported Residual Standard Deviation is that calculated from 

2

1

( ) / ( )
n

obs calc

i i i

i

s W Y Y n m


   where Y
calc

 is calculated using the parameters returned by 

the least squares fit and reported in the parameter table.   

If the measurement errors follow a normal distribution, the estimate of the variance (square 

of the residual standard deviation) of a sample of the data will follow a so-called chi-square 

distribution.  In contrast to the normal distribution confidence limits and the t 

distribution confidence limits, the chi-square distribution confidence limits used by 

LFPF to calculate the confidence limits of the residual standard deviation are one-

tailed.  5% of the time, the residual standard deviation will fall below the lower 

confidence limit and 5% of the time above the upper confidence limit when the 

confidence level is 0.95.  The true value of the population standard deviation will fall 

between the values of the 95% confidence limits, determined from the sample variance and 

reported below the Residual Standard Deviation, 90% of the time.  (See Equation (4-18) and 

its accompanying discussion.) In Figure 2-7 those limits are 0.8348 < σ < 1.420.  The data 

scatter, being based only on an estimate of the noise in the data, remains the same as it was in 

the display for the initial estimates. 
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Because the “Identify Outliers” item was checked in the View Menu when the  

FIT(Converge)  button was clicked, the expression “Excluding 2 possible outliers, s < 

0.7758,” appearing in Figure 2-7 below the Data Scatter, is the value of the standard 

deviation obtained using the most recent values of the parameters but excluding all those data 

identified as possible outliers from the calculation of the standard deviation though not from 

the fit itself.  If they were excluded from the fit, the standard deviation would be less than the 

figure quoted because the exclusion would lead to a slightly lower minimum, hence the < 

sign in the expression. Below that on the display is the F test result comparing the standard 

deviations with and without the outliers: F > 1.82 compared to F(0.95) = 2.191.  In this case, 

because F < F(0.95), the exclusion of outliers does not lead to a statistically significant drop 

in the standard deviation.  For more discussion on outliers, see Section 2.6.7 View > Identify 

Outliers 

In contrast to Figure 2-7, at the 99.5% confidence level, no datum would have been identified 

as a possible outlier. 

The Analysis Notes give additional information on the analysis, such as: 

 

The Analysis Notes are also automatically copied to the Windows clipboard for pasting in 

other applications. 

The analysis notes include the number of iterations performed, various warning messages, 

information on the interface width and asymmetry, the number of data included in the fit, the 

number of parameters varied, the number of degrees of freedom used in calculating 

confidence limits for the selected confidence level, the correlation coefficients among the 

parameters varied in the fit and conclude with the minimum precision for X and Y 

The iterative procedure converged after 6 iteration(s) but only after problems with evaluating all the 
parameters. 
The value of A', -0.003 ± 0.166, was initially varied and found not to be significantly different from 0. 
Consequently, A' was set = 0 and the iterations restarted.  To avoid this and to force inclusion of A' in the fit, 
check the box for A' and repeatedly click the [FIT (Step)] button until convergence is reached. 
The value of B', 0.0323 ± 0.0688, was initially varied and found not to be significantly different from 0. 
Consequently, B' was set = 0 and the iterations restarted.  To avoid this and to force inclusion of B' in the fit, 
check the box for B' and repeatedly click the [FIT (Step)] button until convergence is reached. 
 
Profile interface width (16% to 84%) = 14.452 ± 0.910 
η = 0.2195 ± 0.0574 
QDo = 0.2703 ± 0.0743 
At X =  40.87783 the interface region is  16% complete 
At X =  55.33016 the interface region is  84% complete 
 
The number of data included in the fit was 25 
The number of parameters varied in the fit was 5 giving 20 degrees of freedom 
 
Corr Coef     A      B      Xo     Do     Q  
A   1.0000  0.0342  0.1961 -0.5084 -0.4028 
B   0.0342  1.0000  0.1728  0.1902 -0.2409 
Xo  0.1961  0.1728  1.0000 -0.2966  0.3936 
Do -0.5084  0.1902 -0.2966  1.0000 -0.1988 
Q  -0.4028 -0.2409  0.3936 -0.1988  1.0000 
 
Minimum precision of X = 1 and of Y = 0.0001 
(Standard Deviation)/(Minimum precision of Y) = 1.05E+04 
At the initial point, X =  1, the interface is 0.22% complete. 
At the final point, X =  97, the interface is 100.00% complete. 
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determined from the data  appearing in the unparsed list, the ratio of standard deviation to 

minimum precision which indicates whether the precision of the data is limiting the accuracy, 

and finally, a statement on the completeness of the interface at the beginning and the end of 

the data.  If incomplete to an extent greater than 5% at either end, a warning is included in 

the analysis notes to be careful in interpreting the confidence limits for D0 and Q. 

As noted in the discussion of initial estimates and depicted in Figure 2-6, A′ and B′ were 

determined to be possibly significant, assigned starting values, and varied in the fit.  After 

completion of the least squares fit, the value of A΄ and B′ were found to be less than their 

confidence limits, whereupon their values were set equal to 0, and the analysis continued.  

The analysis notes mention this and give the values that were obtained for A′ and B′.  This is 

one difference between Fit (Converge)  and repeatedly clicking FIT(Step)  until convergence 

is reached.  In the latter case, A΄ and B′ would have continued to have been included in the fit 

even though their values were not statistically significant.  Other warning messages can be 

quite lengthy, reflecting difficulties encountered in the analysis.  If A′ and/or B′ were varied 

and found to be significantly different from 0, then the graphs of the asymptotes would have 

been drawn on the screen.   

Along with the values of the interface width and asymmetry, the values of X for the interface 

percent values are given as a check on the calculation.  The dimensionless asymmetry 

parameter, η, and its uncertainty are discussed in Section 4.5, Equation (4-34).  The 

dimensionless quantity QD0 which, if less in magnitude than 1, is comparable in magnitude 

to η is also given.  In general, a value of QDo much greater than 1 indicates an unrealistic 

asymmetry and possibly a runaway value for Q.  The interface width can be displayed on the 

graph in the form of a box when the interface item in the View menu is checked. 

2.4.1 Statistically  Significant  Interface  Region 

Because the interface is essentially infinite, owing to the exponential nature of the logistic 

function, all of the data correspondingly fall within the interface.  We note those data whose 

observed values lie between the calculated asymptotes and differ from the calculated 

asymptotes by more than the confidence limits of the data derived from the standard 

deviation of the fit (or some other measure of the level of scatter in the data) and the 

confidence level entered in the so labeled box on the display (0.95 default value.)  We 

describe these data as lying in the “statistically significant interface” and the lowest and 

highest values of X for these data as the “statistically significant interface region.” 

In the discussion that follows, the statistically significant interface region is frequently 

invoked in order to guide and interpret the least squares fit of the data to the extended logistic 

function. 

2.4.2 Warning Messages in the Analysis Notes 

The analysis notes may contain additional warning messages if problems are encountered or 

if the structure of the data might indicate concern about the interpretability of the parameter 

confidence limits.  These messages are described below. 

If the measurement errors follow a normal distribution, the ratio of the variances (squares of 

the standard deviations) of two independent samples should follow an F distribution.  If we 

assume that the standard deviation and the data scatter (see Section 2.6.3 below for a 
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discussion of the data scatter) are two such independent samples (in the sense that one 

depends on the extended logistic model and the other does not) then the value of F for the 

ratio of the square of the standard deviation of the fit over the square of the scatter in the data 

should be less than the value of F for the number of degrees of freedom for each (see 

Equation (4-22) and the preceding discussion.)  If it is greater, a message to this effect 

appears in the Analysis Notes, such as,  

 

This is an indication that, at the 0.99 confidence level, model errors may dominate random 

measurement errors limiting the interpretability of the confidence intervals for the 

parameters. 

Consider now the separation of the data into three regions, the statistically significant 

interface and the pre- and post-interface regions.  The region prior to the statistically 

significant interface is dependent almost solely on the parameters A, A′, and A″.  Similarly, 

the region following the statistically significant interface is dependent almost solely on the 

parameters B, B′, and B″.  While the statistically significant interface depends on all the 

parameters, it is this region that is most sensitive to X0, D0, and Q.  Since the asymptotic 

regions are virtually model-independent, the variance of those regions will not be sensitive to 

model errors whereas the statistically significant interface will be.  The variances of the three 

regions are calculated from: 

 
2 2 2
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nA, nI, and nB are the numbers of data in the pre-interface asymptotic region, the statistically 

significant interface region, and the post-interface asymptotic region respectively and pA, pI, 

and pB are the number of varied parameters on which each of the regions is dependent so that 

the three regions have, respectively, νA, νI, and νB degrees of freedom where νA = nA - pA, etc.  

Typically pA and pB will each be 1 and pI will be 2 or 3 depending on whether Q is varied. 

We can perform the F test on the ratio of the interface variance with each of the asymptotic 

variances to test for systematic errors. If sI
2
/sA

2
 > F(νI,νA,α) or sI

2
/sB

2
 > F(νI,νB,α)  where α is 

the confidence level for the F distribution, we may have reason to suspect model errors.  As 

usual, the more data available for the three regions, the more likely the effect will be noticed. 

If both interface/asymptote F tests fail, a warning message similar to: 

 

will appear in the Analysis Notes. 

The spacing of the values of X is noted.  If the values of X are not uniformly spaced and if 

the standard deviation of the spacing in X is more than 1% of the average spacing, a warning 

comment will be printed in the Analysis Notes such as: 

 

The F test for the ratios of the interface/asymptote variances suggests the possibility of systematic error 
   F(interface/pre-interface) = 13.598 compared to F(0.95) = 1.732 
   F(interface/post-interface) = 2.636 compared to F(0.95) = 2.185 

NOTE!!! The values of X are not uniformly spaced. 
  The average spacing is 3.971 with a standard deviation of 10.93% 

   If the values of X are not error free the parameter confidence limits may be underestimated. 

F(std/scatter) = 2.17 compared to F(0.99, ndf1 = 98, ndf2 = 101) = 1.598 
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The spacing need not be uniform for the statistical interpretation of the confidence limits for 

the parameter values, but they must be error free.   If they are not, they will likely fail the 

interface/asymptote F test.  See the discussion in Section 3.1.5 Errors in the Independent 

Variable X. 

If the data are poorly structured, the least squares analysis can become unstable and diverge.  

When this occurs, the program attempts to fit the data by holding Q, D0, and/or X0 at some 

predetermined value.  The three typical cases are 1) those situations where the interface is 

very sharp and less than 3 data fall in the interface region, 2) those situations where the 

interface is not complete and one of the two asymptotes is not reached and 3) the noise level 

is on the order of 10% of the separations between asymptotes or greater.  The instability of 

the least squares analysis is also noted when numerical overflows or underflows occur or 

when the corrections to X0 or D0 or the confidence limits for X0 or D0 on any iteration 

indicate that either is poorly determined. See the discussion in Section 3.1 Difficult Data and 

Analysis Instabilities. 

We note the number of data falling in the statistically significant interface region and if less 

than five, a message to this effect appears in the Analysis Notes similar to the following: 

 

In this message, | Y-Asymptote | > 1.90 defines the confidence limit for deciding if a datum 

differs significantly from an asymptote.  If two or fewer data fall in the statistically 

significant interface region and the least squares fit becomes unstable, Q is first set equal to 

0.  If the least squares fit continues to be unstable, X0 or D0 are held fixed at values 

determined from the distribution of the data surrounding the interface.  The details of how D0 

and X0 are handled when fewer than three data are found in the statistically significant 

interface region are further discussed in Section 3.1.  The analysis notes report on which of 

the parameters is held fixed and why.  

If either asymptote appears to be incomplete, a corresponding warning message appears in 

the Analysis Notes: 

 

If the noise in the data becomes significant compared with the separation between 

asymptotes, a warning similar to the following appears in the Analysis Notes: 

 

Both of these situations are discussed further in 3.1. 

2.5 Setting the values of parameters  

If an entry in the parameter table is double clicked, as noted in the label above the parameter 

table, a dialog box appears on the screen as in Figure 2-8  where X0 has been double-clicked. 

3 data  between 42.0 and 58.0 with | Y-Asymptote | > 1.90 appeared to fall in the statistically significant 
interface region 
7 possible interface values from X = 38.0 to X = 62.0, were tested 
Based on the statistics of the fit, the upper limit for Do was 1.88 

Warning!!  At the final point, X = 55, the interface is only 89.38% complete.  The final asymptote is not 
reached and the confidence limits for Xo, Do, Q, and B may be underestimated. 

The ratio of the upper limit of the standard deviation from the chi squared distribution to the 
value of A-B, 19.2%, may make the determination of Xo, Do, and Q problematic and possibly 
result in false, local minima.. 
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Entering a value for X0 in the text 

box assigns that value to X0.  When 

the OK button is clicked (or the 

enter key pressed), the dialog box 

disappears and the graph of the 

calculated value of Y is redrawn 

using the new value of X0.  

Unchecking the check box for, in  

this case X0, will cause X0 to be 

held fixed at this value in subsequent analyses while the other parameters are varied.  To vary 

X0 starting with the entered value, just check its check box. 

2.6 Additional Displays and the View Menu 

The View Menu allows display of additional information concerning the analysis.  

2.6.1 View > Residuals 

The examination of the residuals, that is, the values of the observed data, Y
obs

, minus the 

calculated values, Y
calc

, as in Figure 2-9 below, is by far the best way to detect systematic 

errors inherent in a semi-empirical model.  The eye can quickly detect trends in what should 

be a random scatter of points.   Clicking Residuals on the View Menu marks it with a check 

mark and replaces the graph of the data with the graph of the residuals.  To return to a display 

of the data, just re-click and uncheck Residuals.  

Discussion of the residuals is more obvious if we take as our example a data set with the 

same parameter values as those we have been using but with 100 data instead of 25.  

Analyzing these data and allowing A΄ and B′ to vary while holding Q fixed at zero results in 

confidence limits for the standard deviation of 1.053 < σ < 1.340.  The lower limit is almost 

equal to the estimate of data scatter, 1.056, suggesting a possible model error or a systematic 

trend in the residuals.  This could have been further tested by clicking the Residuals item in 

the View menu to display the graph of the residuals as in Figure 2-9 below, where the 

residuals appear to indicate an oscillating trend suggesting model errors 

2.6.2 View > Trends 

In a multi parameter fit of say, n parameters, to data with only systematic errors, the residuals 

will typically cross the Y
obs

 - Y
calc

 axis n or n+1 times resulting in a seemingly oscillatory 

pattern.  This suggests the use of a Fourier analysis of the residuals to test for trends.  

Clicking the Trends item in the View menu fits the residuals to a Fourier series: 

0 0

max min max min

( ) ( )
sin cosobs calc

i i

i

i X X i X X
Y Y A B

X X X X

     
     

    
  (2-2) 

Figure 2-9 shows the resulting trend line as well as the residuals themselves.  The values of 

Ai and Bi returned by the least squares fit are compared to their confidence limits at the 

confidence level selected and if the ratio of the absolute value to its standard deviation is 

greater than the value of tν,α the ratio is printed.  In the example pictured, four terms in the 

Fourier series were found to be significant and are printed in the analysis notes. 

Figure 2-8 Dialog box for setting a parameter value 



 

2-16 

 

This analysis reinforces the conclusion reached from visual inspection of the residuals that 

the analysis suffers from slight systematic errors.  The, in this case obvious, source of error is 

the constraint Q=0.   This would have been less obvious if only 25 data had been included in 

the analysis. Note that the Trends item on the View menu is enabled only when the residuals 

are displayed.  Note also that when the Trends item is checked, the statistics associated with 

the least squares fit of the logistic function are no longer valid and a number of View menu 

items that rely on those statistics are disabled.  Unchecking the View Trends item by clicking 

it a second time performs another single iteration and restores the statistics associated with 

the least squares fit.  Unchecking the View Residuals item to redisplay the data also performs 

another single iteration. 

It should be noted that the value of D0 = 3.902 ± 0.168 in Figure 2-9 falls outside the 95% 

confidence limits given for D0 obtained for 25 data when Q was varied and A΄ and B′ were 

not.  See Figure 2-7 above, where D0 = 4.155 ± 0.240.  The presence of systematic errors can 

seriously cloud and may even negate the statistical interpretation of confidence limits, which 

can, in extreme cases, be underestimated by as much as an order of magnitude. 

2.6.3 View > Data Scatter 

A model-independent estimate of the standard deviation of the data can be obtained from 

third differences in the data.  Given a set of measurements Yi, the first differences are defined 

as  (1)

1 ,i i iY Y Y   second differences as (2) (1) (1)

1 1 22 ,i i i i i iY Y Y Y Y Y       and third 

differences as (3) (2) (2)

1 1 2 33 3 .i i i i i i iY Y Y Y Y Y Y           If Y is a slowly varying function of 

X so that the change in Y between neighboring data is less than the variability in the point to 

 

Figure 2-9  Display of residuals and a trend line 
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point scatter of Y, the third differences, which magnify the point to point scatter but 

minimize the systematic variation in Y, can provide a model-independent measure of the 

standard deviation of the measurements. (Indeed if Y were a linear or quadratic function of X 

and the values of X were evenly spaced, the contribution from the systematic variation in Y 

vanishes identically.) If s
2
 is the variance of the values of Y attributable to measurement 

error, then  

2 2 2 2
(3) (3) (3) (3)
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Clicking the Data Scatter item on the View menu displays the data scatter calculated from 

third differences divided by the square root of 20 so that the scaling should be comparable to 

the residuals.  The data scatter graph is discarded if any of the other View menu items are 

checked, if another iteration of the least squares fit is run, or any point in the window is 

clicked. 

2.6.4 View > Connect 

Connects the displayed Data points with a straight line. 

2.6.5 View > View Memory (Data) 

If data (or a range of data) have been saved in memory by clicking Remember on the Tools 

menu, this menu item becomes visible. When it is checked by clicking it, the memorized data 

are drawn on the display.  If the memorized data fall off the scale of the display, they are 

shifted to be superimposed on the existing display.  If a least squares fit was active when the 

graph was saved to memory, and a least squares fit is currently active, the memorized graph 

is shifted to match the midpoints of the interfaces.  This item is not visible if no graph has 

been “remembered.”  The remembered graph can be shifted vertically by dragging it up or 

down while the Ctrl key is depressed.  The shifted data are not displayed until the mouse 

button is released 

2.6.6 View > View Memory (Calc) 

If a least squares fit is active when the “Remember” item on the Tools menu is clicked, this 

menu item becomes visible. When it is checked by clicking it, the memorized function 

calculated from the least squares fit of the corresponding data in memory is drawn on the 

display.  If the memorized function falls outside the range of the display, it is shifted to be 

superimposed on the existing display.  (If a least squares fit is currently active, the shift 

matches the midpoints of the interfaces.)  This item is not visible if no graph has been 

“remembered.”  The remembered functio7n can be shifted vertically by dragging it up or 
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down while the Ctrl key is depressed.  The shifted graph is not displayed until the mouse 

button is released 

2.6.7  View > Identify Outliers 

When the Identify Outliers item of the View menu is clicked, the item is checked and those 

data for which Y
obs

 – Y
calc

 
 
fall outside the confidence limits for a normal distribution (see 

Equation (4-30)) are identified by circling the points in red.  The default confidence limits are 

based on the two-tailed 95% confidence level for a student’s t distribution. 

If any outlier is found, the statistics associated with excluding outliers from the calculation 

are displayed below the Data Scatter.  For example, as in Figure 2-7: 

 

If the two data identified as outliers were excluded from the fit, the standard deviation would 

be less than the figure quoted because the exclusion would lead to a slightly different 

minimum, hence the < sign in the expression. The F test result compares the ratios of the 

standard deviations with and without the outliers (> 1.82)  with the value of Fα (n1,n2) = 

2.191, where α is the confidence level and n1 and n2 are the number of degrees of freedom 

for the data including and the data excluding the outliers respectively. In this case, 

performing the least squares fit excluding the two data identified as outliers gave a value of 

F=2.087 which, because it was less than F(0.95)=2.191 ( which is also greater than 1.82) 

indicated that the two standard deviations were not statistically distinguishable and the two 

outliers are simply two data on the wings of a normal distribution. 

Upon clicking a data point, when the calculated function is displayed on the graph, the 

values of X, Y
obs

 − Y
calc

 , and the confidence limits of Y
obs

 − Y
calc

 are printed above the graph.  

When a data point identified as an outlier is clicked on the graph, a message similar to: 

X = 65.000, Y(obs) − Y(calc) = −2.660 ± 0.994 (0.743%) 

is printed on the top of the graph and at the end of the Analysis Notes.  Here, the difference 

Y(obs)-Y(calc) = −2.660 is seen to be well beyond its standard deviation, 0.994; 

(Y
obs−Y

calc
)/s(Y

obs−Y
calc

) = −2.69 while the 95% confidence limit for the normal distribution is 

1.96.  The value in parentheses, 0.743%, is the confidence level of this difference.  That is, 

we would expect only 0.743% of the data whose difference, Yobs
-Y

calc , has an uncertainly of 

0.994 to fall 2.660 or more from its expected value of 0.  

Data identified as outliers are still included in the least squares fit.  Any point, whether 

identified as an outlier or not, can be excluded from future fits by double clicking that 

point.  Double clicking a point will change the display of that point by dimming it, replacing 

it with a single pixel, or replacing it with an x.  In subsequent least squares fits, data marked 

as ignored are not included in the fit. Double clicking an ignored point restores that point to 

its original status. 

It should be stressed that the identification of a particular point as an outlier should not 

suggest that point be necessarily excluded from the fit.  The identification of a point as an 

outlier only means that its value falls beyond the selected confidence limits.  Exclusion of a 

point as an outlier should be justified by considerations of why the point may be suspect 

Excluding 2 possible outliers, s < 0.7758 
F > 1.82 compared to F(0.95) = 2.191 
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beyond the fact that its value falls in the tail of the distribution.  Out of 100 data, we would 

expect 5 to fall beyond the 95% confidence limits based on the standard deviation of the fit 

and a normal distribution of errors.  Note that the uncertainty in Y
obs

-Y
calc

 that is serving as 

the basis for considering a point as an outlier must take into account that the value of Y
obs

 was 

used in the calculation of Y
calc

 so that their errors are correlated.  This correlation must be 

included explicitly as described in the discussion accompanying Equation (4-30) 

2.6.8 View > Error Bars 

When the Error Bars item on the View menu is checked by clicking it, error bars are drawn 

on each of the displayed data equal to / iNs W where Wi is equal to the weight of the i
th

 

datum (usually equal to 1), s is the standard deviation of the fit and N is the two-tailed 

normal distribution confidence limit (=1.96 for the default 0.95 confidence level).  The error 

bars are displayed on both the data and the residuals graphs.   Note, the error bars are 

confidence limits, not standard deviations. 

2.6.9 View > Confidence Limits 

When the Confidence Limits item on the View menu is checked by clicking it, confidence 

bands are drawn for the calculated values of Y equal to , ( )calc

it s Y   where ,t   is the two-

tailed t distribution confidence limit for ν degrees of freedom at the α confidence level and 

( )calc

is Y is the standard deviation of the calculated value of Y from Equation (4-28).  The 

confidence limits are displayed for both the data and for the residuals and can be displayed 

simultaneously with the error bars.  The confidence limits take into account the correlation of 

errors among the parameters from the least squares fit. 

2.6.10 View > Data Selection Box 

Data can be “selected” for special treatment by drawing a box around the selected data.  

Clicking the Select Data Box item on the View menu draws a box on the screen as the 

starting data selection box such as that seen in Figure 2-10.  The Analysis Notes give 

guidance on how to size and position the selection box. 

The Data Selection Box can also be invoked with a combination of left and right mouse 

clicks.  Clicking a point on the graph with the RIGHT mouse button when a crosshair is 

already displayed displays the data selection box as defined by the crosshair and the right 

mouse click. 

To resize and reposition the box, drag either side of the box to its new position, or click 

anywhere on the area of the graph and the side nearest to the spot clicked will be moved to 

that spot.  Only the X values of the selection box are significant.  The top and bottom of the 

box are set to include the minimum and maximum values of Y in the box. 

Clicking anywhere in the LFPF window outside the graph erases the box.  Unchecking the 

Select Data Box item on the View menu erases the selection box.   If the selection box is 

erased, clicking the Select Data Box item on the View menu again, or clicking the right 

mouse button when the cursor is on the graph and a crosshair is not displayed, or clicking 
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either mouse button while the shift key is held down redisplays the selection box as it was 

when it was erased. 

When a selection box is displayed, the Zoom in item on the View menu is enabled and 

clicking “Zoom in” redraws the graph of only those data inside the selection box. 

Alternatively, clicking either mouse button when the cursor is inside the data selection box 

while holding down the shift key or clicking the right mouse button alone performs the same 

function as checking the “Zoom in” item in the View menu.  When zoomed, the axes are 

correspondingly rescaled.  If a zoomed graph is displayed, the “Restore” item on the View 

menu is enabled and clicking “Restore” returns the display to the full range of data.  

Similarly, clicking either mouse button when the cursor is on a zoomed graph, while holding 

down the shift key, or clicking the right mouse button alone returns the display to the full 

range of data. 

Note:  The range in X for the selected data printed on the top of the graph is calculated from 

the pixel values of X for the graph.  Typically, there are less than 1000 pixels in the width of 

a displayed graph and this limits the precision with which the values of X can be calculated.  

Slight differences may be noted when redisplaying a previously displayed selection box. 

When doing a least squares analysis, only the displayed data are used for the analysis.  
This is one of the major uses for the data selection procedure.  The data on a zoomed graph 

can be further zoomed by displaying a data selection box on the zoomed graph and 

proceeding as above.  If the “Zoom out” item on the View menu is clicked, the range of data 

for the display is increased by 20%, 10% in each direction.  This can be used for fine tuning 

of the data selection or for extrapolating the calculated graph of the interface profile.  When 

 

Figure 2-10  Data Selection Box 



 

2-21 

the “Restore” item on the View menu is clicked, the graph returns to the full range of data no 

matter how many times the zoomed graphs were nested. 

If a selection box is displayed when  Initial Estimate  (or  Fit (Converge)   or  FIT (Step)  

for a new data set) is clicked, the initial estimates of the parameters are based on straight 

lines through the three regions identified by the selection box.  The pre-interface baseline 

is calculated from the data to the left of the selection box and the post-interface baseline is 

calculated from the data to the right of the selection box.  The values of X0 and D0 are 

calculated from a straight line passing through the five points (if there are more than five) 

nearest the center (in the Y direction) of the interface region inside the box. This line is 

interpreted as a tangent line to the logistic function.  X0 corresponds to the Y value of the 

“tangent” line where Y = (A+B)/2.  D0 is determined from the slope.  The value of Q is 

initially set equal to 0 and the slopes of the asymptotes are allowed to vary. This alternative 

method for making initial estimates is provided primarily for the analysis of poorly structured 

data where the algorithms for making the initial estimates from the structure of the data fail. 

2.6.10.1 View > Zoom in 

If a selection box is displayed, the “Zoom in” item on the View menu is enabled and clicking 

it redraws the graph of only those data that were inside the selection box.  The axes are 

correspondingly rescaled.  This can also be accomplished by clicking the right mouse button  

or either mouse button while the shift key is simultaneously depressed and the cursor is 

positioned in the selection box.  A least squares fit, if performed, is based only on the data 

displayed.   

2.6.10.2 View > Zoom out 

Clicking the “Zoom out” item on the View menu expands the scale of the displayed X axis 

symmetrically by 20%, 10% in each direction.  The purpose of this is primarily to look at 

extrapolation of the calculated logistic function.  This can be repeated as often as one wants. 

2.6.10.3 View > Restore 

If a graph is a zoomed graph, whether zoomed in or zoomed out, the “Restore” item on the 

View menu is enabled and clicking it restores the graph of the data to its original scale.  This 

can also be accomplished by clicking the right mouse button while no crosshair is displayed 

or either mouse button while the shift key is simultaneously depressed and the cursor is 

positioned anywhere on the graph.   

2.6.11 View > Interface  

Clicking the “Interface” item on the View menu draws a box around the width of the 

interface as defined by the profile percentage limit (default values 16 and 84) with opposing 

corners at the exact points, X and Y, given by the calculation.  If the interface box is 

displayed, checking “Select Data Box” will erase the interface box and replace it with a data 

selection box of the same size and the graph can be zoomed to display only those data within 

the defined width of the interface. 
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2.6.12 View > Statistical Interface 

When this item is clicked, a box is drawn representing the range of the calculated interface 

for which the calculated values of Y differ from the two limiting asymptotes by more than 

the confidence limits of the residual standard deviation.  Data falling in this box are those 

that contribute most significantly to the determination of X0, D0, and Q.  The statistically 

significant interface region is invoked to estimate the maximum value for D0 when less than 

three data fall in this region.  In determining the number of data falling in the statistically 

significant interface, only the deviations of the observed data from the asymptotes are used.  

In testing for data falling in the statistically significant interface, a range approximately equal 

to the statistically significant interface above and below X0 is used.  The test region is 

therefore approximately twice the width of the statistically significant interface.  The 

statistically significant interface drawn on the graph is calculated from the values of X0, D0, 

Q, and the confidence limits of the residual standard deviations.  The statistically significant 

interface region is also used to test for the possible influence of errors in the independent 

variable X (see Section 3.1.5) 

2.6.13 View > Asymptotes 

Clicking the “Asymptotes” item on the View menu draws the two asymptotes, 
2

0 0( ) ( )A A X X A X X     and 2

0 0( ) ( )B B X X B X X     connected by a vertical line 

at X0.  Inclusion of any of the parameters A′, B′, A″, or B″ in the least squares fit will always 

improve the residual standard deviation but the asymptotes themselves may not be physically 

reasonable.  For this reason, whenever they are varied in the fit the “Asymptotes” item in the 

View menu is checked by the program and the asymptotes are displayed, prompting the 

analyst to consider whether these asymptotes are physically reasonable or not.  If any of A′, 

B′, A″, or B″  is required only for an improved fit to the data, very likely these terms indicate 

that the extended logistic function is not an accurate representation of the data.  Moreover, 

their inclusion in the fit will shift the width and asymmetry well beyond their confidence 

limits. 

2.6.14 View > Parameter Derivatives 

If a parameter is selected by clicking its entry in the parameter list, for example Q, that entry 

is highlighted in the list.  The View menu then displays the additional item, in the present 

example, “Draw dY/dQ.”  Clicking “Draw dYdQ” draws dY/dQ on the current graphical 

display, scaled to fit the display as in Figure 2-11 below.  This provides some insight into 

which parameters are sensitive to which regions of the data.  Note that it is not necessary for 

any parameter to be varied (have its entry checked) in order to draw its derivatives.  

If Q is non-vanishing and the parameter D is selected then an additional item, “Draw D,” is 

offered on the View menu to display the variation in D, scaled from 0 to 2D0, over the range 

of data as shown in Figure 2-12 below. 
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Figure 2-11 Display graph of dY/dQ  

 

 

Figure 2-12  Display graph of D for non-vanishing Q 

2.6.15 View > Ignored Data 

This item allows the user to choose how data which have been designated to be ignored in 

the least squares fit are displayed.  Data can be designated as ignored by double clicking a 

data point, hitting the delete key when a data point is highlighted or double clicking the 

corresponding entry on the data list.  The display options include a dimmed point, a single 

screen pixel, or an x. 

2.6.16 View > Analysis Notes 

Displays the Analysis Notes as a message box on the screen and copies the Analysis Notes to 

the clipboard. 
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2.7 Edit Menu: Editing and Copying Data, Results and 
Graphs 

The “Edit” item on the Menu Bar contains several items to allow the user to paste data into 

the starting window for subsequent analysis, edit or reassign X and Y, or copy the results of 

the analysis, the currently active data, and the graphical display. 

2.7.1 Edit > Paste 

Pastes the contents of the Windows clipbord into the data entry text box on the starting 

screen.  Ctrl-V works as well.  This is enabled only when the data entry text box is displayed 

on the screen as in Figure 2-1. 

2.7.2 Edit > Edit Data 

Returns to the initial display with the currently active data in the text box (see Figure 2-2) 

where it can be subsequently edited as with any text editor. 

2.7.3 Edit > Interchange X, Y 

Exchanges X for Y and Y for X and reorders the data in order of increasing X for the new 

values of X 

2.7.4 Edit > Reassign X, Y 

If the current data file being analyzed contains more than two “columns” of data, this menu 

item becomes visible and when clicked, the screen displays the original columns of data as in 

Figure 2-4 above where the columns corresponding to X and Y (and/or W) can be reassigned. 

2.7.5 Edit > Normalize Y 

Shift and rescale the Y axis so that the maximum value of Y is 1.0 and the minimum is 0.0.   

2.7.6 Edit > Copy Data 

Copy the table of displayed data onto the clipboard for subsequent pasting into a word 

processor or spread sheet program or the input text box of this program.  If a zoomed graph is 

displayed, only the data in the zoomed graph is copied.  This is useful for generating various 

test data sets for further testing or intercomparisons of computational approaches.  Note also 

that the displayed data can be saved to a file by clicking the save item on the File menu. 

2.7.7 Edit > Copy Results 

Copies a summary of the results of the least squares analysis to the Windows Clipboard.  The 

summary includes the values of the parameters and their confidence limits, the values of the 

standard deviation and data scatter, all of the information in the Analysis Notes as they 

appear on the screen, and the data included in the analysis.  (Note that following an analysis, 

the contents of the Analysis Notes are automatically copied to the clipboard.) 



 

2-25 

2.7.8 Edit > Copy Graph 

Clicking Edit > Copy Graph brings up a dialog box providing a number of options for 

copying a displayed graph including such items as the interface box, outliers, various 

derivatives, etc.  The first option copies the displayed graph to the Windows clipboard for 

subsequent pasting into a word processing document.  Figure 2-11 and Figure 2-12 above 

were generated in this fashion.  Alternatively,  the graphical image can be saved in a variety 

of graphical file formats including bit mapped (BMP), Graphics Interchange Format (GIF), 

Joint Photographic Expert Group format (JPEG), Portable Network Graphics (PNG), or 

Tagged Image File Format (TIFF) with Lempel-Ziv-Welch (LZW) compression.  The 

graphics file is stored, if possible and as a default, in the same folder as the data file with the 

same file name but with the file extension replaced by bmp, gif, jpg, png, or tif.  The usual 

windows save file dialog box provides the user with the ability to store the file anywhere 

with any name. The folder (directory) \NIST\LFPF created by the program in the users’ 

\Documents folder when it is first run is the default, fall back folder for saving graphical 

images. The graph can be saved with or without its original colors. X and Y axis labels can 

be added as well as the file name and date as a caption.  If the graph contains header 

information it can be included or ignored.  The font size for the axis labels can also be set 

with the default value being based on the number of pixels displayed on the graph. 

 

2.8 Tools 

In addition to the Reset and Remember functions, the Tools menu includes routines that were 

used during the development of LFPF and have been retained because of possible general 

interest. 

 

Figure 2-13 Dialog Box for copying or saving a graph 
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2.8.1 Tools > Reset 

Clicking Reset simply redraws the graph of the data, omitting any other lines or diagrams 

that may have been displayed.  The parameters are reset to 0 and the default parameters are 

checked in the parameter table. 

2.8.2 Tools > Remember 

Stores the currently displayed graph and, if a least squares fit has been performed, the current 

parameter values in memory to allow redrawing for comparison.  This would allow, for 

example, display of the residuals on the same graph with the original data, or comparison of 

the data scatter with the residuals, or two sets of data.  When graphs of data are stored in 

memory, the item View Memory (Data) on the View Menu is visible and can be checked to 

draw the memorized data on the display.  If a least squares fit is active when Remember is 

clicked, the item View Memory (Calc) on the View Menu is visible and can be checked to 

draw the memorized calculated graph on the display.  The data in memory remains until the 

program is terminated or a new graph is saved to memory. 

2.8.3 Tools > Log Results 

When this item is checked the results of intermediate calculations as well as the analysis 

notes on the final calculation are printed in a file with the same name as the data file being 

analyzed but with a .log extension in the same folder as the data currently being analyzed, or, 

if that is not allowed by the operating system, in the default fall back subfolder \NIST\LFPF 

in the user’s \Documents folder created by the program when it is first run.  The log file may 

be of some use in interpreting situations that lead to unexpected or bizarre results or program 

crashes. 

2.8.4 Tools > Statistics 

The program provides a means for performing multiple calculations on synthetic sets of data 

that differ only in the distribution of errors.  Initially these calculations were incorporated 

into the program for the purpose of program development and testing.  However, the results 

may be of more general interest and therefore have been retained in the program and 

accessed through clicking the “Statistics” item on the “Tools” menu.  Using this feature, the 

reliability of the reported confidence intervals can be assessed.  For example, slight model 

errors might be introduced by the linearization process of a truncated Taylor’s series (no such 

errors have yet been detected).  In such a situation, the validity of the confidence limits 

calculated from the linearized function could be questioned. 



 

2-27 

The calculation proceeds in the following 

way.  Baseline data are defined.  A least 

squares fit is performed on the baseline 

data.  Following this, random normal 

deviates with a standard deviation of 

unity are generated, multiplied by a 

target standard deviation entered by the 

user, and added to the Y values of the 

baseline data.  This new set of data is 

then fit by least squares to the logistic 

function.  This can be repeated for any 

number of times under the control of the 

user. 

When the “Statistics” item on the Tools 

menu is clicked, a new dialog box 

appears as in Figure 2-14 at the left.  

Several options are provided.  Enter the 

number of data sets to be analyzed and 

the target standard deviation.  The 

baseline for the data sets can consist of 

the original X and Y values themselves, 

i.e., the original data, or the original X 

values with Y values calculated from the 

current values of the parameters.  If the 

calculated values of Y are to be used as 

the baseline to which errors are added, the user has the additional option of non-uniform 

spacing in X.  The separation between adjacent X values will be equal to the average spacing 

of the original data plus a shift equal to a random normal deviate with standard deviation of 1 

multiplied by the number entered by the user in the box labeled “X value scatter scale 

factor.”  If the X value scatter scale factor is left blank or set to zero, the X values are the 

original values of X.  If the factor is, for example, 0.25 and the separation between adjacent 

values of X is 2, then the values of X will still have an average separation of 2 but will have a 

scatter with a standard deviation of 2 x 0.25 = 0.5.  Note that the errors in the generated data 

are those added only to the calculated values of Y for each value of X when “Calculated 

Values as Baseline” is selected.  If “Random errors in X and Y” is checked, then the values 

of Y are the values of Y calculated from the original values of X to which random errors 

have been added and the values of X are the original values of X to which independent 

random errors have also been added.  In this case, the effect of errors in the X values on the 

confidence limits of the parameter values can be evaluated.  The X value scatter scale factor 

has the same significance as before. If “Re-initialize each calculation” is checked, then each 

calculation begins with the calculation of initial estimates.  If not, each calculation begins 

with the original values of the parameters. The latter results in a somewhat more rapid 

calculation because conversion is reached more rapidly.   If a parameter box is unchecked, its 

value will be held fixed at its current value in all the calculations.  If this is not the first time 

the statistics have been tested, the random normal deviates can be restarted or can continue 

from where the previous calculation left off.  If this is the first time the statistics have been 

Figure 2-14  Dialog Box for Analysis of Statistics 
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tested, the option to re-initialize the errors is not offered. If desired, the resulting parameter 

values from each of the data sets analyzed can be saved to a text file named “Results.txt” 

residing in the same folder (directory) as the original data (or if not allowed by the operating 

system in the fall back directory \Documents\NIST\LFPF created by the LFPF program) by 

clicking the  Save results of individual analyses  button.  If the button  Don’t Save  is 

clicked, only a summary of all the data sets will be saved. 

Depending on the number of data sets being analyzed, the calculation can last for a few 

seconds to many minutes. An estimate of the time required is printed in the Analysis Notes 

based on the time taken to do the first 50 datasets. 

When the analysis is 

complete, a message is 

printed on the screen 

similar to that in Figure 

2-15.  The option is given 

to continue working with 

the original data or to 

replace the original data 

with the data from the last 

analysis performed.   

(Note:  If the statistics test 

is performed with one data 

set, a target standard 

deviation of 0, and the 

calculated values as a 

baseline, the last (and only) 

data set analyzed will 

consist of values calculated from the extended logistic function with no errors.  Opting NOT 

to restore original data will replace the data with data calculated from the displayed 

parameters and will be exact.  Furthermore, the calculated profile can then be copied to the 

clipboard by clicking the “Copy Data” item of the Edit menu or saved as a new data file 

from the File menu.) 

After selecting yes or no, the screen will appear something like Figure 2-16 below.  

The summary of the statistics appearing in the Analysis Notes may be difficult to read but 

these results are also copied to the Windows clipboard and can be pasted into another 

application. For the analysis appearing in Figure 2-16, the contents of the Analysis Notes 

were pasted into this document, formatted, and appear following Figure 2-16. 

Figure 2-15  Dialog Box following statistical analysis 
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Figure 2-16  Results of statistics test 

Summary of the analysis of 1000 sets of data based on data in C:\LFPF DATA & DOCUMENTATION\Q25.TXT 
4/4/2008 11:41 

Number 
of values 

Parameter True 
Value 

Average 
Value 

Average 
sdev 

Min Value Max Value 80% 90% 95% 99% 

1000 A  0.000 0.013 0.463 -1.572 1.377 16.8% 8.9% 5.3% 0.8% 

1000 B  100.000 100.006 0.333 98.994 100.973 22.4% 11.3% 5.4% 0.4% 

1000 Xo 50.000 50.006 0.124 49.651 50.388 21.8% 10.8% 4.7% 0.8% 

1000 Do 4.221 4.221 0.108 3.813 4.545 21.7% 9.5% 4.6% 0.8% 

1000 Width 14.421 14.433 0.393 12.883 15.599 19.2% 9.9% 4.6% 0.7% 

1000 Q  0.050 0.050 0.008 0.030 0.084 17.4% 8.5% 3.7% 0.5% 

1000 ETA 0.173 0.174 0.025 0.102 0.269 18.3% 7.9% 3.8% 0.6% 

 Std. Dev. 1.004 0.993  0.520 1.498 20.5% 10.3% 4.8% 0.5% 

 True SDev. 1.004 0.994  0.628 1.474 19.0% 10.2% 4.9% 0.8% 

 Scatter 1.000 1.195  0.646 2.172     

 Ftest      0.3% 0.1% 0.1% 0.0% 

 Outliers      21.0% 10.1% 4.9% 0.53% 

 True Outliers      20.2% 10.3% 5.2% 1.04% 

 

Corr Coef A  B  Xo Do Q  

A  1 0.0611 0.1693 -0.4674 -0.4827 

B  0.0611 1 0.1898 0.2123 -0.2657 

Xo 0.1693 0.1898 1 -0.2335 0.3385 

Do -0.4674 0.2123 -0.2335 1 -0.1352 

Q  -0.4827 -0.2657 0.3385 -0.1352 1 

 
Each data set contained 25 data 
The analyses required, on average, 3.5 iterations to reach convergence. 
Tests for divergence were based on the 95% confidence level 
For each data set, the initial values of the parameters were estimated from scratch 
    1000 data sets used the Trial & error method for initial estimates. 
In the parameter value statistics above: 
   Only those parameters whose values could be evaluated in the least squares fit were included 
   The confidence limits are based on the "True" values of the parameters 
Outliers were identified only after convergence was reached which can affect the count of data in the interface 
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The minimum number of data in the statistically significant interface region was 7 
The average number of data in the statistically significant interface region was 9.55 
The statistically significant interface region, based on the target standard deviation, was between X =  21 and X =  65 
The maximum interface width is 37.46 and the average data spacing is 4.000 
The ratio is  9.365939 
The maximum limit for Do averaged 5.490 ± 0.9140 
At the minimum value of X, 1.00, the fractional completeness ranged from 0.1% to 0.3% complete (True = 0.2%) 
At the maximum value of X, 97.0, the fractional completeness ranged from 100.0% to 100.0% complete (True = 100.0%) 
Initial error seed = -1 and last error value added = -0.2133176  and the calculation took 1.7  seconds. 
25 sets failed the pre-interface/interface F test 
47 sets failed the post-interface/interface F test 
0 sets failed both. 
 
The following are the root mean square values of Y(obs)-Y(calc) for each datum averaged 
over all data sets. Note that they are all less than the root mean square of the errors 
added in the column labeled 'True' because the values of Y(calc) also contain errors that 
are correlated with the errors in Y(obs).  The 'adjusted' values are scaled by the square 
root of s²/(s²-s²(Ycalc)) and these should agree with the 'True' values.  If not, the data should 
be considered ill structured and the confidence limits of the affected parameters cannot 
be trusted.  The sums of the squares of the rms values of Y(obs)-Y(calc) divided by the 
square of the rms value of the standard deviation is given for the pre-interface region, the 
interface region, and the post interface region.  These should reflect the number of degrees 
of freedom for each of these regions. 
 
X rms(Yo-Yc) adjusted TRUE  
1 0.893938 0.993393 0.985487  
5 0.937783 1.03422 1.00878  
9 0.928816 1.01467 0.992343  
13 0.955013 1.03156 1.04012  
17 0.950852 1.01497 1.02482  
21 0.94393 0.997967 0.975993 Σ(Yo-Yc)²/s² = 5.19, n =  6 
25 0.973394 1.02654 1.01935  
29 0.887098 0.946602 0.95065  
33 0.93075 1.02508 1.00863  
37 0.916265 1.05705 1.0681  
41 0.854023 1.01621 0.984773  
45 0.817144 0.99834 1.02864  
49 0.685881 0.972751 1.0067  
53 0.704764 0.992463 0.978541  
57 0.653827 0.991345 0.969662  
61 0.88046 1.0294 1.05249 Σ(Yo-Yc)²/s² = 6.93, n =  10 
65 0.959957 1.01353 1.0212  
69 0.924677 0.978316 0.981731  
73 0.937907 0.995225 0.992789  
77 0.943663 1.00176 1.00478  
81 0.944385 1.00247 0.994723  
85 0.940802 0.998734 1.00371  
89 0.949046 1.00754 1.0237  
93 0.95321 1.01191 0.996269  
97 0.909725 0.965766 0.981157 Σ(Yo-Yc)²/s² = 7.88, n =  9 
The rms deviations added was 1.004 and the rms deviations returned by the fits of the data was 1.005 
The true standard deviation based on the rms of the deviations added should fall in the range 0.995 < s < 1.01 
The true standard deviation based on the rms of the standard deviations from fits of all data sets should fall in the range 0.996 
< s < 1.01 
 

Although in this example every parameter reported was determined for every data set 

analyzed, this is not always so and for this reason, the values of the number of analyses that 

led to the values reported are given under the heading “Number of Values”.  Regardless of 

whether the original data or calculated values were selected as the baseline, the “True 

Values” reported are the values of the parameters when the “Statistics” item on the Tools 

Menu was clicked.  Note, these values can be entered into the parameter list by the user just 

before clicking the statistic menu item and need not have any relationship to the data being 

analyzed before clicking the statistics menu item. 
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The “Average Value” reported is the average over the N values that were determined.  The 

“Average sdev” is the average over the N values of the standard deviation for the parameter 

returned by the least squares fit.  Because the true values for the population standard 

deviation and for the parameter values are known, (Ci(calculated) – Ci(true))/σi should follow 

a normal distribution (not a Student’s t distribution though for a large number of data the two 

are nearly the same.)  The percentages given are the percentage of those values that fall 

beyond the 80, 90, 95, and 99 two-tailed percentile values for a normal distribution.  . 

In this example, good agreement with a normal distribution resulted, as well they should 

have, including the statistics associated with the normal distribution of those data whose 

value of Yi(obs) – Yi(calc) lie outside of the 80%, 90%, 95% and 99% confidence limits and 

are identified as “outliers” in the analysis.  These should follow the statistical distribution 

dictated by:  

2 2 2( ) ( )obs calc calc

i i is Y Y s s Y     (2-3) 

where s
2
 is the standard deviation of the data (which should follow a χ

2
 distribution) and  

2

1 1

( )
calc calcm m

calc cvi i
i jk

j k j k

Y Y
s Y

C C 

 


 
 V   (2-4) 

(See Equation (4-16) and accompanying discussion.)  The – sign in equation (2-3) arises 

from the fact that the error in calc

iY  is correlated with the overall standard deviation through 

the variance-covariance matrix, cv

jkV , which is a multiple of s
2
.  Whereas the uncertainties in 

Yi should follow a normal distribution, the uncertainties in 2 ( )calc

is Y should follow a student’s 

t distribution.  In counting outliers, we use the confidence limits of the normal distribution as 

if our sample size were infinite.  For higher values of the confidence limit and lower values 

for the number of degrees of freedom, we will underestimate the number of data falling 

outside the confidence limits.  This, fortunately, corresponds to the guidance that outliers 

should not be identified as outliers based solely on their falling in the tails of the normal 

distribution but on factors related to the manner in which their values were measured. 

The F test percentages are those for which the square of the standard deviation divided by the 

square of the data scatter from third differences is greater than the value of 
1 2, ,1F    (see 

Equation (4-22) and its accompanying discussion.)  That few in the current example fail the F 

test at all confidence levels demonstrates the strength or weakness of the third differences as 

a measure of the presence of model errors.  That is, the tendency is for the F test to give too 

few false positives.  If the data had consisted of 100 values rather than 25 as in the present 

example, some false positives would have been obtained but fewer than indicated by the 

confidence limits.   

While most of the information in the summary statistics test report is straightforward, the 

items “30 sets failed the pre-interface/interface F test, 46 sets failed the post-

interface/interface F test, 0 sets failed both” requires additional explanation.   

When the calculation of the 1000 data sets was repeated with errors in the X values as well as 

the Y values, the resulting statistics did not follow the normal and student’s t distributions 

because the effect of introducing errors into the X values causes those errors to be interpreted 
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as errors in Y.  Those errors will be greater in the transition region where small changes in X 

result in large changes in Y whereas in the asymptotic regions, errors in X will have no effect 

on the perceived errors in Y.  Hence the errors are not randomly distributed and the statistics 

resulting from the calculation are wrong.  The effect of errors in the X values only can be 

seen in the display of residuals in Figure 2-17 below which also includes the statistically 

significant interface box.  

 

Figure 2-17  Residuals when all errors are in the values of X.  The box represents the statistically 

significant interface region used for the F test. 

If we were to perform the F test on those data in the pre-interface region and those data in the 

interface region, that is comparing the ratio of the variance of the data in the interface region 

over the variance in the pre-interface region with the value of F from the F distribution with 

the appropriate number of degrees of freedom of the two populations and the stated 

confidence level, we would see that the two sets of residual standard deviations represented 

different populations.  A similar statement can be made for the ratio of the variance from the 

post-interface region to that of the interface region.  In the example for which only the Y 

values contained errors, the ratios of the variances were less than the value of F for the 

confidence level and the number of degrees of freedom. For the extreme case data, 

represented by Figure 2-17, the F test values were F(interface/pre-interface) = 181.999 

compared to F(0.95) = 6.094 and F(interface/post-interface) = 204.668 compared to F(0.95) 

= 3.293  This will be discussed further in Section 3.1.4 below. 

2.8.5 Tools > Smooth Data 

When Smooth Data on the Tools menu is selected, a 7 point quadratic fit of the data is 

performed, replacing the center datum with its calculated value from the fit.  The purpose of 

this is to examine the effects of one particular type of data smoothing on the statistics 

associated with the least squares fit.  In particular, examining the residuals shows the effects 

of the averaging.  This "smoothing"can be performed as often as desired.  Once data has been 

smoothed at least once, the option of restoring the original data is offered on the Tools menu. 

Smoothing alters the functional dependence of the resulting values of Y on X.  If the original 

data obey an extended logistic function, the smoothed data will not and will exhibit 

systematic errors characteristic of model errors.   It is recommended never to smooth the 
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data, or, if doing so, to use methods that do not introduce correlation between the data.  The 

fit of the raw data to the extended logistic function is itself a kind of smoothing for the 

purpose of estimating the interface properties of position, width, and asymmetry. 

2.8.6  Tools > Straight Line 

Performs a least squares fit of the displayed data to a straight line, displays the resulting line 

on the graph, and prints the equation for the line on the top of the graph.  If a selection box is 

displayed, the line is estimated from only those points in the selection box. 

2.9   Help 

Clicking the help menu displays an abbreviated version in html format of the information in 

this section. 

2.10  Conclusion 

This concludes the description of the operation of the program LFPF.  In the next section, 

examples of the use of LFPF and the interpretation of the results provided by LFPF will be 

discussed.
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3 Results of analyses of synthetic interface data using the 
extended logistic function. 

The easiest and most useful approach to assessing the performance of a computer program 

written to implement the analysis of interfacial data has been to construct data sets calculated 

using the extended logistic function to which random, normally distributed errors have been 

added.  The random, normal deviates were generated using a Basic version of the Fortran 

function codes  GASDEV and RAN1 found in Press, W.H., Flannery, B.P., Teukolsky, S.A. 

and Vetterline, W.T., “Numerical Recipes, The Art of Scientific Computing”, Cambridge 

University Press, 1989,  191-203.  100,000 random, normal deviates generated by these 

algorithms were compared with the table of 100,000 random normal deviates originally 

published in 1955 by the Rand Corporation (“A Million Random Digits with 100,000 Normal 

Deviates,” Rand Corporation monograph no. MR-1418-RC, Rand Corpopation, Santa 

Monica, CA 2001.)  The two sets of numbers had comparable first, second, third, and fourth 

moments. 

One thousand data sets consisting of 100 X,Y data pairs, 25 X,Y data pairs, and 7 X,Y data 

pairs were analyzed. The values of X in each of the data sets were evenly spaced.  Random 

errors with a standard deviation (square root of the variance) of 1 were added to the Y values 

only.  The results of these analyses are presented in Tables 1 – 3. 

Table 3-1  Extended Logistic Function fit to 1000 data sets of 100 data each 

Parameter 
True 
Value 

Average 
Value 

Average 
Standard 
Deviation 

Minimum 
value 

Maximum 
value 

Percent Beyond Confidence Limits 

80% 90% 95% 99% 

A  0 0.010 0.243 -0.768 0.739 20.40% 10.40% 4.90% 0.90% 

B  100 100.005 0.164 99.507 100.555 17.60% 9.50% 4.60% 1.00% 

Xo 50 49.999 0.063 49.790 50.181 20.20% 9.10% 4.00% 0.60% 

Do 4.221 4.223 0.055 4.057 4.416 20.00% 10.00% 5.10% 0.90% 

Width 14.421 14.429 0.200 13.785 15.132 18.90% 9.30% 4.60% 1.00% 

Q  0.05 0.050 0.004 0.038 0.063 20.80% 11.60% 6.50% 1.30% 

ETA 0.173 0.173 0.013 0.130 0.217 20.30% 11.90% 5.70% 1.50% 

Std. Dev. 1.003 1.001 
 

0.791 1.253 23.80% 10.70% 5.60% 1.70% 

True SDev. 1.003 1.001 
 

0.779 1.235 22.20% 10.40% 5.40% 1.40% 

Scatter 1 0.997 
 

0.677 1.350 
    

Ftest 
     

15.70% 6.00% 2.70% 0.60% 

Outliers 
     

20.08% 10.05% 5.02% 0.93% 

True Outliers 
    

20.12 10.21% 5.16% 1.03% 
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Table 3-2  Extended Logistic Function fit to 1000 data sets of 25 data each 

Parameter 
True 
Value 

Average 
Value 

Average 
Standard 
Deviation 

Minimum 
value 

Maximum 
value 

Percent Beyond Confidence 
Limits 

80% 90% 95% 99% 

A  0 0.013 0.463 -1.572 1.377 16.8% 8.9% 5.3% 0.8% 

B  100 100.006 0.333 98.994 100.973 22.4% 11.3% 5.4% 0.4% 

Xo 50 50.006 0.124 49.651 50.388 21.8% 10.8% 4.7% 0.8% 

Do 4.221 4.221 0.108 3.813 4.545 21.7% 9.5% 4.6% 0.8% 

Width 14.423 14.434 0.393 12.885 15.600 19.2% 9.9% 4.6% 0.7% 

Q  0.05 0.050 0.008 0.030 0.084 17.4% 8.5% 3.7% 0.5% 

ETA 0.173 0.174 0.025 0.102 0.269 18.3% 7.9% 3.8% 0.6% 

Std. Dev. 1 0.993 
 

0.520 1.498 20.5% 10.3% 4.8% 0.5% 

True SDev. 1 0.994 
 

0.628 1.474 19.0% 10.2% 4.9% 0.8% 

Scatter 1 1.195 
 

0.646 2.172 
    

Ftest 
     

0.3% 0.1% 0.1% 0.0% 

Outliers 
     

21.0% 10.1% 4.9% 0.5% 

True Outliers 
     

20.2% 10.3% 5.2% 1.0% 

 

Table 3-3 Extended Logistic Function fit to 1000 data sets with 7 data each 

Parameter 
True 
Value 

Average 
Value 

Average 
Standard 
Deviation 

Minimum 
value 

Maximum 
value 

Percent Beyond Confidence 
Limits 

80% 90% 95% 99% 

A  0 0.091 0.804 -3.359 3.620 18.1% 8.9% 4.4% 1.0% 

B  100 104.692 0.906 97.185 103.979 19.5% 9.4% 5.2% 1.0% 

Xo 50 50.012 0.189 49.341 52.216 18.2% 9.3% 4.6% 1.2% 

Do 4.221 4.216 0.228 3.082 7.172 19.3% 8.9% 4.5% 0.8% 

Width 14.421 14.425 0.775 11.864 24.783 19.7% 9.5% 4.9% 1.0% 

Q  0.050 0.050 0.012 -0.052 0.218 17.3% 9.9% 4.5% 0.7% 

ETA 0.173 0.170 0.038 -0.263 0.472 18.8% 9.2% 5.2% 0.7% 

Std. Dev. 1 0.965 
 

0.020 6.286 21.0% 12.2% 8.1% 3.4% 

True SDev. 1 0.966 
 

0.223 1.952 20.1% 9.1% 4.9% 1.2% 

Scatter 1 6.570 
 

5.551 7.732 
    

Ftest 
     

0.0% 0.0% 0.0% 0.0% 

Outliers 
     

27.3% 0.9% 0.3% 0.2% 

True Outliers 
     

20.2% 10.5% 5.2% 1.0% 

 

The distribution of results appearing in Tables 1 - 3 are consistent with what would be 

expected from random errors, normally distributed.  The number of parameter values falling 

outside their 80%, 90%, 95%, and 99% confidence limits is consistent with a normal 

distribution.  The square root dependence of the parameter standard deviations on sample 

size is also obvious in comparing the tables.  Since, in each data set, errors were drawn from 

a population of random normal deviates with a standard deviation of 1.000, one can compare 

the “true” standard deviation for each data set with that returned by the least squares fit of an 

exact extended logistic function to which those errors had been added.  These are given in 

Tables 1 - 3 with the heading “True” SDev.  It can be seen that the least squares fit of the 
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extended logistic function returns consistent estimates of the standard deviations when 

compared to the values added to the calculated data. 

The scatter of data estimated from third differences was compared with the standard 

deviation of the fit to see if that comparison suggested the presence of systematic errors even 

though none was present (See Equation (4-20) and its accompanying discussion.)  Using a 

chi square distribution for the standard deviation, the low ends of the 95% and 99% 

confidence limits for the standard deviation were compared with the estimate of data scatter 

from third differences. Also, the F test was performed for the ratio of 

(standard deviation)
2
/(scatter)

2
 (See Equation (4-22).  For sets consisting of 100 data 

approximately 2.4% of the data sets gave a false positive suggestion that the extended 

logistic function might suffer from model errors at the 95% confidence level while 5% was 

expected.  For data sets with 25 data or less, the F test and the chi-squared test gave few or no 

false positives for the 1000 sets tested.  As the number of data decrease, it becomes more 

difficult to use the statistics returned by the least squares fit to draw conclusions about the 

accuracy of the model.  For much the same reason, the number of outliers, that is, those data 

whose “errors,” i.e., whose values of  Y
calc

 - Y
obs

 lay beyond the 95% confidence limits, 

dropped below their expected number.  As the number of data decrease, it becomes more 

difficult to use the statistics returned by the least squares fit to identify outliers.  As pointed 

out in this documentation on several occasions, the uncertainties presented by the least 

squares fit of the logistic function have little significance beyond what to expect for the 

parameter values were the measurement of the profile to be repeated.  The results of these 

tests do demonstrate that the extended logistic function can be used reliably to provide a 

width and asymmetry of a profile in a systematic and reliable manner. 

The above tests were repeated with randomly spaced values of X and different spacing for 

each data set with no change in the results including the distribution of uncertainties reported 

for the parameters.  The tests were repeated again with random errors added to the X values.  

 

Figure 3-1 Residuals when all errors reside in X values but are assumed to reside in Y values 

In this case, the uncertainties for the interface parameters X0, D0, and Q, were slightly 

underestimated but not by much as long as the errors in X were comparable to the errors in 

Y.  On the other hand, the uncertainties for the asymptotes, A and B were overestimated.  As 
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anticipated, when errors were added to the values of X alone, the confidence limits on the 

values of the parameters no longer reflected the student’s t distribution.  This is not surprising 

since placing all the errors in X gives rise to effective errors in Y that are larger in the 

interface (where Y is rapidly varying) and vanishing in the wings of the distribution which 

can be seen in examining the residuals as in Figure 3-1. The student’s t distribution in this 

case is based on the incorrect assumption that the errors in the wings of the profile are the 

same as the errors in the interface region; hence the confidence limits for A and B are 

overestimated.  This is a form of a model error, the model being a normal distribution of 

errors in Y.  In this case the F test indicated model errors in all 1000 sets. 

When, instead of an exact extended logistic function, an incomplete gamma function is used 

as the basis for generating test data, systematic, i.e., model, errors will be present which can 

affect the interpretation of the results.  The incomplete gamma function is similar to the error 

function but presents an asymmetric profile.  A fit of the extended logistic function to the 

incomplete gamma function is shown in Figure 3-2 below.  While the agreement of 

calculated fit and data appears quite good in Figure 3-2, the residuals, the values of the 

incomplete gamma function minus the fitted logistic function, clearly show the presence of 

model errors in Figure 3-3.  The standard deviation of the fit is 0.5111 compared to the 

estimate of the standard deviation from third differences of 0.0091.  The standard deviation 

from third differences is due exclusively to the functional difference between neighboring 

points.  (The value of F = (0.511)
2
/(0.0092)

2
 = 3086 was far in excess of F95,99,0.95 = 1.40 but 

such a comparison is inappropriate for completely non-statistical errors.) 

 

Figure 3-2 Analysis of data representing an incomplete gamma function 

As described above, 1000 sets of 100 data constructed from the addition of random normal 

deviates with a standard deviation of 1.0 to the incomplete gamma function depicted in 

Figure 3-2 were analyzed and the results are summarized in Table 3-4 and Table 3-5 below. 
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Figure 3-3  Residuals from a fit of the extended logistic function to an incomplete gamma function 

Table 3-4  Summary of fits of the extended logistic function to the incomplete gamma function.  The 

values of percent beyond the confidence limits are based on the Average values of the parameters given in 

the table. 

Parameter 
True 
Value 

Average Median 

Range over 
Data Sets 

Average 
Standard 
Deviation 

Per Cent Beyond Confidence 
Intervals 

Min Max 80% 90% 95% 99% 

A 0 -0.17 -0.17 -0.70 0.31 0.19 15.7% 6.4% 2.4% 0.3% 

B 100 100.62 100.62 99.98 101.37 0.26 12.5% 5.1% 1.7% 0.5% 

X0 50.402 50.46 50.46 50.26 50.65 0.07 15.0% 6.7% 2.5% 0.2% 

Width  14.272 14.28 14.28 13.75 14.90 0.21 13.2% 4.6% 1.8% 0.4% 

η -0.109 -0.109 -0.109 -0.151 -0.070 0.014 12.0% 4.9% 2.4% 0.3% 

s 1 1.126 1.127 0.882 1.365 0.083 19.8% 10.6% 5.9% 1.4% 

σ 1 1.001 1.002 0.779 1.235 0.073 21.2% 11.2% 5.2% 1.5% 

F test failures 65.5% 46.0% 30.8% 10.7% 

Outliers 20.1% 10.0% 4.9% 0.9% 

 

Table 3-5  Summary of fits of the extended logistic function to the incomplete gamma function.  The 

values of percent beyond the confidence limits are based on the True values of the parameters given in 

the table. 

Parameter 
True 
Value 

Average Median 

Range over 
Data Sets 

Average 
Standard 
Deviation 

Per Cent Beyond Confidence 
Intervals 

Min Max 80% 90% 95% 99% 

A 0 -0.17 -0.17 -0.70 0.31 0.19 34.0% 20.5% 11.8% 3.5% 

B 100 100.62 100.62 99.98 101.37 0.26 89.8% 80.0% 66.0% 34.9% 

X0 50.402 50.46 50.46 50.26 50.65 0.07 27.7% 16.6% 9.5% 2.2% 

Width  14.272 14.28 14.28 13.75 14.90 0.21 12.5% 4.6% 1.8% 0.3% 

η -0.109 -0.109 -0.109 -0.151 -0.070 0.014 12.0% 5.0% 2.3% 0.3% 

s 1 1.126 1.127 0.882 1.365 0.083 19.8% 10.6% 5.9% 1.4% 

σ 1 1.001 1.002 0.779 1.235 0.073 21.2% 11.2% 5.2% 1.5% 

F test failures 65.8% 46.1% 31.1% 10.7% 

Outliers 
 
 
 
 
 
 

20.1% 10.0% 4.9% 0.9% 
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Because the parameters Do and Q have no relevance to the incomplete gamma function so 

that there is no “true” value for these quantities, they are not included.  The parameters of the 

incomplete gamma function chosen had a true 16%-84% interface width of 14.42079.  The 

extended logistic fit to the incomplete gamma function gave a width of 14.351 ± 0.184 with 

the true value falling within the 95% confidence limits.  The true profile asymmetry, η = 

− (X.16 + X.84 − 2X0) / (X.84 − X.16), was −0.1062.  The extended logistic fit gave -0.106 ± 

0.0123 in good agreement with the true value.  The width and asymmetry would not seem to 

be terribly sensitive to the departure of the data from an extended logistic function.  

However, if the range of data fit is narrowed, cutting off influence of the asymptotes, the 

values determined from the fit can differ from the true values by two or three times their 

confidence limits.  

In Table 3-4 the percentages beyond the confidence intervals for the parameters are seen to 

be about 2/3 of the values expected when those values are compared to average values of the 

parameters returned by the least squares fits.   In Table 3-5, those percentages beyond the 

confidence intervals are calculated for the differences between the values of parameters 

returned by the fit and their true values.  Here, the confidence limits are seen to be, with the 

exception of the width and the asymmetry, underestimated.  This demonstrates the 

importance of being aware of possible systematic bias in reporting the profile parameters 

derived from the least squares fit. 

The F test, invoked to compare the standard deviation of the fit with the data scatter 

estimated from third differences, proved not to be a particularly strong test though 30% did 

fail at the 95% level.  Had a smaller number of data been used, the distribution of F test 

failures would be just that expected for two samples from the same population of errors.  The 

usual means for estimating the presence of systematic errors is in examination of the 

residuals shown in Figures 3-4 and 3-5 below.   

 

Figure 3-4 Residuals from a fit of a logistic function to an incomplete gamma function with random 

normal errors presenting the maximum value for F.  Possible outliers are circled. 
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Figure 3-5  Residuals from a fit of a logistic function to an incomplete gamma function with random 

normal errors presenting the minimum value for F.  Possible outliers are circled. 

Figure 3-4 corresponds to the data set with the maximum value of F and therefore 

presumably the data set with the largest possible systematic error.  Figure 3-5 corresponds to 

the data set with the minimum value of F and therefore presumably the data set for which 

possible systematic error would be the least detectable.  Something of a trend can be seen in 

Figure 3-4 and is confirmed by comparing the trend with that in Figure 3-3 above for the fit 

of the incomplete gamma function without added errors.  On the other hand, such a trend 

cannot be seen in Figure 3-5.  If the residuals in Figure 3-4 are fit with a Fourier series two 

terms are found to have t values (parameter value divided by its standard deviation) greater 

than the 95% confidence limit.  Moreover, the inclusion of these two terms reduced the 

standard deviation of the fit below its lower chi-square confidence limit.  If the residuals in 

Figure 3-5 are fit with a Fourier series, two terms (not the same two terms) are found to have 

t values  barely above the 95% confidence limits and their inclusion did not reduce the 

standard deviation significantly. 

One might conclude, therefore that the data corresponding to Figure 3-4 suffered from 

systematic errors but the data corresponding to Figure 3-5 did not.  But, in fact, both suffered 

from the same systematic error.  The systematic error in this case, based on the residual 

standard deviation when fitting exact incomplete gamma function data, is about half the 

random error that was added to the data.  The influence of the systematic error is slight and 

the true values of the width and asymmetry are within the confidence limits of the 

determined values.  Had we instead added random errors equal in magnitude to the 

systematic error, the trends would have been more obvious and more than half of the F tests 

would have failed at the 95% confidence level 

On the other hand, had we performed the same numerical experiments with data sets 

consisting of only 25 data, it would have been very difficult to spot the systematic error.  As 

expected, a large amount of data is necessary to discern if the model is seriously in error. 

As a model for estimating the width and asymmetry of an interface in a systematic way, the 

extended logistic function fulfills its intended purpose. 
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3.1 Difficult Data and Analysis Instabilities 

In the preceding discussion, all of the data sets discussed included values in the asymptotic 

regions and at least three data with values lying between the asymptotes and more than a 

confidence limit away from each asymptote (which we call here the statistically significant 

interface region, see Section 2.6.12).  In all cases, the standard deviations were one percent of 

the separation between the asymptotes.  Data this well behaved may be encountered often, 

but not always.  We therefore discuss briefly three cases of difficult data, namely, incomplete 

data for which one of the asymptotes is not reached, i.e. where the values at one end or the 

other are more than 5% of the asymptotic separation away from the corresponding 

asymptote; very sharp interfaces in which only one datum or none falls in the statistically 

significant interface region; and data with errors on the order of 10% or greater of the 

separation between asymptotes, so-called noisy data. 

The extended logistic function is continuous and well behaved (with the exception of a 

singularity when D → 0, with analytic first derivatives of Y with X and first derivatives of Y 

with each of the function’s parameters.  However each parameter is sensitive only to certain 

regions of the profile.  A (as well as A′ and A″) is sensitive to the pre-interface and the early 

stages of the interface and B (as well as B′ and B″) to the late stages of the interface and the 

post-interface region.  The interface parameters X0, D0, and Q are sensitive only to data in the 

interface, significantly distant from either asymptote, i.e. to data in the statistically significant 

interface region.  In addition, correlation between parameters (such as Q and A′ if Q is 

positive or Q and B′ if Q is negative) can cause indeterminacy in the parameters and the 

iterative process can not only converge slowly, it can also diverge. 

Generally, a fit of all the desired parameters is first attempted and if it appears the iterative 

procedure may be diverging, certain parameters are held fixed at predetermined values 

depending on the parameter and the structure of the data as revealed by the nature of the 

divergence.  The divergence tests include the following: 

 A 10% increase in the standard deviation of the fit from one iteration to the next when 

the number of parameters being varied has not changed 

 An increase by a multiplicative factor on the order of 2 (the value of the normal 

distribution confidence limit for the selected confidence level is the actual, somewhat 

arbitrary, factor chosen) in the standard deviation of any parameter value when the 

number of parameters being varied has not changed. 

 A correction to D0 that would make its value negative or confidence limits for D0 that 

are larger than the magnitude of D0, i.e., include 0 in the range. 

 A correction to X0 that would move its value beyond the interface width (by default 

the 16% and 84% limits) or confidence limits for X0 that are greater than the 

interface width 

These tests are performed before the corrections are added to the parameters being varied.  

When any of these tests indicates divergence, one of the parameters being fit is fixed at its 

current value or some predetermined value, depending on the situation, and corrections to the 

remaining parameters are ignored for that one iteration where the divergence was noted.  



 

3-9 

Descriptions of the actions taken are included in the analysis notes, examples of which will 

appear in the following sections. 

3.1.1 Incomplete Profiles 

If the data being fit do not reach one or another of the asymptotes, it becomes problematic to 

form an initial estimate of the asymmetry parameter Q because the value of Q depends 

primarily on the difference in curvature in the profile near the pre- and post-interface 

asymptotes.  It may still be possible to determine Q if the level of noise in the existing data is 

small, but it is generally not possible to make an initial estimate for the value of Q. Hence Q 

is initially set to zero but may still be varied in the iterative analysis. For the same reason, the 

slope of the undeveloped asymptote is held fixed at 0.  A typical result appears in Figure 3-6 

below where only the data in the selection box have been included in the fit in order to 

demonstrate effect of an incomplete profile. 

 

Figure 3-6  Fit to incomplete data.  Only data in the box were included in the fit.  The gray area 

represents the confidence limits for the value of Y calculated from the extended logistic function 

  The Analysis Notes will contain a message similar to: 

 

Indeed the confidence limits for X0 and B were found to be less than the difference between 

the true values of X0 and B and the values determined from the least squares fit of the 

incomplete data.  Similarly the confidence limits for D0 from the fit did not contain the true 

value of D0.   Figure 3-6 also displays the confidence limits of the value of the function 

calculated from the fit using the values determined for the parameters.  Reflecting the 

underestimate of the confidence limits of B, the confidence limits of the calculated function 

do not encompass the data that were not included in the fit.  (Of course, this would not be 

known if we did not have access to the complete profile.)  

Fitting 1000 data sets with the same base data as in Figure 3-6 showed that while 20% of the 

parameter values fell outside the 80% confidence limits, 3 % of the values of X0, D0 and B 

Warning!!  At the final point, X = 55, the interface is only 89.38% complete.  The final 
asymptote is not reached and the confidence limits for Xo, Do, Q, and B may be 
underestimated. 
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(but not Q!) fell outside their 99% confidence limits, bearing out the warning that the 

confidence limits for X0, D0, and B were in fact underestimated.   

If one were limited to the incomplete data alone, then there would be nothing more one could 

do other than holding B fixed at its true value supposing that true value were known.  This 

situation could occur, for example, if the spectroscopic values for pure species A and B were 

known and those spectroscopic properties were the basis for the profile measurement.  In the 

example at hand, holding B fixed at its true value of 100 resulted in accurate and reliable 

values for X0, D0, and Q with confidence limits consistent with a student’s t distribution. 

While it is not possible at this point to give guidelines as to when the confidence limits can 

be believed for an incomplete profile, perhaps the best course of action is to perform a large 

number of fits with incomplete profiles calculated using known values of the parameters (for 

example, but not necessarily, the values obtained from the fit) to which have been added 

random errors from a normal distribution with a standard deviation equal to the standard 

deviation returned by the original data. Inspection of the distribution of errors in the values of 

the parameters compared with a student’s t distribution should give some guidance on the 

degree to which the confidence limits for the parameters could be believed.  (See Section 

2.8.4, Tools > Statistics for guidance on how to do this.)   

If the divergence test for the incomplete asymptote parameter fails, i.e., if the confidence 

limit for A or B increases by a multiple of the confidence limit for a normal distribution from 

one iteration to the next, that asymptotic parameter is held fixed at its most recent stable 

value, which may be its initial estimate.  A sentence in the Analysis Notes similar to the 

following warns of the action taken: 

 

In addition, the value of Q may not be determinable because, as already mentioned, it 

depends on the difference in curvature between the approach to the two asymptotes.  If the 

iterative procedure continues to diverge, it may be necessary to hold Q fixed at 0 and a 

message similar to the following appears in the Analysis Notes:  

 

Note that while the confidence limits for D0 should have caused D0 to be held constant at its 

most recent stable value, setting the value of B removed the instability for D0 and the 

iterative procedure continued until it became necessary to hold Q fixed at 0.  Q will always 

be held fixed at 0 and another iteration attempted before setting the values of X0 or D0. 

3.1.2 Sharp Interface Regions 

When only one or no datum falls within the interface region, as in Figure 3-7 below, it is not 

possible to determine Q and D0 and/or X0 though limits may be placed on their values based 

on the standard deviation of the data. 

Procedure began to diverge on iteration 1.  Because B appears to be ill determined (confidence 
limits = ± 156.0), it has been held fixed at its most recent stable value.   

 

Procedure began to diverge on iteration 4.  Assume Xo, Do, and Q could not be determined 
simultaneously.  The confidence Limits for Do, 11.79077, were greater than Do (= 6.354834) on 
iteration 1    The iterative procedure was continued with Q fixed at 0.   The value of Q, 
determined from the data by varying only Q and holding the remaining parameters fixed at their 
current values, = 0.0142 ± 0.0247 
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Figure 3-7  Analysis of a profile with no data in the interface 

Defining A as the point just before the interval (because of its proximity to the asymptote A) 

and B as the point just after the interval, the value of X0 will lie somewhere between XA and 

XB.  Similarly, the upper limit for the value of D0 will be less than that which would cause 

YA to differ from its asymptote, A, by more than the confidence limit for the value of YA and 

YB from its asymptote, B, by more than the confidence limit for the value of YB.  Therefore, 

from Equation (4-6),  
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and where CL(YA) and CL(YB) are the confidence limits on the values of YA and YB. 

Generally, the confidence limits on both are the same and equal to the standard deviation 

multiplied by the cumulative factor for a normal distribution of unit variance, namely, 1.96 

for the 95% confidence limit.  This gives 

0
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The confidence limits CL(YA) and CL(YB) are calculated from the one tailed χ
2
 distribution 

for the stated confidence limit and the standard deviation of the fit.  This gives the maximum 

value for the standard deviation and from this, the one tailed probability that a measured 

point is not a random error for a normal distribution at the stated confidence limit, but in fact 

lies within the statistically significant interface region.  The upper limit for D0 from Equation 

(2-7) is referred to as the statistical upper limit of D0. 

A 

B 
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If any of the divergence tests for D0, X0, or Q fails, Q is first set equal to 0 and the iterative 

step is repeated without any changes in the remaining parameters. 

If any of the divergence tests for D0 fails (whether or not any of the divergence tests for X0 

fails), and Q is not being varied, the value of D0 is held fixed at its most recent stable value 

(which could be its initial value) unless it is less than half the statistical upper limit for D0 or 

greater than the statistical upper limit for D0 whereupon it is set equal to D0(upper limit)/2 or 

D0(upper limit) respectively.   The iterative step is repeated without adding the corrections to 

the remaining parameters from the iteration where the divergence was noted. 

If any of the divergence tests for X0 fails, the value of X0 is set equal to the average of the 

two values of X bordering the interface.  Generally this occurs only when no datum falls in 

the statistically significant interface region.  The corrections to the remaining parameters that 

were calculated in the iteration where the divergence was noted are ignored and the iterative 

procedure is then resumed. 

In effect this approach gives the values of X0 and D0 that one could have obtained by 

inspection with the exception of the factor 2ln((1-f)/f) appearing in Equation (2-7) and the 

averaging of the asymptotic limits. 

Reports on all of the above actions appear in the Analysis Notes following the iterative least 

squares fit along the lines of the following: 

 

In this case, several divergence tests failed and because the values of X0 and D0 could have 

been displaced far from their probable values, the iterative procedure was halted and begun 

again with the initial estimates of the parameters, holding Q fixed at 0.   Even so, holding Q 

fixed at 0 was not enough to force convergence and the standard deviation of D0 was still too 

large forcing D0 to be held at its most likely value with the message in the Analysis Notes: 

 

While this may give the impression that D0 can be determined, its value is strongly correlated 

with the value of X0 and hence the confidence limits are underestimated by an unknown 

amount. 

Four ensembles of 1000 data sets each were generated using a logistic function as the basis 

but with a very sharp interface equal to 1/8 the separation between adjacent data.  In each 

ensemble, the data were shifted relative to X0 so that one or no point fell in the interval. For 

the ensembles with one point in the interval, X0 was near one or the other asymptote or in the 

center.  For the ensemble with X0 equally spaced between XA and XB, those two points 

differed from their asymptotes by 3.4% of the separation between A and B.  With a true 

The standard deviation(s) for  Do increased by more than a factor of 1.96 on iteration number 2  
Consequently, Do was held fixed at 0.811, its value determined by varying Do alone at iteration 
2.The value of Do, determined from the data by varying only Do and holding the remaining 
parameters fixed at their final, converged values, = 0.700 ± 0.270 

The iterative procedure began to diverge on iteration  0. 
Assume Xo, Do, and Q could not be determined simultaneously.   
The confidence Limits for Do, 35.6, were greater than Do (=0.424) on iteration 0   
The change in Xo, 400.0, was greater than the interface halfwidth, 4.00, on iteration 0 
The iterative procedure was continued with Q fixed at 0.  
The value of Q, determined from the data by varying only Q and holding the remaining 
parameters fixed at their final, converged values = 0.007 ± 0.386 



 

3-13 

value of D0 = (XA-XB)/8 , and a standard deviation equal to 1% of the separation between A 

and B, only data falling more than 2.6% from either asymptote would be counted as falling in 

the interval.  Figure 3-8 below represents one of those data sets in which only one value of 

YA or YB is further from its nearest asymptote by more than 2.6% (Note: the errors added to 

the data represented by Figure 3-7 and Figure 3-8 were the same.) 

 

Figure 3-8  Analysis of a profile with 1 datum in the interface 

It should be noted that with no datum falling in the interface, the interface will be defined by 

the separation between the two embracing data above and below the apparent midpoint of the 

interface.  Therefore, D0 will typically have tighter limits placed on it (assuming X0 is 

determined by the least squares fit) if no point falls in the interval than when one point does 

even though the two data sets represent the same values of D0 and X0.  On the other hand, X0 

will be more difficult to evaluate for no point falling in the interval but will be well 

determined if one point falls in the interval.  In the analysis of the four ensembles of 1000 

data each, this was borne out. 

For an ensemble with no point in the interval (really two equally spaced points barely in the 

interval,) of which Figure 3-7 is one example, the analyses of 1000 synthetic data sets 

determined that 444 data sets had one datum in the interval and 154 sets had two.  Since the 

difference between the true values of Y and the corresponding asymptotes are 1.8% (for the 

parameter values used in this example) we would expect a certain number of the data sets to 

have values within the 2.2% boundary for being considered within the interval with 95% 

confidence.  In fact we would expect 33% of the data to have at least one point falling 

between A+0.018(B-A) and B-0.018(B-A) (for a standard deviation of unity) and we observe 

44%. We would only expect 11% of the data to have at least two points falling in the interval 

and we observe, for the sample studied, 15%.  The uncertainties returned by the analysis for 

X0 and D0 did not follow a student’s t distribution nor were they expected to since the values 
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for the interface parameters, X0, D0, and Q were underdetermined.  Nevertheless, the 

uncertainties proved to be conservative. 

Since the parameters D0 and X0 cannot be independently calculated from profiles with fewer 

than two data in the interface region, one may wonder why one would try to include their 

evaluation in this analysis.  The answer is to allow for a reasonable determination of D0 and 

X0 without knowing a priori that the data would present a sharp interface.  The idea is to 

allow the analysis to proceed without the need for operator intervention and to present values 

of X0 and D0 in a manner close to what one would use without the logistic model and to take 

advantage of the statistics from the remaining data to place limits on the determination of D0. 

In general, the number of data in the statistically significant interface region must be greater 

than the number of interface parameters, X0, D0, and Q, being varied.  See also Equation 

(4-30) and the discussion following Equation (4-30) on the idea of localized degrees of 

freedom. 

3.1.3 Highly Asymmetric Profiles:  Runaway Q 

Closely related to the problem of narrow interface regions with few data in the region is the 

situation where the magnitude of Q becomes quite large (whether positive or negative.)  D 

then varies from its minimum value of 0 to its maximum value of 2D0  over a narrower range 

of X than the interface itself.  The interface region is skewed heavily so that one edge of the 

region is almost coincident with X0.  When this happens, no data falls between its closest 

edge and X0 and the data on the opposite side of X0  depend solely upon D0.  Q then becomes 

poorly determined and can increase in magnitude dramatically from one iteration to the next 

until the least squares fit becomes completely unstable and, frequently, the program aborts. 

The program constantly monitors the value of |QD0| and when its value becomes 10 (the 

logistic range of D is 1/10 the range of the interface itself) and the correction to Q is greater 

than Q itself, the value of Q is frozen at its value from the previous iteration and the analysis 

continues.  This places a lower bound on the magnitude of Q.  The value of Q is immaterial 

at this point and its sign only is important.  Note also that at this point, the asymmetry η is 

approaching its limit of ± 1.  Because this allows, in effect, the remaining parameters to catch 

up to the value of Q, it is occasionally possible to achieve convergence by clicking 

Fit (Converge) a second time. 

3.1.4 Noisy Data 

We have already mentioned from time to time situations where the standard deviation of the 

data becomes an appreciable fraction of the spacing between the asymptotes.  As long as the 

data are normally distributed, this does not seem to present too much of a problem. However, 

as the standard deviation approaches 10% or higher of the separation between A and B, the 

initial estimates, which depend on individual data rather than the full range of data, can be 

sufficiently in error to lead to false minima.  As a warning, a message something like the 

following will appear: 
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It is sometimes noted that the minimum value for the standard deviation occurred on an 

iteration before the final one and a note to this effect is included.  This can most often occur 

when one of the parameters cannot be determined and is set to some otherwise determined 

value. 

If an analysis of noisy data begins with initial estimates sufficiently far from their proper 

values, the procedure may converge very slowly or even diverge.  If the procedure is not 

diverging but has not yet converged, repeated clicking of  Fit (Converge)  may eventually 

lead to convergence.  Alternatively, or for a procedure that has begun to diverge, it may be 

possible to obtain convergence by using the data selection box to identify the interface region 

and restart the analysis by clicking the  Initial Estimate  button which may give a better 

estimate of the starting values of the parameters. 

The limit on the value of the standard deviation relative to the separation between asymptotes 

to allow fitting the data depends on the number of data being analyzed.  For few data, the 

statistical advantage of the averaging inherent in the least squares fit is lost.  Data sets with 

larger numbers of data can support larger variations, the 1/√n advantage. 

3.1.5 Errors in the Independent Variable X 

Comment has been made earlier in this manual of the fact that the analysis being described 

and used in the program LFPF presumes all the statistical error is contained in the values of 

Y; that the X values are precisely and accurately known.  The statistical behavior described 

by the program assumes a normal distribution of errors in Y, and numerical experiments with 

synthetic data are in agreement with behavior expected for a normal distribution.  This is true 

even when the values of X are not evenly spaced but still accurately known. 

If the values of X themselves have errors, the analysis described herein and realized in the 

program LFPF will still ascribe all scatter to a normal distribution in Y.  Whereas errors in X 

in the asymptotic regions will not contribute significantly to the perceived errors in Y, they 

will in the interface region where small changes in X are accompanied by large changes in Y.  

In this case, the error distribution is not uniform but, in fact, is larger in the interface region.  

It may well be that this problem can be overcome with appropriate weighting of the data to 

reflect this, but in this version of the program, this has not been done.  If the errors in X are 

small compared to the errors in Y, they will not present much of a problem as has been seen 

to date in analyses of various series of synthetic data. 

In examining the residuals, the residuals in the interface region are expected to be slightly 

smaller than in the asymptotic region because more parameters are affected by their values.  

(See the discussion following Equation (4-30))  If the residuals in the interface appear larger 

as exaggerated in Figure 3-1, the effects of errors in the values of X can be easily deduced.  If 

not, it may still be possible to use the F test to compare the standard deviations of the 

statistical interface region (to which the interface parameters X0, D0, and Q are sensitive) 

with the standard deviations of each of the asymptotic regions. 

The ratio of the upper limit of the standard deviation from the chi squared distribution to the value 
of A-B, 19.2%, may make the determination of Xo, Do, and Q problematic and possibly result in 
false, local minima.. 
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Consider the separation of the data into three regions, the statistically significant interface 

and the pre- and post-interface regions.  The region prior to the statistically significant 

interface is dependent almost solely on the parameters A, A′, and A″.  Similarly, the region 

following the statistically significant interface is dependent almost solely on the parameters 

B, B′, and B″.  While the statistically significant interface depends on all the parameters, it is 

most sensitive to X0, D0, and Q.  Since the asymptotic regions are virtually model 

independent, the variance of those regions will not be sensitive to model errors whereas the 

statistically significant interface will be.  The variances of the three regions are calculated 

from: 
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nA, nI, and nB are the numbers of data in the pre-interface asymptotic region, the statistically 

significant interface region, and the post-interface asymptotic region respectively and pA, pI, 

and pB are the number of varied parameters on which each of the regions is dependent so that 

the three regions have, respectively, νA, νI, and νB degrees of freedom where νA = nA - pA, etc.  

Typically pA and pB will each be 1 and pI will be 2 or 3 depending on whether Q is varied.  If 

sI
2
/sA

2
 > F(νI,νA,α) or sI

2
/sB

2
 > F(νI,νB,α)  where α is the confidence level for the F 

distribution, we may have reason to suspect model errors and, particular for the case under 

discussion, errors in the values of X.  Similar to other situations already mentioned, the more 

data available for the three regions, the more likely the effect will be noticed. 

The values of X are tested and if they are not evenly spaced, a message to that effect appears 

in the analysis notes much like the following: 

 

In this case, the interface/post-interface F test failed indicating the possibility of a model 

error and more specifically, of possible errors in the X values. 

For many data sets encountered in practice where the number of data through an interface is 

on the order of 25 or less, it will be difficult to extract much from the data in way of 

determining the aptness of the logistic function model, but the analysis will still give 

systematic and reasonable measures of the width and asymmetry of the interface.

NOTE!!! The values of X are not uniformly spaced. 
  The average spacing is 3.971 with a standard deviation of 10.93% 
   If the values of X are not error free the parameter confidence limits may be underestimated. 
   F(interface/pre-interface) = 4.287 compared to F(0.95) = 6.041 
   F(interface/post-interface) = 7.928 compared to F(0.95) = 3.438. 
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4 Detailed discussion of the least squares fit of an 
extended logistic function to a measured profile 

The least squares fit of the measured values of Y to Equation (1-5) is a nonlinear one and is 

approximated by fitting the linear form, 
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i.e., as a Taylor series expansion of Y about the approximate values of |( ,{ })k

calcY X C  
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iC .  obsY are the measured values of Y being fit. 

The corrections to the parameters | 1k
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 are obtained from the linear least squares fit of 

Y - Y{C
|k
} and the corrected values of the parameters, | 1 | | 1k k k

i i iC C    , are used for the next 

iteration.  The procedure continues until convergence when the corrections to the parameters 

are insignificant compared to the uncertainties in the parameters returned by the least squares 

fit. 

A particularly convenient feature of the logistic function is that all of the derivatives of Y 

with respect to the parameters can be evaluated analytically from a set of current approximate 

values{ }iC .  In particular, 
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The remaining derivatives are more complicated and it helps to further define: 
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Of importance in the discussion that follows is the calculation of the fraction of completeness 

of the interface.  The fraction f of completeness at X = Xf  where Y = Yf  is given by: 

0
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( ( )) ( ( ))

f f

f f

Y A A X X
f

B B X X A A X X
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  (4-3) 
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which simplifies to 
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so that
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If the profile is symmetric, i.e., if Q=0, then 

0 0 1 0 0

1 1
ln lnf f

f f
X X D and X X D

f f


    
      

   
 (4-6) 

4.1 Initial Estimates of the Parameters 

The rapidity of convergence, if the iterative process does indeed converge, depends on the 

quality of the initial estimates of the parameters.  By inspection of the graph of the data, the 

user can define the interface region and the program can then draw straight lines through the 

data in each of the three regions.  The straight line through the data in the region identified as 

the interface is then interpreted as a tangent to the logistic function from which D0 can be 

determined from the slope and X0 can be determined as the value of X where the tangent is 

midway between the pre-interface and post-interface lines.  Q is initially assumed to be 0. 
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While this works very well for all kinds of data, well behaved or not, it is desirable to find 

algorithms that can yield initial estimates automatically without requiring the user to define 

the interface.  Several approaches have been evaluated and all work well for well structured 

data with small random errors.  A trial and error approach that appears to work well with 

incomplete profiles, high levels of random noise, and very sharp profiles with few if any data 

in the interface region is one of assigning values for the asymptotic parameters from the first 

and last data values (in the sense of increasing values of X), a width parameter D0 equal to 

the average separation between X values, evaluating the root mean square (rms) deviation for 

various values of X0, and selecting the value that gives the lowest rms deviation.  This is 

accomplished by dividing the data range into 10, testing the midpoint of each section, 

selecting the section containing the value of X0 with the lowest rms deviation, dividing that 

section into 10 sections and repeating the process and continuing until the separation between 

trial values of X0 is equal to 0.1% of the range of X values.  Following this, the starting 

estimate of D0 is obtained by first setting D0 equal to ¼ the range of X values, calculating the 

rms deviation, dividing the value of D0 by 2 and continuing until the minimum value of D0 is 

reached.  D0 is then determined by sampling the region around this minimum value of D0. 

Finally, D0 is further refined by fitting the linear form, Equation (4-1), varying only δD0 and 

the initial value of Q is estimated by fitting the linear form varying only δQ. 

This procedure for determining the initial estimates of the parameters must be modified if the 

data do not encompass the entire interface region as in Figure 4-1 below: 

 

Figure 4-1 Initial estimates from an incomplete interface 

A straight line is drawn connecting the first and last data values and the number of points 

falling above and below that line is calculated.  If the number is greater than 80% (or less 

than 20%) of the data, the interface is considered to be incomplete.  In this case the initial 

values of X0 and D0 are obtained by locating the point where the maximum slope is observed. 

If these methods fail to give reasonable initial estimates, then the user can identify the 

interface region graphically using a data selection box as mentioned above. 

4.2 Review of linear regression and confidence limits 

Linear regressions, i.e., linear least squares fits, are the subjects of numerous textbooks on 

statistics and the interpretation of the quality of the fit, i.e., the measure of the agreement 

between Yobs and Ycalc can be as complicated as desired.  Most of the conclusions that can be 

drawn from an analysis of residuals (Yobs-Ycalc) rely on the assumption that all the variability 

resides in the values of Yobs and arises from a normally distributed population of errors.  This 
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is seldom the case.  However, this is mostly of concern when attempting to determine a true 

value for some quantity derived from the data, a true value that can be compared with a 

fundamental calculation such as an average atomic separation in a crystal.  In the case of the 

measurement of interfaces, there is no such true value for the width, the center and the 

asymmetry.  The best that can be said about the estimates returned by the least squares 

analysis is that a repetition of the same measurements on the same material will return the 

same values within the stated uncertainties.  This will now be discussed in some detail.  In so 

doing, it will be necessary for establishing a frame of reference to review briefly the least 

squares fit calculation. 

For simplicity we rewrite (4-1) as 

|
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| 1

( ) ( ,{ }),

( ,{ })
,

m
k

i j ji i obs i calc i

j

k
kcalc i

ji j j

j
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
 (4-7) 

for the i = 1 to n (> m) measured values of Yi.  In a least squares fit, we are seeking those 

values of the parameters {cj} for which sum of the squares

2
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n m

i k ki

i k

y c x
 
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   is a minimum,  

that is, those values of {cj} which satisfy
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If we adopt a matrix notation, y = (y1 y2 … yn), c = (c1 c2 … cm), and 

11 12 1
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x  (4-9) 

then the least squares equations (4-8) become 

T T
yx cxx  (4-10) 

and solving for c, 

1( ) ( ) T T
c xx yx  (4-11) 

The matrix x is often referred to as the design matrix.  The quality of the fit is determined by 

the residual standard deviation of the fit, 
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, (4-12) 

where the second equality holds at convergence of the iterative, linear process.  The standard 

deviations of the values of the parameters are obtained through the usual propagation of 

errors formula: 
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k i

i i
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s c s

y

 
  
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  (4-13) 

where si is the standard deviation of the i
th

 measurement.  Note that this assumes that the 

individual measurement errors are uncorrelated.  If not, and if that correlation is known, then 

Eq. (4-13) can be suitably modified to carry along this correlation.  Generally the si are not 

known and si is set equal to the standard deviation of the fit, s, as determined by Eq. (4-12).  

Substituting Eq. (4-11) into Eq. (4-13) and performing some algebra, the standard deviation 

of the k
th

 parameter is easily seen to be 

( ) cv

k kks c  V   (4-14) 

where cv
V , known as the variance-covariance matrix, is given by 

1 2( )cv s T
V xx  (4-15) 

cv
V carries not only the errors in the determined parameters ck but also the correlation of 

errors among the parameters ck so that the variance of any function of the parameters, { }f C , 

can be obtained from 
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1 1
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m m
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i j i j

f f
s f C

C C 

 
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 
 V  (4-16) 

4.2.1 Confidence Limits 

4.2.1.1 Variance and the Chi-Square distribution. 

The confidence levels for reporting uncertainties are strictly valid only if the errors in Yi are 

normally distributed.  Even if this condition is not met, they can provide a guide for 

determining whether a second measurement of an interfacial profile is different from the first. 

The number of degrees of freedom in a least squares analysis, often designated as ν, is equal 

to the number of measurements included in the fit minus the number of parameters varied, 

ν=n-m.  For ν degrees of freedom, the standard deviation of a set of measurements, s, taken 

from a normal population having a standard deviation of σ will follow a chi square 

distribution: 

2 2
2, ,2 2 / 2 2 / 2 1 2

/ 20 0

1
( ) ( ) 1

2 ( / 2)
d e d

    
 


     



   
   (4-17) 

where 2 0   and α is the probability  
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  (4-18) 

That is, the variance of the population will have a probability α of falling between 
2

2

,1
2

s









 and 

2

2

,
2

s







. 

The values of χ
2
 can be found in tables or calculated using readily available algorithms.  In 

determining whether model errors may be dominating the least squares fit of the extended 

logistic function to a measured profile, Equation (4-18) can be quite helpful if we have some 

independent measure of the standard deviation of the measurement population. 

4.2.1.2 F test for the Comparison of Variances.  Third Differences and 

Other Comparisons 

One such measure we have found useful is that obtained from what we call “third 

differences” of the observed data.  Given a set of measurements Yi, the first differences are 

defined as  (1)

1 ,i i iY Y Y   second differences as (2) (1) (1)

1 1 22 ,i i i i i iY Y Y Y Y Y       and third 

differences as (3) (2) (2)

1 1 2 33 3 .i i i i i i iY Y Y Y Y Y Y          

If Y is a slowly varying function of X so that the change in Y between neighboring data is 

less than the variability in the point to point scatter of Y, the third differences, which magnify 

the point to point scatter but minimize the systematic variation in Y, can provide a model-

independent measure of the standard deviation of the measurements.  (Indeed, if Y were a 

linear or quadratic function of X and the values of X were evenly spaced, the contribution 

from the systematic variation in Y would vanish identically.)  If s
2
 is the variance of the 

values of Y attributable to measurement error, then  

2 2 2 2
(3) (3) (3) (3)

2 (3) 2 2 2 2 2

1 2 3

( ) 20 .i i i i
i

i i i i

Y Y Y Y
s Y s s s s s

Y Y Y Y  
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 (4-19) 

If the Y
(3)

 represent only pure scatter in the data, i.e., are of zero mean, then we define the 

data scatter, s3d, as: 

(3) 2

2 24
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20( 3)
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d

W Y

s s
n

 



 (4-20) 

This is not strictly true since the errors in the third differences are correlated with the errors 

in neighboring third differences and s
2
 calculated from Equation (4-20) will not necessarily 

be distributed as a χ
2
 distribution as in Equation(4-18).  Nevertheless, 2

3ds is a convenient 

measure of the random scatter in the data against which to compare s
2
.  If the value of s

2
 from 
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the least squares fit of the extended logistic function is significantly larger than 2

3ds for a 

particular class of data, then the extended logistic function may not be a good model of the 

measured data.  The usefulness of third differences for estimating the standard deviation of 

the measurement error will depend on the structure of the data.  If few data exist inside the 

region of the interface then the assumption that the systematic variation of the data is less 

than the point to point measurement error is not valid. Some improvement in the estimate of 

s
2
 by 2

3s  can be obtained by excluding from the sum in Equation (4-20) those terms arising 

from the two sequential data with the largest difference. 

In the presence of model errors, i.e., smoothly, slightly varying errors from point to point, we 

will expect 2s to be greater than 2

3ds .  At what value of 2 2

3/ ds s do we begin to suspect the 

presence of model errors? 

A common statistical test for comparing sample variances is derived from the ratio of the 

squares of two sample standard deviations.  If two independent samples of data have ν1 and 

ν2 degrees of freedom and standard deviations of s1 and s2, then the ratio of the squares of s1 

and s2 should follow the so-called F distribution: 

1 2, ,1 2
1

1

1 2
/ 2

2( 1)
1 12

1 2 2 2
0

2
1 1

2 2

F

F F dF

  
 

 

 

 


   

 
 
 

 
           
           
   






 (4-21) 

 

If the ratio, F, of the variances of two samples with degrees of freedom ν1 and ν2 has a value 

greater than
1 2, ,1F   , i.e., if 

1 2

2

1
, ,12

2

s
F F

s
     (4-22) 

then the probability that sample 1 arises from a population with a greater standard deviation 

than sample 2 will be 1-α..  If 1-α = 0.95, then we calculate 2 2

3/ ds s  and compare it to 

1 2, ,0.05F  and if it is greater there will be a greater than 95% probability that we have model 

errors.  The application of the F test here is not strictly appropriate since the test is based on 

the independence of the sample standard deviations 2s and 2

3ds .  However it can serve as a 

convenient suggestion of systematic, i.e., model errors 

Another comparison is the variance for different regions of the data sensitive to different 

parameters of the logistic function.  Consider the separation of the data into three regions, the 

statistically significant interface and the pre- and post-interface regions.  The region prior to 

the statistically significant interface is dependent almost solely on the parameters A, A′, and 

A″.  Similarly, the region following the statistically significant interface is dependent almost 

solely on the parameters B, B′, and B″.  While the statistically significant interface depends 

on all the parameters, it is most sensitive to X0, D0, and Q.  Since the asymptotic regions are 

virtually model independent, the variance of those regions will not be sensitive to model 
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errors whereas the statistically significant interface will be.  The variances of the three 

regions are calculated from: 

2 2 2
2 2 2

1 1 1

( ) ( ) ( )
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A I Bobs calc obs calc obs calcn n n
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  
    (4-23) 

nA, nI, and nB are the numbers of data in the pre-interface asymptotic region, the interface 

region, and the post-interface asymptotic region respectively and pA, pI, and pB are the 

number of varied parameters on which each of the regions is dependent so that three regions 

have νA, νI, and νB degrees of freedom where νA = nA - pA, etc.  Typically pA and pB will each 

be 1 and pI will be 2 or 3 depending on whether Q is varied.  If sI
2
/sA

2
 > F(νI,νA,α) or sI

2
/sB

2
 > 

F(νI,νB,α)  where α is the confidence level for the F distribution, we may have reason to 

suspect model errors. 

4.2.1.3 Parameter Confidence Limits 

The parameters obtained from the least squares fit, again assuming a normal distribution of 

measurement errors, will follow the so-called student’s t distribution. 
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  (4-24) 

so that the probability that the value of a parameter Ck determined from the least squares fit 

lies in the range 
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V V  (4-25) 

where the quantities ,t   are  the limits of the integral of the student’s t distribution that 

satisfy 
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 (4-26) 

for 0 < α < 0.5. (Note some references use single tailed integrals, i.e. from -∞ to tν,α/2 and 

from -tν,α/2 to ∞ so that α/2 values must be used for a probability of 1-α .)  The limits of 

Equation (4-25) are called the 100(1-α)% confidence limits.  

It also follows from Equation (4-25) that for any arbitrary function of the parameters, { }f C , 

, ,
2 2

{ } ( { }) { } { } ( { }) 1P f C t s f C f C f C t s f C 
 


    

          
    

 (4-27) 

where ( { })s f C is obtained from Equation (4-16). 
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One particular function { }f C is important and that is the calculated value of Y  itself, 

namely calc

iY , corresponding to the i
th

 observation, and the difference between the calculated 

and observed value of Y , namely, obs calc

i iY Y .  The variance of calc

iY  is given by 

Equation (4-16) as 

2

1 1

( )
calc calcm m

calc cvi i
i jk

j k j k

Y Y
s Y

C C 

 


 
 V   (4-28) 

where the derivatives,
calc

i

k

Y

C




 , are those listed collectively as Equations (4-2). The variance 

of  obs calc

i iY Y  is given by  

 2 2 2( ) ( )obs calc calc

i i is Y Y s s Y    (4-29) 

if obs

iY  was not included in the least squares fit and by  

 
2 2 2( ) ( )obs calc calc

i i is Y Y s s Y    (4-30) 

if obs

iY  was included in the fit.   

The minus sign in (4-30) arises because the variance of calc

iY  and the variance of obs

iY  are 

correlated since obs

iY was used, through the least squares fit, to calculate calc

iY .  This can be 

shown using the usual propagation of error formulas and a few pages of algebra. 

That this is significant can be seen from an analysis of 25 synthetic data with a standard 

deviation of unity, a value of |B-A| = 100 and a value of D0 such that on average between 2 

and 4 values fall in the statistically significant interface region (3 values in the 16% to 84% 

region.)  One hundred thousand data sets with different random errors drawn from a normal 

population with σ = 1 were analyzed and the root mean square values of (Yobs – Ycalc)
2
 were 

calculated for each value of X for all 100,000 data sets.  The results are summarized in Table 

4-1  below.  The values of the root mean squares of (Yobs – Ycalc)
2
  are also displayed in 

Figure 4-2 to the right of the table.  

From the definition of the standard deviation the sum of the squares, (Yobs – Ycalc)
2
 , is equal 

to (n-m)s
2
.  The large dip in the graph of the root mean square deviations represents the fewer 

effective degrees of freedom associated with the interface region where only the few data in 

the interface region are sensitive primarily to the 2 interface parameters (Q was held fixed at 

0) whereas each asymptotic region is sensitive to only one asymptotic parameter each.  The 

statistically significant interface region for this example included the 4 data from X=45 to 

X=57.  The sum (Yobs – Ycalc)
2
/s

2
 for the first 11 data comprising the pre-interface region is 

9.86, approximating 10 degrees of freedom for 11 data and one adjustable parameter. 

Similarly the sum (Yobs – Ycalc)
2
 /s

2
 for the last 10 data comprising the post-interface region is 

8.98, approximating 9 degrees of freedom for 10 data and one  adjustable pararameter.  The 

sum (Yobs – Ycalc)
2
/s

2
 for the 4 data in the interface region is 2.16, approximating 2 degrees of 

freedom for 4 data and 2 adjustable parameters.
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Table 4-1 Distribution of errors 

X rms(Yo-Yc) Adjusted TRUE 

1 0.949 1.000 1.001 

5 0.946 0.997 0.997 

9 0.948 0.999 0.999 

13 0.950 1.002 1.002 

17 0.949 1.001 1.000 

21 0.949 1.000 1.000 

25 0.951 1.002 1.002 

29 0.948 0.997 0.997 

33 0.953 1.000 0.999 

37 0.955 1.000 1.000 

41 0.920 1.003 1.002 

45 0.735 0.999 1.000 

49 0.686 0.996 0.996 

53 0.660 0.998 0.998 

57 0.844 0.998 0.997 

61 0.944 0.999 1.001 

65 0.957 1.004 1.005 

69 0.953 1.004 1.003 

73 0.948 1.001 1.000 

77 0.948 1.002 1.002 

81 0.946 1.000 0.999 

85 0.943 0.997 0.997 

89 0.947 1.001 1.001 

93 0.947 1.001 1.000 

97 0.945 0.999 0.999 

 

 

In the column labeled “Adjusted” in Table 4-1, the influence of the uncertainty in Ycalc has 

been taken into account and the column labeled “True” is the root mean square of the 

100,000 deviations added to each point. 

4.3 Algorithm for the Linear Least Squares Fit 

Various programs exist for conducting linear regressions and the one used here is a program 

called ORTHO, originally written in Algol by Walsh (P. J. Walsh, Commun. Assoc. Comput. 

Mach. 5, 511(1962)), which is based on a Gramm-Schmidt orthonormalization of the design 

matrix x , following which the solution of the least squares equations becomes trivially 

simple.  In this procedure, the inversion of the design matrix implicit in Equation (4-11) is 

avoided.  Using double precision arithmetic, and re-orthogonalization after normalization, the 

program has been found to be simple and robust.  

4.4 Poorly Structured Data 

Poorly structured data are those for which the least squares fit becomes unstable because 

some parameter or linear combination of parameters cannot be determined from the data.  

One such example has already been discussed in the section on initial estimates, namely 

where the interface is not complete.  In general, the interface should reach within 5% of 

completion at both ends of the interface to obtain reliable confidence limits for the values of 

Figure 4-2  Graphical Representation of the first 

two columns of Table 4-1 
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the width and asymmetry parameters D0 and Q.  For any value of X, the fractional 

completion of the transition (strictly speaking never exactly 0 nor 1) is calculated from 

Equation (4-3) or Equation (4-4). 

The extended logistic function is a continuous function all of whose derivatives exist which 

makes calculation easy within a Taylor’s Series linearization.  But it does have a singularity, 

namely where Do→0.  When this occurs, the number of measurements falling in the interface 

region approaches 0 and it is not possible to determine D0 though an upper limit may be 

placed on its value based on the standard deviation of the data as determined by the least 

squares fit and the separation between neighboring data. 

The idea has been presented earlier in this documentation of a statistically significant 

interface region where a measurement is considered to be in the interface region when it falls 

between the two asymptotes and it’s deviation from each of the asymptotes, A and B, is 

statistically significant.  If 2s  is the variance of the measured data, calculated from 
2

2

1

( )
,

obs calcn
i i

i

Y Y
s

n m





  and Y

obs
 - Y

calc
 follows a normal distribution so that 2s follows a 

2 distribution,  the probability that the true variance is less than 
2

2

2

,

( )

n m

n m s
s

 


 is α where 

0<α<1.  If we have a normal distribution of errors ( )x so that ( )N x


 


   then the 

probability that a single measurement iY , drawn from a population with a standard deviation 

of s will differ from its true value by more than Nαs will be 1- .  Therefore a measurement 

iY will be considered to be statistically different from A or B when  

| | , | |i i i iA Y N s B Y N s and A Y B or B Y A          (4-31) 

Before performing each iteration in the analysis, the number of data falling in the interface 

region with values of Y satisfying Equation (4-31)  is counted.  If one or none falls in the 

statistically significant interval and if the least squares fit appears to be diverging, then the 

value of Q is held fixed at 0, the upper limit of D0 is estimated from the separation between 

the points bordering the interval, and the value of X0 is the average of the two values of X 

bordering the interval.  Exactly which parameter is held fixed at what value depends on the 

manner in which the iterative process is diverging.  This was discussed earlier in the 

beginning of Section 3.1 Difficult Data and Analysis Instabilities.  By varying the value of 

the confidence limit α, the test for significance can be made more or less stringent. 

If one or no point falls in the interval and Xb,Yb is the measurement just before the interface 

region and Xa,Ya is the measurement just after the interface region, then the interface width 

Wts < Xa-Xb and, from Equation (4-5), 

0

1

2 1
ln

a bX X
D

f

f




 
 
 

 (4-32) 
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Where f = Nαs/|A-B|. In the course of the subsequent iterations, D0 is held at a value between 

one half of this upper limit and its upper limit.  If the last stable value of D0 is between these 

two limits, D0 will retain that value in subsequent iterations. 

As a check on the reasonableness of setting values of Q and D0, a least squares fit is 

performed varying only Q or D0, holding the remaining parameters fixed at their current 

values.  The thus determined values of Q and D0 should not change significantly from the 

values assigned to them in the full analysis.  That their values sometimes do not change at all 

is a result of the effect that the derivatives of Y with respect to Q or to D0 nearly vanish for 

all but one or two values, as can be seen by displaying their derivatives on a graph of the 

data. 

4.5 Calculation of the interface width and asymmetry 

The width, Wf, of an interface is taken to be the range in X in which Y varies from a fraction 

f of completion to a fraction (1-f) of completion, where completion is represented by the 

second asymptote, B.   Wf is calculated from Q and D0 using Equation(4-5).  If Q is non-zero, 

Wf  must be calculated  by successive approximations since Xf appears on both sides of 

Equation (4-5).  Using a Newton-Raphson approach and taking i

fX as the value of Xf 

following the i
th

 iteration,  

0 0

1

0

1
2ln ( )(1 )

1 ( )

i i

f f

i i

f f i i i

f f f

f
D X X e

f
X X

e Q X X e



 
   

  
  

 

where 0( )i
fQ X Xi

fe e


  (4-33) 

The initial value for 0i

f fX X  is given by 

0

0

0

0 1
ln

1
2ln

1

f f
QD

f

f
D

f
X X

e

 
  

 

 
 
  



 

Typically the procedure converges in less than five iterations.  However, this approach does 

not converge and even diverges if |QD0| >> 1.  The LFPF program therefore takes the safe 

and sure route of successive range bisecting to find the value of Xf .  For f < 0.5, Xf will lie 

below X0.  The midpoint between X0 and the lowest value of X, Xtest,  is tested.  If it yields a 

value of  f  less than target value, then the desired value of Xf  lies between Xtest and X0 and a 

new test point Xtest between the two is tested.  The region containing Xf  is again bisected and 

tested and the procedure continues until the desired precision is achieved.  Taking the data 

range times 10
-8

 gives more precision than necessary and takes 27 successive bisections.  The 

value of X1-f  is found in the same way. 

When Q=0, the calculation of the width reduces to Equation  (4-6).  By convention, the 

values selected for f and 1-f are 16% and 84%..  The reason for this choice is that the 16% 

and 84% completion points for an error function correspond to the x = -σ to x = +σ width of 

the normal distribution function, the integrand of the error function which was first used for 
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characterizing depth profiles.  The width at half height of the derivative dY/dX of a 

symmetric logistic function is ± 1.762D0 corresponding to the 15% and 85% completion 

points of the logistic function whereas the width at half height of the Normal Distribution 

function would be 1.1762σ corresponding to the 12% and 88% completion points of the error 

function.  The logistic function has slightly longer tails than the error function. 

While the parameter Q describes the asymmetry of the extended logistic function profile, the 

asymmetry η (as distinguished from the asymmetry parameter Q of the extended logistic 

function) of the interface is in practice described by the skewing of Xf and X1-f  about X0. 

1 0 0

1

( ) ( )
0 0.5

( )

f f

f f

X X X X
for f

X X
 



  
   


 (4-34) 

As defined, Q and η will have the same sign.  When both are negative the interface is sharper 

before the midpoint than after.  When both are positive, the interface is sharper after the 

midpoint than before.  The dimensionless quantity, QD0 is similar in magnitude to η but η has 

the advantage of being defined independently of the function being used to fit the data. 

The confidence limits of the width of the interface, Wf,1-f =X1-f –Xf  (f<0.5),  and the 

asymmetry parameter   are calculated from Equations (4-27), (4-16), (4-5), and (4-34).  In 

calculating the derivative of, for example, fX  with respect to D0 or Q, one must keep in 

mind the appearance of fX in the exponential in the denominator of equation (4-5) so that 
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where 
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Rearranging gives:
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 (4-35) 

Similarly, 
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 (4-36) 

which, on rearrangement, results in 
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  (4-37) 

Finally 
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 (4-38) 

Where 
0 ,D Q




represents either 

0D




or 

Q




, etc. 

This completes the description of how interface data can be analyzed by a linearized, least 

squares fit to an extended logistic function.  This approach is the basis for the computer 

program described in this manual. 
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