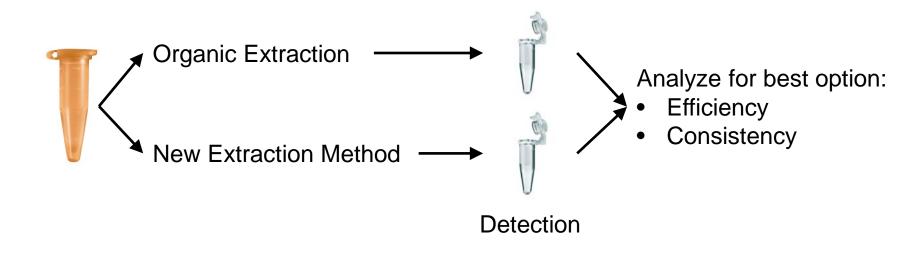
Issues Concerning Extraction Efficiency, Methods, and Direct dPCR

by Ross Haynes National Institute of Standards and Technology

April 10, 2013 Sample Prep & Target Enrichment Boston, MA

Disclaimer

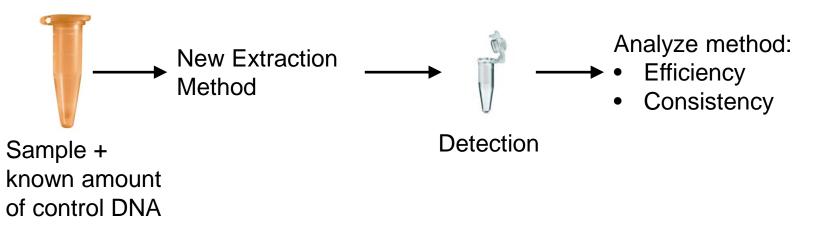

- Views expressed in this presentation are the author's opinion and do not represent the opinion of NIST or the Department of Commerce.
- Any mention of commercial products within this presentation is for information only; it does not imply recommendation or endorsement by NIST, nor does it imply that the products are the best available.

Agenda

- Extraction
 - Efficiency (relative vs. absolute)
 - Overview of traditional methods
- Alternates to traditional extractions
 - Liquid based
 - Direct PCR methods
- Direct digital PCR
 - NIST experiences
 - Considerations

Extraction Efficiency

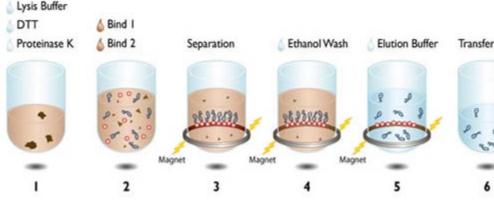
Relative: compared to another technique
New technique > Organic extraction



http://www.humpath.com/spip.php?article123

Extraction Efficiency

- Absolute: compared to amount of input material
- Mumy et al found ~ 15 % efficiency using 3 commercial kits (range 0 % to 45 %)


– Lambda DNA in plasmid

K.L. Mumy, R.H. Findlay / Journal of Microbiological Methods 57 (2004) 259–268

DNA Extractions

- Steps:
 - Lysis
 - Separation
 - Purification/wash
 - Recovery
- Benefits
 - Clean DNA
- Limitations
 - No method is 100 % efficient

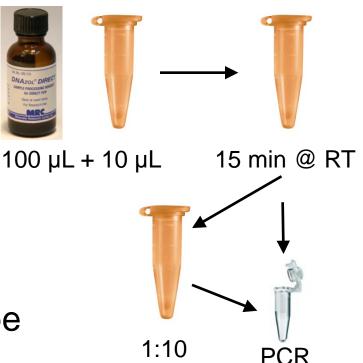
https://www.beckmancoulter.com/

DNA Extractions

- Steps:
 - Lysis
 - Separation
 - Purification/wash
 - Recovery
- Benefits
 - Clean DNA
- Limitations
 - No method is 100 % efficient

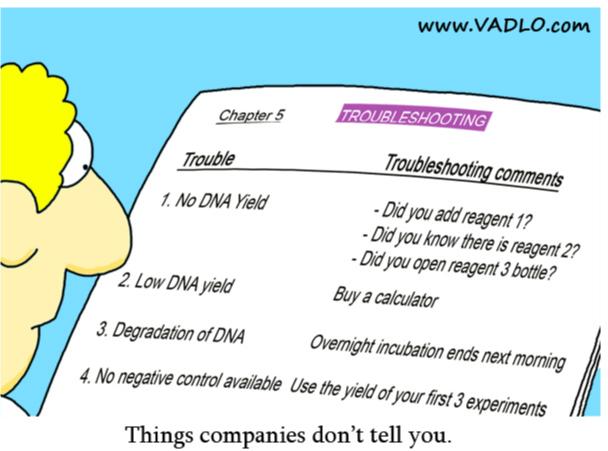
90 % efficient -90 % efficient -

- 90 % efficient
- 90 % efficient


Overall 66 % efficient

Efficiency probably not uniform But we have to consider that lysis may not be 100 % efficient.

Alternate Methods


- Liquid based methods
 - E.g. DNAzol Direct
 - Add reagent to sample
 - Incubate
 - Add directly to PCR
- Benefits
 - All DNA contained in one tube
- Limitations
 - Reagents may not lyse all cell or virus particles
 - Regents may contain PCR inhibitors
 - 1/10 dilution required

http://www.mrcgene.com/dnazoldirect.htm

Extraction Efficiency

- People
 - Training
 - Education
 - Motivation
 - Sleep
- Robots
 - Set-upMaintenance

http://vadlo.com/cartoons.php?id=108

Direct PCR

- Sample added directly to PCR mix
- Hot start used as lysis method
- Polymerases resistant to inhibition
- Thermo Scientific Phusion polymerase
 - "Tolerant of many PCR inhibitors"
 - End point PCR protocols
 - Research Use Only
 - No 5' to 3' nuclease activity (not suitable for TaqMan probes)

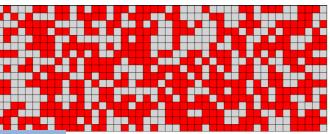
1) Create a PCR mastermix as if for qPCR

2) Aliquot across 100s or 1000s of wells

3) Thermal cycle as if for qPCR & count wells with detectible amplification at any cycle

4) Use Poisson statistics to determine concentration of starting material

dPCR pg/uL


Direct dPCR

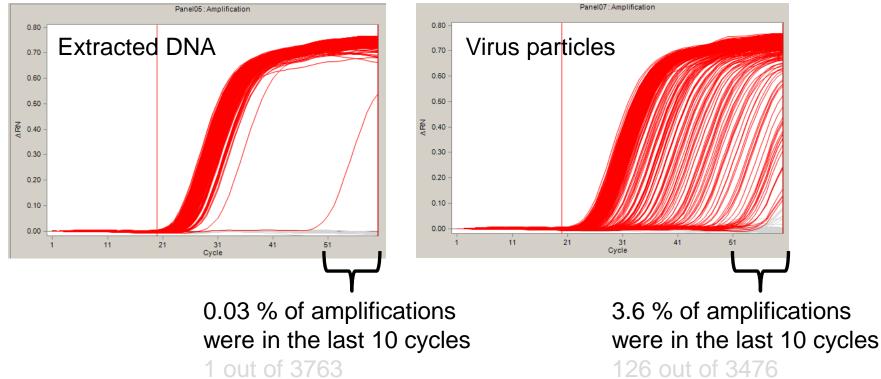
1) Create a PCR mastermix as if for qPCR

Virus particles instead of template DNA

2) Aliquot across 100s or 1000s of wells

3) Thermal cycle as if for qPCR & count wells with detectible amplification at Hot start to lyse virus particles

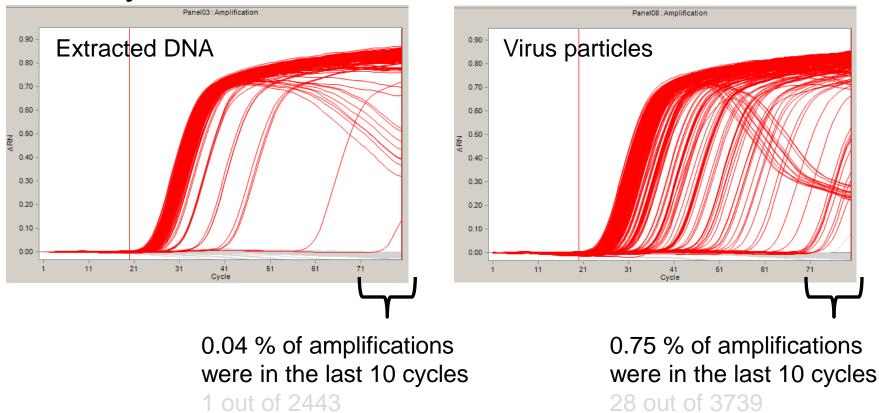
pg/uL


any cycle Exhaustive cycling to ensure lysis & amplification of all target molecules

4) Use Poisson statistics to determine concentration of starting material

1st experiment direct dPCR

- NIST standard protocol Fluidigm 12.765
 10 minute hot start and 60 cycles
- Many late amplifications inefficient lysis



1st experiment direct dPCR

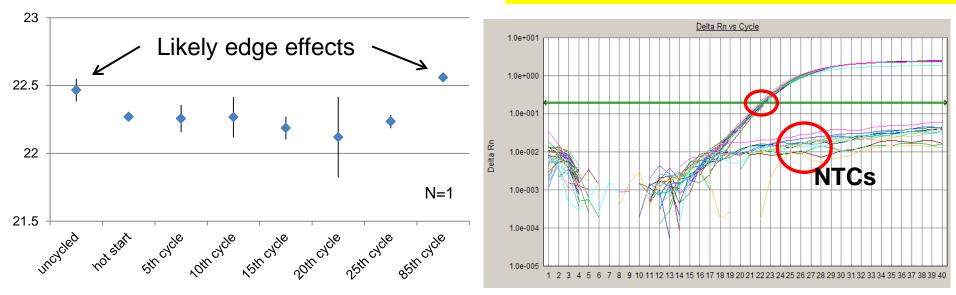
- Are we detecting all virus particles?
 - No, late amplifications indicate the hot start is inefficient at lysing viruses
- Solution add more cycles & lysing steps
 - 10 min hot start
 - Every 5 cycles 2 min at 95 °C (first 25 cycles)
 - 85 cycles total

2nd series direct dPCR

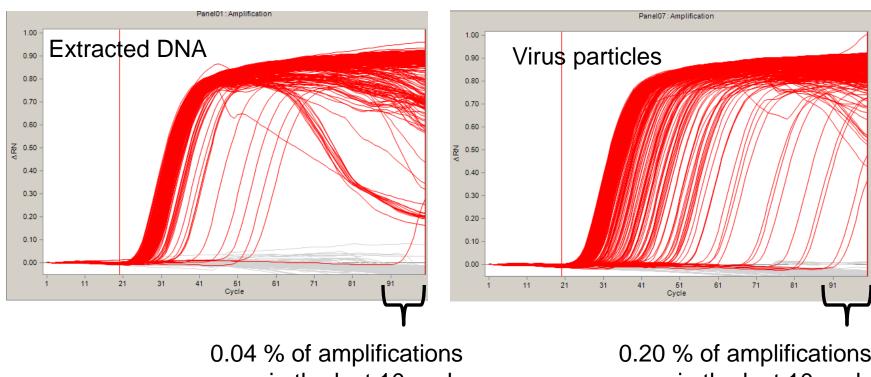
- Extra incubations at 95 °C
- 85 cycles total

2nd series direct dPCR

• Still some evidence that all virus particles have not been lysed


- Additional cycles may not be enough

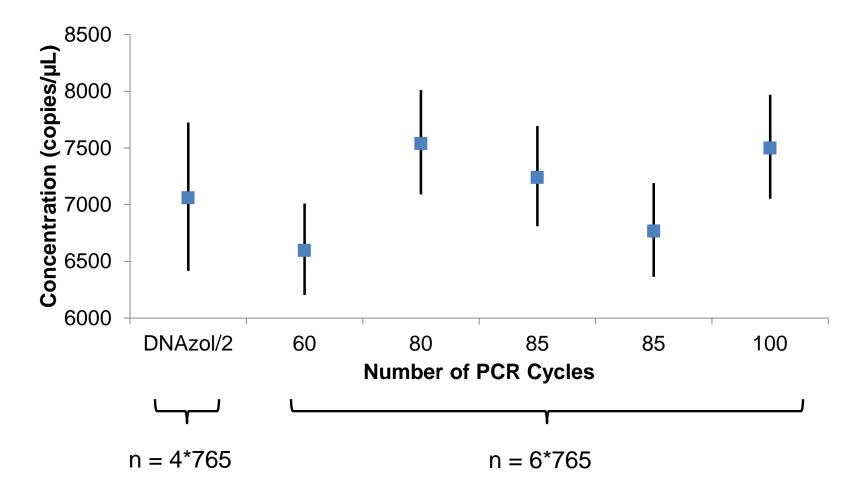
- Solution: run excessive number of cycles – 100 cycles with extra "hot starts"
- Question: will enzyme (Taq Gold ABI Gene Expression MM) be active at 100 cycles?


Stress Test Polymerase

- Master mix (sans DNA) cycled on standard thermal cycler
- Template DNA added
- Run qPCR on 7500

Conclusion: cycling has little to no effect on polymerase activity Plateau likely due to consuming dNTPs

100 cycle direct dPCR



were in the last 10 cycles 1 out of 2446

0.20 % of amplifications were in the last 10 cycles 7 out of 3501

Concentration

• Do additional cycles change result?

Considerations

- Adding cycles adds time & reduces throughput
- Exhaustive cycles gives confidence that all DNA molecules present were amplified
- Principle of diminishing returns
 - Rare very late amplifications may not be significant
- End point systems: Are additional cycles significantly changing the measured concentration?

Considerations (cont.)

- What are you trying to do?
 - Quantifying standard correct answer
 - Patient sample would change/variation affect medical decisions?
 - Is ±0.5 log close enough? ±5%? ±1%?
- Dead volume portion of the sample is not analyzed

	Fluidigm		Life Technologies
	12.765	QX100	Quant Studio 3D
Input volume	8 µL	20 µL	variable
Volume analyzed	4.59 µL	10 to 18 µL	up to 20 µL
% Analyzed	57%	50 to 90 %	up to 100 %

Future Directions

- Correlate particle (or cell) count with direct dPCR measurement
- Estimate of absolute extraction efficiency comparing direct dPCR with extraction followed by dPCR.

Conclusions

- Direct dPCR may be acceptable with heat lysis
- Modifications may be necessary
 - Additional cycles
 - Additional heating (lysing) steps
 - Polymerases resistant to inhibition with 5' to 3' nuclease activity
- Purpose and required accuracy may affect optimization scheme

Questions

Ross Haynes <u>Ross.Haynes@nist.gov</u>

This presentation will be available online at http://www.nist.gov/mml/bmd/genetics/clinical_dna.cfm Or Google "CDIR NIST"