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A B S T R A C T

Mitochondrial DNA (mtDNA) testing in the forensic context requires appropriate, high quality

population databases for estimating the rarity of questioned haplotypes. Currently, however, available

forensic mtDNA reference databases only include information from the mtDNA control region. While

this information is obviously strengthening the foundation upon which current mtDNA identification

efforts are based, these data do not adequately prepare the field for recent and rapid advancements in

mtDNA typing technologies. Novel tools that quickly and easily permit access to mtDNA coding region

data for increased discrimination are now available in the form of single nucleotide polymorphism

assays, sequence specific oligonucleotide probes, mass spectrometry instrumentation and next

generation sequencing technologies. However, the randomly sampled entire mtGenome reference

population data required for statistical interpretation of coding region data are lacking. As a result, in the

near future, it seems that routine use of mtDNA coding region data in forensic case work will depend

more upon the availability of high-quality entire mtGenome population reference data than the ease

with which coding region data can be generated from evidence specimens. Until mtGenome reference

databases are available, the utility of novel mtDNA typing technologies and the benefits of recovering

mtDNA coding region information from forensic specimens will be limited. Thus, future mtDNA

databasing efforts are needed for the development of entire mtDNA genome reference population data

suitable for forensic comparisons.
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Mitochondrial DNA (mtDNA) typing in forensic case work has
historically focused on the two hypervariable segments (HVS) of
the non-coding control region (CR) [1–5]. These approximately 600
bases have the highest average substitution rate in the mitochon-
drial genome (mtGenome), and thus present the greatest
opportunity for inter-individual differentiation while minimizing
data generation effort. It is the case, however, that examination of
these 600 bases alone limits the power of forensic mtDNA testing
in general, leading to situations in which HVS-I and HVS-II data do
not provide sufficient discriminatory information to resolve
distinct maternal lineages. Further resolution is often obtained
by increasing the range of data analyzed to additional portions of
the CR (e.g. with a sample of Austrians, analysis of the entire
control region reduces the random match probability from 0.011 to
0.008) [6–8]. Yet, many individuals will remain indistinguishable
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despite complete CR data. In those cases, variation in the mtDNA
coding region is often targeted [9–13].

It has been shown that mtDNA coding region data can be useful
in a number of situations. For instance, it has been valuable in:
resolving multiple casualty cases where more than one reference
family shared the same mtDNA CR haplotype [14,15]; sorting and
re-association of commingled remains [15]; increasing statistical
support when exclusionary references are unavailable [16];
mtDNA haplogroup typing for rapid screening of casework
specimens [17–19]; and assessing maternal bio-geographic
ancestry as an investigative tool [20,21]. Additionally, coding
region information has been strategically targeted in cases for
which extremely limited evidentiary material is available follow-
ing standard and, in these situations, non-distinguishing CR
testing. In order to preserve the little remaining evidence for
analyses likely to provide resolution, coding regions from the
relevant reference samples were first investigated to identify sites
that distinguished the reference lineages. These case-specific

discriminatory sites were then directly typed on the remaining
evidence material to ultimately establish identity [22].

Still, even in these very specific forensic scenarios, it is generally
impractical to sequence large portions of the mtGenome. The cost
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and effort required to obtain even partial CR profiles from case
specimens is substantial (especially in comparison to standard
short tandem repeat (STR) typing), in part because mtDNA
sequence data is usually sought when the genetic material is
severely limited and/or compromised. Numerous short amplicons
with adequate overlap among them, significant sequence coverage
over each amplicon to ensure sufficient data quality, and highly
redundant data analysis and review are required to produce CR
haplotypes. Generation of coding region data for resolution of
specific cases has therefore been not only prohibitively laborious
for most practicing forensic laboratories, but also limited by the
availability of sufficient evidentiary material. As a result, the
forensic methods to access coding region data have typically
involved either the optimization of a published assay or in-house
development of sequencing or single nucleotide polymorphism
(SNP) typing protocols that minimize effort and sample consump-
tion ([23–25], for example).

Until recently there have been few commercial off-the-shelf
products available for the generation of coding region data. Those
that have been evaluated for forensic use have limited utility due to
sample quantity requirements and other issues related to data
quality standards required for forensic application [26,27]. However,
a batch of new (or newly commercialized) technologies are emerging
that will facilitate access to entire mtDNA genome data with relative
ease and will likely make their way into forensic practice within the
next few years. These include a coding region version of sequence-
specific oligonucleotide arrays [28], coding region multiplexes for
mass spectrometry [29–32] and so-called Next Generation Sequen-
cing (NGS) technologies. The massively parallel sequencing enabled
by NGS is revolutionizing genetic data generation and, in the not-too-
distant future, is likely to make the development of entire mtDNA
genome profiles from even highly degraded specimens relatively
straight-forward and cost-effective [33–35]. Looking ahead then, it
seems that the application of mtDNA coding region data in routine
forensic casework will be dictated less by the quantity of specimen
and/or effort required to produce the data than by the availability of
large high-quality entire mtGenome population databases that can
be used to determine the rarity of mtGenome haplotypes.

The lack of high-quality population databases covering the
entire mtDNA coding region precludes a complete, empirically-
based understanding of the additional discriminatory value that
mtDNA coding region data may provide from randomly sampled
individuals. Currently, GenBank is the only repository of complete
mtGenomes that is regularly updated with new information.
Although it contains a growing number of complete sequences, the
available data are an imperfect substitute for a forensic reference
database. Most of the sequences available in GenBank have not
been produced as randomly sampled, unrelated individuals that
are representative of particular population groups. For those
populations that are represented, the datasets tend to be
inconsistent in terms of the associated metadata required for
their use in the forensic context. Further, because GenBank data are
neither curated nor quality control checked, many sequences
contain errors that may not only obscure precise estimates of
mtDNA substitution rates (as required for likelihood calculations;
[36]), but, more importantly, may also confound estimates of
mtDNA haplotype frequencies. Finally, the tools available for
GenBank searches are not the most useful for practical case work
application. Search parameters that are specific to forensic mtDNA
queries, including specific reference populations, inclusion/exclu-
sion of polycytosine indels, and pre-defined sequence ranges, are
unavailable and difficult to accommodate in the BLAST interface.
Even novel tools that support the access and handling of GenBank
mtDNA sequence data (e.g. MitoVariome [37]) fail to address
specific alignment issues in length variant regions that are relevant
to sequence comparisons in forensic casework [38].
Efforts are underway to improve and expand publicly available
forensic mtDNA CR data sets: more than 5000 new sequences
representing more than 30 populations will soon be available
in the newest update of the EMPOP database (http://www.empop.
org; [39]). While these data are substantially strengthening the
foundation upon which current mtDNA identification efforts are
based, they do not adequately prepare us for the recent and rapid
advancements in mtDNA typing technologies that will soon
facilitate access to coding region information in the most difficult
forensic specimens.

Thus, future mtDNA databasing efforts are needed for the
development of entire mtDNA genome reference population data
suitable for forensic comparisons and which adhere to the same
data quality standards already established for forensic control
region reference population databases [40–42].

We should emphasize at this point that it is not our intention to
advise on the precise coding region data to be utilized for forensic
purposes, where the principal concern is detection of primary
pathogenic mtDNA mutations. Although these variants, by their
very nature, do not persist in the matriline, they arise sponta-
neously from time to time (and are therefore nearly always found
in a heteroplasmic state), and are directly causal to disease
phenotype when present in high enough proportion. In an effort to
avoid this information, Coble et al. advocated a conservative
strategy that targets information at synonymous sites only,
suggesting that ‘‘This [targeting of synonymous variation] retains
essentially an equal footing with accessing variation in the D-loop,
which has yet not presented any problems’’ [43]. Although this
statement is still valid, Mitomap [44] now lists 405 non-
synonymous and structural RNA mutations; six synonymous
and eight control region mutations with possible disease associa-
tion. Although skepticism surrounds many of these reported
associations [45–47], it is likely that our increasing understanding
of mtDNA genomics, mitochondrial function and epigenetics may
lead to the identification of additional pathogenic mutations.
Mutations currently believed to be of no pathological significance
(even those in non-coding regions) may be shown to be disease-
associated in the future. But this is true for any genetic marker,
including those routinely used in forensic testing (e.g. STRs). These
and other pertinent medico-legal-ethics issues deserve further in-
depth discussion as already begun in Coble et al. [12], Budowle
et al. [48], and Coble et al. [43].

As a first step to employing coding region information in the
forensic context, and in full accordance with appropriate Institu-
tional Review Board (IRB) guidelines, the strategies of Brandstätter
et al. [17], Lutz-Bonengel et al. [11], and Coble et al. [12], which
target either silent mutations or sites with no presently known
medically relevant mutations, are currently being employed in the
authors’ respective laboratories. In nearly every case encountered
to date, the acquired coding region data have adequately resolved
the question at hand. Instead, the primary limitation has been the
lack of suitable population databases to assess the strength of the
coding region evidence [22]. Appropriate mtGenome reference
data are needed, so that they are readily available when specific
laboratory, scientific working group or legislative guidelines are
established for the use of coding region data.

The generation of high-quality entire mtGenome population
reference datasets is clearly no small undertaking, particularly
when considering that Sanger sequencing is the method currently
used in most laboratories. New higher throughput technologies,
such as mass spectrometry, may be preferred for their lower cost
and higher capacity. However, this platform would produce
population data specific to mass spectrometry applications. As a
result, and until next generation sequencing methods are
optimized and employed by more laboratories, the near-term
effort will have to rely on technologies and protocols already used
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to generate high-quality mtGenome data [12,49]. Such an under-
taking will clearly require significant time, effort, funding and
resources before even a few datasets of comparable size and
quality to current control region databases are available. Yet, the
long-term return on this investment will be novel high-quality
entire mtGenome data that both positions the forensic community
for the future of mtDNA testing and serves as a valuable resource
for further characterization of mtDNA population genetics and
molecular evolution as they relate to DNA evidence interpretation
(e.g. mtDNA haplotype distributions, mtDNA substitution rates).
With the large-scale availability of high-quality entire mtGenome
data, forensic mtDNA interpretation guidelines can be greatly
improved and the full potential of mtDNA testing can ultimately be
realized.
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