Abstract

The National Institute of Standards and Technology (NIST) produced SRM 2366 Cytomegalovirus for DNA Measurements in 2011. SRM 2366 is composed of three concentrations of one bacterial artificial chromosome containing the entire Towne strain. Digital PCR was used to certify the DNA in buffer for concentration. About 17,000 bases of sequence were given as information value in the certificate so users could check for mutations under primer binding sites.

Currently NIST is working on a Standard Reference Material (SRM) for BK virus. This new SRM is currently slated to consist of three plasmids in buffer; two clinical strains cloned into plasmids and the Dunlop strain in pBKV(34-2) from American Type Culture Collection. BK virus DNA from genotypes 1a, 1c, 3, 4, 5, and 6 were obtained from University of Washington. Only genotypes 1a and 5 were successfully cloned into plasmids in E. coli. Cloning was only successful after omitting the non-coding regulatory region. There was an apparent E. coli toxicity preventing the entire BK virus genome to be cloned and which prevented four other subtypes to be successfully cloned.

Each plasmid in the SRM will be certified for concentration using two digital PCR systems using multiple qPCR assays spread across the genome. This will give greater confidence for results. Sequence information will be given for the entire BK virus genome in each plasmid. Whereas the CMV SRM was packaged in PFA (generic Teflon), to avoid a significant amount of DNA from binding to the tube walls, BK virus is known to have high virus concentrations; therefore, typical 0.5 mL tubes can be used without significant binding of DNA to tube walls.

Certification of Future BK Virus SRM

- *Materials*: BK virus DNA was acquired from University of Washington and cloned at NIST into plasmid pACYC177
- •Two clinical strains (1a and 5) were cloned and a plasmid containing the Dunlop strain was acquired from ATCC
- Viral DNA to be provided in a buffer at one high concentration

Certification:

- Concentration determined via digital PCR using two systems
- Information Values:
- •DNA sequence of BK virus portion of the plasmids

BK Virus

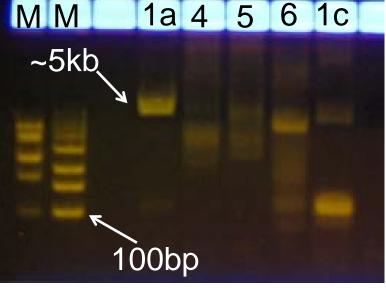
- Polyomavirus closely related to JC virus and simian-virus-40
- Genome is circular dsDNA approximately 5 kb

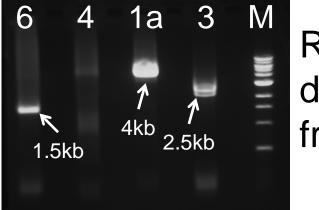
• Six common subtypes 1a, 1c, 3, 4, 5, & 6

•The Plan:

- 1. Ideally the SRM would contain a panel of virus subtypes
- 2.Sequence of all components would be given
- 3.One concentration per subtype
- 4.Concentrations would aim high so dilutions can be made to calibrate everyday use quantitative standard (see "How to Use SRM 2366 to calibrate everydayuse-quant-standard").

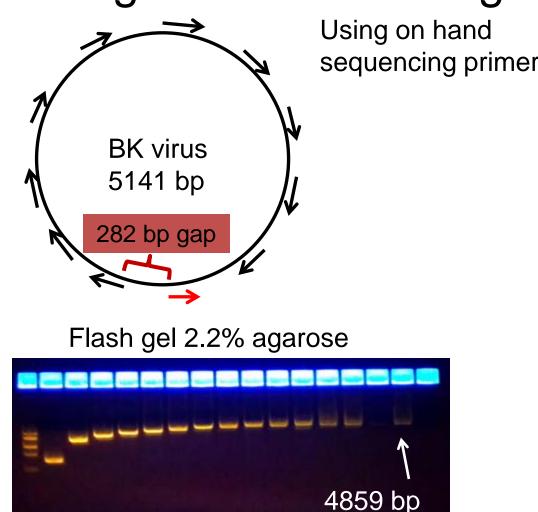
5.Concentrations would be certified by dPCR

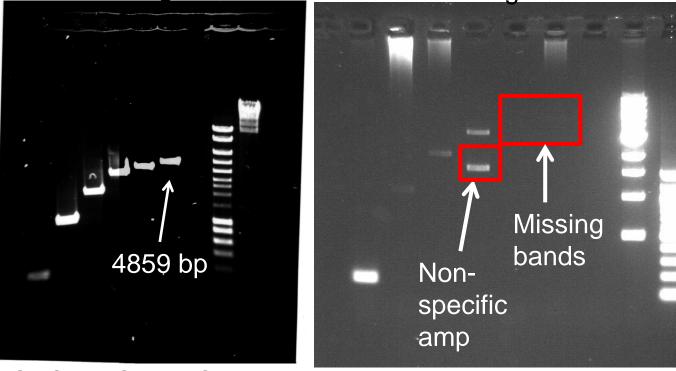

Packaging

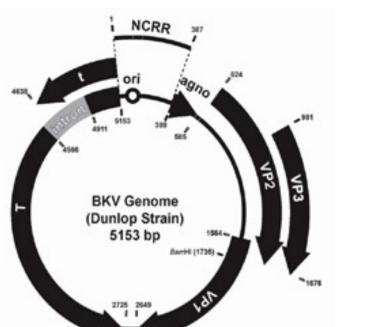

- Two tube types were tested to determine if binding of DNA to the walls was a significant problem
- Sarstedt
- Perfluoroalkoxy fluoropolymer (PFA) (e.g. Teflon)
- Binding of DNA was not significant given the
- concentration used and Sarstedt tubes are being used SRM 2366 (CMV) was much less concentrated and
- PFA tubes were used

FUTURE STANDARD REFERENCE MATERIAL FOR BK VIRUS: **ISSUES AND UPDATE**

Ross J. Haynes, Prasad Reddy, Marcia J. Holden, Margaret C. Kline, and Peter M. Vallone


PosterS69 at 29th Clinical Virology Symposium





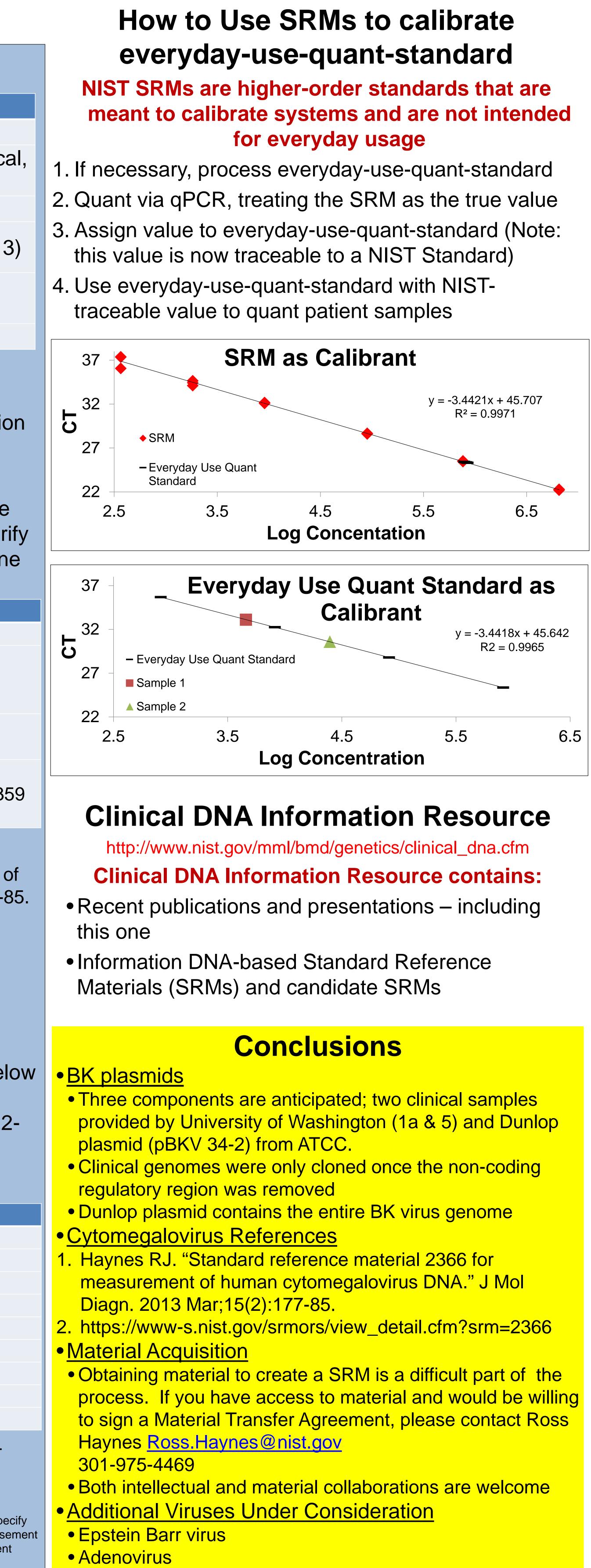
			Α	pril 28 to	May 1,	2013 Da	ytona Beach, FL	-			
BK Cloning Challenges						Current Cytomegalovirus SRM 2366					
							SRM 2366		Eut	ure BK SRM	
1.Original plan was to design primers around the BamHI site and clone the entire BK genome – just as the Dunlop strain was cloned							# components Component makeup	3 dilutions genot	of one		3 otypes (2 clinica Dunlop)
 Non-specific amplification 							Genome size	240	kb		5 kb
 Clones only contained small insert Purification and restriction digestion of PCR products 							Sequenced	•	ns of Interest (17 kb) BK portions (5 kb x		ortions (5 kb x 3)
MM 1a 4 5 6 1c ~5kb ~5kb Amplification on clinical BK genomes Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification 1.5kb Amplification Amplif							Concentration range	19,000 to 4	400 c/µL	~1,	000,000 c/µL
							Tube types	PFA		Sarstedt	
100bp 2.Rolling Circle Amplification, followed by restriction digestion							Concentration of SRM 2366 Components • Three components (A, B, & C) were certified for concentration using digital PCR.				
 Restriction digestion failed to give a discrete band 											
 Restriction enzymes 							 One TaqMan assay was used for the certification 				
 3.Designed primers around XhoI cut site Nonspecific amplification 4.Sequenced clinical strains from U. of Washington to look for answers to our problems 							 Six targets spread across the genome – three of which were overlapping varying by size of amplicon – were tested to verif concentration determination would not be skewed by any one target location or size of amplicon 				
	•		2	A	5	C	Component		B		С
Subtype Ref GenBank #	1a V01108.1 AE	1c 3211372.1 AE	3 8211386.1 AB	4 3211387.1 AE	Э 3211370.1 А	• B211369.1	Value copies/µL	420	1,70	2	19,641
# of Diff.	103	5	68	48	55	13	Standard	120	1,10		10,011
SNPs Insertions	75 8	5 0	53 6	36 12	16 39	13 0	uncertainty copies/µL	56	130)	365
Deletions Largest In/Del	20 5	0 0	9 9	09	0 39	00	Relative uncertainty	13.30%	7.609	%	1.80%
Bases in ref Bases seq. Gaps	5153 5161 0	5142 4238 904	5132 4750 382	5142 5115 27	5209 5110 99	5141 5008 133	95 % confidence interval copies/µL	301 to 523	1,446 to	1,959	18,924 to 20,35
% Difference *Ref genomes from	2.0%	0.1%	1.4%	0.9%	1.1%	0.3%					
 Each genotype used a different reference Nonspecific primer binding sites were identified to explain some of the amplification issues 							 Haynes RJ. "Standard reference material 2366 for measurement of human cytomegalovirus DNA." J Mol Diagn. 2013 Mar;15(2):177-8 https://www-s.nist.gov/srmors/view_detail.cfm?srm=2366 				
5.Fragmentation testing Using on hand sequencing primers Also found master mix bias 0.8 % agarose							• Nucleotide numbering is based on the Towne sequence Genbank AY315197.2				
BK virus 5141 bp 282 bp gap Flash gel 2.2% agarose 4859 bp Non-specific amp							 There is complete agreement between the NIST sequence and the Genbank AY315197.2 with one exception noted belo Targets for commercial reagents: UL34, UL80, UL132 Targets for published assays: UL54, UL55-56, UL83, UL122- 126, US17 Mutations in UL97 confer resistance to ganciclovir 				
							UL34		202 to 4497		1770
6.Cloned individual genes – without problem							UL54 (except at 78651)* 77695 to 79992		92	2298	
7.Removed Non-Coding Regulatory Region							UL55 to 56		348 to 8273		1884
 Successfully cloned 1a and 5 							UL80		401 to 116		2393
8.Acquired Dunlop plasmid (pBKV 34-2) from ATCC							UL83		3890 to 119		1048
NCRR MT							UL97)784 to 142		1307 2658
4538, ori (agp. , 524		3 genot	vpes for	future B	K virus	SRM	UL122 to 126 UL132		0525 to 173 6380 to 177		2658 813
1 5153 300 T				oc(10.85)					2000 to 177		2010

US17

- **3 genotypes for future BK virus SRM**
- Two clinical genotypes (1a &5) from U. of Washington cloned into plasmids (sans NCRR) Dulop plasmid (pBKV 34-2) from ATCC

NCRR tends to mutate depending on the organ infected Most quantitative PCR assays avoided the NCRR for that reason

* The sequence at position 78651 is described as a Y (C/T) at NIST and a C in Genbank


Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorseme by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

198929 to 199312

384

Ross.Haynes@nist.gov 301-975-4469

