Cytomegalovirus Reference Material

•Disease: Cytomegalovirus (CMV) causes life-threatening infections in immunocompromised patients and in congenital transmission to infants, though commonly found and usually latent in the general population

•Standard needs: Calibration and quality control of quantitative real-time PCR assays of blood and other body fluids •Customers: Producers of secondary standards or clinical

laboratory using their own calibrant

•Materials: Pure DNA from Towne strain in a bacterial artificial chromosome containing all of the viral genome except for regions IRS1, US1-15, and UL147; viral DNA to be provided in a buffer for dilution into a user's matrix of choice

Certification:

1.DNA sequence of genes that are targets for qPCR 2.Copy number via digital PCR measurements of multiple CMV specific aPCR targets

Additional Information:

- •Restriction digest and microarray validation of BAC Testing of various published PCR assays
- ·Homogeneity and stability

Sequencing

•Sequence via Big Dye Terminator v3.1 (Applied Biosystems) Analyze by capillary electrophoresis using Applied Biosystems 3130xl with POP7 and an 80cm capillary

•Sequence checked against the Towne strain GenBank accession AY315197

•BAC has the same sequence as Towne strain (AY315197) in regions already sequenced - except for one ambiguous base. •Regions sequenced: most or all of UL54 (polymerase), UL55-56 (glycoprotein B), UL83 (phosphoprotein 65), UL122-126 (major immediate early area and nearby sequence), and US17 Regions to be sequenced: UL34 and UL80

Copy Number Determination

•Digital PCR requires multiple replicates at a concentration so that some, but not all, wells have target DNA

·Based on probability: number of wells with target translates to number of copies of target per volume.

•Multiple qPCR assays - spread throughout the genome -will be used to perform digital PCR on the SRM

Digital PCR was performed using two qPCR assays, IE and CP1, which target the major immediate early region and the polymerase gene respectively

 Slight between group difference is explained by slight difference in amplification efficiency which should be corrected by increasing the number of amplification cycles

Fluidiam Technology

 Digital PCR platform with integrated fluidic circuit •Automatically partitions sample into 765 reactions •Each chip has 12 panels = 12 samples •Each panel uses 4.6 uL of master mix

•765 partitions x 6 nL/partition = 4.6 uL

 Chips are pressure-filled; therefore internal geometries determine the volume of sample

-Microscopy (height & width) and interferometry (depth) can be used to measure the reaction volumes

·Software detects and counts positive partitions and calculates estimated count and upper and lower 95% confidence intervals

Cytomegalovirus Standard Reference Material Development for Nucleic Acid Amplification Technologies

Ross J. Haynes, Marcia J. Holden, Margaret C. Kline, and John M. Butler

Abstract Viral load measurements are important for the treatment of cytomegalovirus (CMV)

infections resulting from activated latent or new infections in immune-compromised patients. Viral load testing is primarily accomplished using quantitative real-time PCR (qPCR). Unfortunately, there is a lack of comparability between laboratories when performing qPCR testing for CMV viral load—in part because of the current unavailability of reference materials to enable measurement calibration. Variability among testing laboratories on CMV results has been noted in proficiency testing (PT) programs, such as the Quality Control for Molecular Diagnostics (QCMD) programme. While improvement has been seen over sequential PT programs, many laboratories still fall out of the acceptable range. Contributing to this variability is the fact that a variety of methods are used including

both commercial and "In-house" assays. The Applied Genetics Group at the National Institute of Standards and Technology (NIST) has made progress in the development of a certified reference material for CMV. This NIST Standard Reference Material (SRM) will consist of pure DNA isolated from the Towne strain (produced in bulk from bacterial artificial chromosome production). The goal is to certify this CMV DNA for quantity as well as sequence information across regions where published oPCB assays have been reported, such as UI 54 (DNA Polymerase), UI 55 (Glycoprotein B), ULB3 (Phosphoprotein 65), UL123 (Major Immediate Early), UL32 (Phosphoprotein 32) and the US17 region. As part of the development of this CMV SRM, comparisons have been made of published oPCR primers and probes for various CMV detection assays to look for potential mutations across common strains of CMV. In addition homogeneity and stability of the CMV DNA samples are being monitored and progress in our CMV SRM development thus far will be presented. Experiments performed with digital Concerning the second s laboratories

Pilot Materials

1) BAC DNA in buffer

- 2) BAC DNA in buffer with poly-thymine carrier DNA
- ·Distributed into tubes for stability and homogeneity testing Concentration determined with digital PCR
- •No difference was found between in the two materials: therefore data was combined.

•Materials were stored at three temperatures 4 °C, 22 °C and 37 °C as an accelerated aging model

Homogeneity

•2 out of 348 tubes have been discovered with divergent concentrations

·Several single replicates have shown divergent Cts, but have not been repeatable

-We hypothesize that these wells did not seal well during PCR and the decrease in Ct is due to increase in concentration via evaporation

Stability

•Empirical data shows DNA stored at 4 °C and 22 °C appear stable, but signs of degradation appeared after 8 weeks in DNA stored at 37℃

•Accelerated aging: for every 10 ℃ over room temperature aging is doubled [1]. Considering when the DNA stored at 37 °C showed signs of degradation the DNA stored at 22 °C should have started degrading already.

•SRM will be packaged in Teflon microcentrifuge tubes (see poster G47 for 6 year stability of DNA in Teflon)

Measurements taken between 3/26 and 4/16/09 used ABI 7000. ABI 7500 has been used from 4/21/09 on (only data from ABI 7500 is shown)

301-975-4469

Genome Structure

	unique long	unique short
TRL	UL	IRL IRS US TRS

Schematic map of the CMV genome. The CMV genome is organized as two regions of unique sequences, unique long (UL) and unique short (US), flanked by two sets of inverted repeats (TRL/IRL) and (IRS/TRS) (light shaded boxes) [2]

The regions to be sequence and qPCR assays which will be used to determine copy number represent a very small area (~14kb of 240kb)

Clinical DNA Informational Resource

http://www.nist.gov/cstl/biochemical/genetics/clinical_dna.cfm

"Although primer mismatching does not necessarily prevent PCR amplification, use of primers having a known high degree of sequence conservation...should reduce assay variability in clinical practice" (Chou 1992J of Clin Micro 30(9): 2307-2310).

•Primer size and location of mismatch affect amplification efficiency which can effect clinical sensitivity and make defining a clinical threshold for treatment difficult. ·Clinical DNA Informational Resource will contain:

·Sequence alignments to aid researchers designing primers and probes ·Primer and probe sequences with references

Sequence Alianments

•The core of our sequence alignments consist of eight CMV strains with complete genome submissions found in Genbank and partial sequences in will be added to alignments when informational value is added

•Files will be available in SegMan (Lasergene software) and text (.txt) ·Alignments will allow researchers to search for primers to quickly determine degree of sequence conservation

	Isolaru	Goulkank#	# mismatches				/			_	
	AD069	X17403-	0	\rightarrow	gactagtgtgatgctggccaag		agectgaggttatcagtgtaatgaagegee		cagatgaggaagaggetattgtage	r٦	
	Towne	£Y315197	0	\rightarrow	gactagtgtgatgctggccaag		ageetgaggttateagtgtaatgaagegee		cagatgaggaagaggetattgtage		
1	PH	AC146904	4	\rightarrow	gactagtgtgatgctggccaag		agectgaggttateaatgtcatgaageged		cagatgaggaagatgetattgeage		
J	Toledo	AC146905	7	\rightarrow	gactagtgtgtgtgtgctggccaag		agcctgaggttatcaatatcatgaagcgcc		cagatgaggaasatgctattgcagc		
1	TR	AC146906	4	\rightarrow	gactagtgtgatgctggccaag		agootgaggttatcaatgtcatgaagogco		cagatgaggaagatgctattgcago		
ц	ях	AC146907	5	\rightarrow	gactagtgtgatgatggtggccaag		ageetgaggttateaatateatgaagegee	τ	cagatgaggaagatgetattgtage		14 sequences
	Meelin	NC_006273	0	\rightarrow	gactagtgtgatgctggccaag		agectgaggttatcagtgtaatgaagegee	8	cagatgaggaagaggctattgtagc		
	TROFE	EF999921	4	\rightarrow	gactagtgtgatgctggccaag	×.	agcotgaggttatcaatgtcatgaagcgcc	-	cagatgaggaagatgctattgcagc		from difforent
1	Claise1	195634	5	\rightarrow	gactagtgtgatgatggtggccaag		agootgaggttatoaatgtcatgaagogco		cagatgaggaagatgctattgcage		
	Cliniso 2	N95635	0	\rightarrow	gactagtgtgatgctggccaag		agectgaggttatcagtgtaatgaagegec		cagatgaggaagaggetattgtage		0101
ł	China and A	M95636	1	\rightarrow	gactagtgtgatgctggccaag		agcctgaggttatcagtataatgaagcgcc		cagatgaggaagaggctattgtagc		CIMV Strains
1	Cinisa-6	M95637	5	\rightarrow	gactagtgtgatgatggccaag		agootgaggttatcaatatcatgaagogco		cagatgaggaagatgctattgtagc		
	Chaises	N95638	5	\rightarrow	gactagtgtgttgctggccaag		ageetgaggttateaatgtcatgaagegee		cagatgaggaagatgetattgeage		
1	Charaso	N95639	5	→ U	gactagtgtgtgtgtggccaag	⊢	agectgaggttateaatgtcatgaageged		cagatgaggaagatgetattgeage		/

The above qPCR set comes from Tanaka 2000 Journal of Medical Virology 60:455-462, targets the UL122 region, and has a false negative rate of 24%

•There are 8 unique locations where a mismatch occurs 7 of which are found in the Toledo strain (AC146905)

•Only AD169, Towne, Merlin and one clinical isolate (4/14) do not contain a mismatch with this qPCR assay.

•Future researchers can avoid spending time and money on assays which have a high degree of sequence heterogeneity.

Primer Citations

Information collected:

-Primers and probes

-Original paper and other papers which describe the primers and probe or alternate probes

-Typos found based on Genbank sequence information

Below is a portion of what will be available

Forward	Revetia	Probe	Author Date	Citation
Polemeraze				
GGCCGTGTTCGACTTTGC	GAGOGCCATCTGTTOCTTG		Wingsrt 1998	JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1998, p. 9562-9569
AGOCTCTACCCTTCCATCA	GCADDGAGACGDGCADDGAA		Wingart \$330	JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1990, p. 3552-3559
CTGACQCGTTTGGTCATC	ACGATTCACGGAGCADCAG	TOGGOGGATCACCACGTTCG	Stacker 2002	JOURNAL OF CLINICAL MICROBIOLOGY, July 2002, p. 2381-2386
CCGATCGTAAAGAGATGAAGAC	CTCGTGDGTGTGCTADGAGA	IVIC-AGTGCAGCCCCGACCATCGTTC	via Deense 2003	JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 2003, p. 578-580
ATGCGCGAGTGTCAAGAC	ACTITGAGYGCCATCTGTTCCT	TGCGCCGTATGCTGCTCCACATA	Yue 2003	Journal of Virological Methods Volume TID, Issue 1, 8 June 2003, Pager TS-7
ATGCGCGAGTGTCAAGAC	ACTITIGAGYGCCATCTGTTCCT	TGCGCCGTATGCTCGTCCACATA	Nermane 2004	JOURNAL OF CLINICAL MICROBIOLOGY, Muj 2004, p. 1989-1914
		TOCOCOUTATOCTOCTODACA	Rozz Hypers	Correction based on GenBank AD%9 (X11403) regresses data
ACCONTACTORCAGOA	GGCCTCGTAGTGAAAATTAATGGT	CCGTATTGGTGCGCGATCTGTTCAA	Sarrearcheidt 2005	Journal of Virological Methods Volume \$38 (2006) 40-48
GADCTATTOSTTTCACADCTAC	GTGACAGACACGGCGTATGG	CAGTATCT0C0TCAAC0TTTC0000CA0-F	Explores 2008	Journal of Medical Virelogy 80:467-477
		1640-GCAGCTACTTTTACTGTGAGTACAGCGACAC-o		
COCAGTCTACCTOGATATCACAA	TOCTCCOTGAATCOTTADGA	PAM CCCTGCTGCCGCCA-MGB	Stephoni 2008	Journal of Clinical Virology 42 (2008) 335-342
-0				
secectal.egoghghghgfhc	criterialisseqcopplats		Bu 1997	Claicel Chemistry 43:13 p/843-1843
ACCOUNTATEGEGTGTGTTC	CCTCCTATAACGOGGCTGTA		Pieg 2003	JOURNAL OF CLINICAL MICROBIOLOGY, Ally 2003, p. 3937-3174
accochatogoghghgthgthc	1/1/22102000000000000000000000000000000		By 1997	Claicsl Chamistry 40:10 p1840-1843
lai 1997	Doi 1007	TEGETGECEAGEAGATAAGEGGEG	LI 2003	Journal of Clinical Microbiology Val: 41(1):p 107-191
5ui 1997	Bui 1997	CGTTTCGTCGTAGCTACGCPTACAT-fliprocosis LC-Red 649-ACACCCACTTATCTYCT999CA9C-pherePlate	Schande 2000	JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 2000, p. 4005-4000
ACCECTATEGEGTGTGTTC	ATAGGAGGCGCCADGTATTCT	Schoods 2000	Pileg 2003	JOURMAL OF CLIMICAL MICROBIOLOGY, JAY 2000, p. 3167-3174
	ATAGGAGGCGCCADGTATTC		Pozz Newsz	Corrected based on AD158 [X17403 pegesace]
GAAGGAATCGCCAGGACGC	TGAGGCTGGGAAGCTGACAT		Wingsrt 1995	JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1998, p. 3552-3558
CGACCCGTGGTCATCTTTA	GCGGTGGTTGCCCAACAGGA		Wingart 1990	JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1990, p. 3552-3559
CCCAAGACATCACOCATG	CCATTCTCTCDDCCATTTACA	CAAAOCGATTGDDGCGDGTTT	Y = 2000	Trapplastation/Yel 68 p1033-1736
AGTADCCCTATOGCGTGTG	ATGATGCCCTCRTCCARGTC	TGGCCCAGGGTACGGATCTTATTCG	Jubbink 2003	Journal of Malecular Disgeartics, Vol. 5, No. 1, February 2003
AGTADCCCTATCGCGTGTG	ATGATGCCCTCRTCCARGTC	careasGTTCTATGGCCCAGGGTACGGregace	Jubbink 2003	Journal of Malecular Disquastics, Vol. 5, No. 1, February 2003
000CGA0GACAACGAA	TGAGGCTGGGAAGCTGACAT	T000CAACCACC0CACT0A00	Boochi 2004	Journal of Clinical Microbiology Vol: 42(3) p 1942-1948
AND ACCTOCOTTOCADE AN	CARGEOGRACIACOCTTCA	IN ADDITION OF A ATTACK ANTION ACCOUNT ADDITION	Reported Tables	Rear Mennes Test schedules (2005) 25, 402, 400

QCMD CMV DNA External Quality Assessment 2009

ID - 20

NIST was invited to submit a sample of the SRM candidate material for analysis by the participants in the 2009 CMV DNA EQA.

• The concentration of the packaged DNA was 3.8 M copies / mL. determined by digital PCR (Expanded uncertainty 3.4 M to 4.2 M copies/mL). Log10 = 6.5

•Tubes were sent to QCMD for labeling and shipping with the QCMD test samples

·Participants were asked to add the DNA solution directly to their assay and run the assay in triplicate.

- 155 data sets were returned
- The handling of the sample by participants was different from the standard samples - virus in plasma Quality of data submitted is questionable

Summary NIST sample from QCMD EQA 2009

Data broadly spread SD > 0.5 log (10)

 In general, no correlation was seen between reported values in any of the four groupings and:

- the use of an external calibrant,
- the use of any particular commercial assay
- or repeatability within a lab.

Digital PCR

•Those using lab developed assays reported values in all groups, but more in low range than those using commercial assays

Data summary

Technology Group	Mean	Log10	Std Dev	Range for		
	Copies/mL	Copies/mL	log 10	1 Std Dev	# data sets	
RT Commercial	2.96 M	6.47	0.67	0.63 M - 14.03 M	74	
RT In-house	1.44 M	6.16	0.89	0.18 M - 11.12 M	74	
Conven. Commercial	1.49 M	6.17	0.52	0.45 M - 4.90 M	5	
Maximum Likelihood						
Gaussian Mix						
two main peaks	1.45 M	6.16	0.21	0.89 M - 2.34 M	49	
	6.16 M	6.79	0.34	2.82 M - 12.39 M	52	
			U log 10			

Distribution of datasets within four

6.58 0.04 3.42M - 4.18 M

groupings

3.8 M

		CutPoints				%	_	_		_	
Code	#	<5.733	5.738 -6.436	6.436-7.124	> 7.124	Low	Gp1	Gp2	High	%Out	
In-house	74	19	24	26	5	26	32	35	7	33	RTIH
QIAGEN	28	1	16	9	2	4	57	32	7	11	
Nanogen	15	2	3	7	3	13	20	47	20	33	
Argene	14	1	1	10	2	7	7	71	14	21	
to che-LightCycler	8	0	7	1	0	0	88	13	0	0	
Roche-COBAS	5	1	2	2	0	20	40	40	0	20	
Cepheid	4	0	4	0	0	0	100	0	0	0	
astra	1	0	1	0	0	0	100	0	0	0	
ATQ	1	0	1	0	0	0	100	0	0	0	
Diagenode	1	1	0	0	0	100	0	0	0	100	
GeneProof	1	0	0	0	1	0	0	0	100	100	
LightUp	1	0	0	1	0	0	0	100	0	0	
Sum	153	25	59	55	13	17	39	36	8	25	All
										19	RTC

[2] Alaska di Anson redrotta (15, 2010 kl. - trup - war-in-ne and antipation and antipation and antipation and antipation and antipation and antipation and an Alaska di Antipationa antipationa and antipation antipation antipation and antipation 181 (2003). Sequence added Date 10, 2000 2027 20 date at al. Constitution of phone phon while variation on dependic DNA service attorn of the outpresentation restor immediate and unservice or Disc Microbiol 39.09, 2917, 29161 (1927)

Ross.Haynes@nist.gov