NIST logo
*

Carl G. Simon, Jr., Ph.D.

Research Interests 

  • 3D cell shape and differentiation
  • Bioinformatics of cell-scaffold interactions
  • Primary human bone marrow stromal cells
  • Cell-scaffold interactions
  • Biomaterials and tissue engineering
  • Bone tissue engineering
  • Combinatorial methods for screening cell response to polymeric biomaterials
Pictures of osteoblasts growing on degrading polymer and a scanning electrom micrograph of the surface of a polymer scaffold.
Left: Osteoblasts clinging to a blister of water-swollen poly(lactic-co-glycolic acid) on the surface of a degrading polymer-ceramic composite scaffold (osteoblasts = green; polymer = red). Middle: SEM of a salt-leached poly(D,L-lactic acid) scaffold. Right: Focal adhesion staining (vinculin = green; nucleus = blue) of osteoblast cultured on poly(D,L-lactic acid).

 

Honors & Activities

  • Fronteirs in Engineering, National Academies of Engineering, Irvine, CA, 2013
  • Chair, ASTM Scaffolds Workshop, Indianapolis, IN, 2013
  • Member, Editorial Board, "Journal of Biomedical Materials Research B - Applied Biomaterials", 2011-present
  • Member, Editorial Board, "Biomaterials", 2011-present
  • Chair (2009-2013) & Program Chair (2007-2009), Society for Biomaterials, Proteins & Cells at Interfaces Special Interest Group
  • ASTM, Executive Committee F04.90 (Member), Committee F04.42 Biomaterials & Tissue Engineered Medical Products (Secretary), Working Group WK6507 on Reference Scaffolds (Chair)
  • Department of Commerce Bronze Medal, "for development of combinatorial methods", 2010

 

Research Opportunities

Post-doctoral

NIST-NRC Postdoctoral Fellowship: 2-year fellowship at NIST, US citizens only, $63,400 salary plus benefits, relocation expenses included, application deadlines are Feb. 1 and Aug. 1, requires 10 page research proposal, contact me if interested in writing proposal on biomaterials research project. See these links:

--Functional Transcriptomics & Proteomics for Measuring Stem Cell Response to 3D Tissue Engineering Scaffolds

--Screening Human Stem Cell Differentiation in 3D Tissue Scaffolds

--Tuning Material Mechanical Properties for Directed Stem Cell Differentiation in 3D

See this link for a YouTube video about the NRC Fellowship: video


Undergraduate

  • Summer Undergraduate Research Fellowship (SURF): 12-week summer research fellowship at NIST, $4000 stipend, support for travel and housing, application deadline is mid-February, program runs 11 weeks (late May thru early August), contact me if interested in doing summer research on biomaterials.
A scanning electron micrograph of a nanofiber scaffold, and a picture of a fawn nursing on a momma deer.
Left: Electrospun poly(e-caprolactone) nanofiber scaffold. Middle: One day old fawn nursing outside my office window (2002). Right: Osteoblasts (membrane red; nucleus blue) cultured on annealed poly(L-lactic acid). Annealing induces polymer spherulite formation visible as the iron cross in the background of the image (imaged through crossed-polarizers).


Bibliography

  • Baker BA, Pine PS, Chatterjee K, Kumar G, McDaniel JH, Salit ML, Simon Jr CG (2013) Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Biomaterials, submitted.
  • Thein-Han WW, Weir MD, Simon CG, Xu HHK (2013) Non-rigid calcium phosphate cement containing hydrogel microbeads and absorbable fibres seeded with umbilical cord stem cells for bone engineering. Journal of Tissue Engineering and Regenerative Medicine, in press.
  • Juba D, Cardone A, Ip CY, Simon Jr CG, Tison CK, Kumar G, Brady M, Varshney (2013) Parallel geometric classification of stem cells by their three dimensional morphology. Computational Science & Discovery 6, 015007.
  • Marszalek JE, Simon Jr CG, Thodeti C, Adapala RK, Murthy A, Karim A (2013) 2.5D constructs for characterizing phase separated polymer blend surface morphology in tissue engineering scaffolds. Journal of Biomedical Materials Research: Part A 101A, 1502-1510.
  • Tutak W, Sarkar S, Lin-Gibson S, Farooque TM, Jyotsnendu G, Wang D, Kohn J, Bolikal D, Simon Jr CG (2013) The Support of Bone Marrow Stromal Cell Differentiation by Airbrushed Nanofiber Scaffolds. Biomaterials 34, 2389-2398.
  • Ramalingam M, Young MF, Thomas V, Sun L, Chow LC, Tison CK, Chatterjee K, Miles WC, Simon Jr CG (2013) Nanofiber scaffold gradients for interfacial tissue engineering. Journal of Biomaterials Applications 27, 695-705.
  • Yeo M-G, Simon Jr CG, Kim G-H (2012) Effect of offset values of solid freeform fabricated PCL/β-TCP scaffolds on mechanical properties and cellular activities in bone tissue regeneration. Journal of Materials Chemistry 22, 21636-21646.
  • Chatterjee K, Hung S, Kumar G, Simon Jr CG (2012) Time-dependent effects of pre-aging 3D polymer scaffolds in cell culture medium on cell proliferation. Journal of Functional Biomaterials 3, 372-381.
  • Chatterjee K, Kraigsley AM, Bolikal D, Kohn J, Simon Jr CG. (2012) Gas-foamed scaffold gradients for combinatorial screening in 3D. Journal of Functional Biomaterials 3, 173-182.
  • Kumar G, Waters, MS, Farooque TM, Young MF, Simon Jr CG (2012) Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape, Biomaterials 33, 4022-4030.
  • Morris DE, Mather ML, Simon Jr CG, Crowe JA (2011) Time-optimized X-ray micro CT imaging of polymer based scaffolds. Journal of Biomedical Materials Research: Applied Biomaterials, 100B, 360-367.
  • Xu HHK, Weir MD, Zhao L, Moreau JL, Arola DD, Simon CG (2011) Nano-apatitic composite scaffolds for stem cell delivery and bone tissue engineering, in "Nanotechnology for Dental Applications", Eds. Karthikeyan Subramani, Waqar Ahmed, Chapter 12, 189-207. 
  • Kumar G, Tison CK, Chatterjee K, Pine PS, McDaniel JH, Salit ML, Young MF, Simon Jr CG (2011) The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 32, 9188-9196.
  • Wiederhorn SM, Chae Y-H, Simon Jr CG, Cahn J*, Deng Y, Day D (2011) Cell adhesion to borate glasses: an atomic force microscopy study. Acta Biomaterialia 7, 2256-2263. (*undergraduate)
  • Chatterjee K, Young MF, Simon Jr CG (2011) Fabricating gradient hydrogel scaffolds for 3D cell culture. Combinatorial Chemistry and High-Throughput Screening 14, 227-236.
  • Parekh SH, Chatterjee K, Lin-Gibson S, Moore NM, Cicerone MT, Young MF, Simon Jr CG (2011) Modulus-Driven Differentiation of Marrow Stromal Cells in 3D Is Independent of Cytoskeletal Integrity, Biomaterials 32, 2256-2264.
  • Simon Jr CG , Lin-Gibson S (2011) Combinatorial and high-throughput screening of biomaterials. Advanced Materials 23, 369-387.
  • Chatterjee K, Sun L, Chow LC, Young MF, Simon Jr CG (2011) Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(e-caprolactone) scaffolds using gradients and arrays. Biomaterials 32, 1361-1369.
  • Simon Jr CG, Yang Y, Dorsey SM*, Ramalingam M, Chatterjee K (2010) 3D polymer scaffold arrays. Methods in Molecular Biology: Biological Microarrays 671, 161-174. (*undergraduate)
  • Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, Young MF, Simon Jr CG (2010) The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31, 5051-5062.
  • Simon Jr CG, Yang Y, Thomas V, Dorsey SM*, Morgan AW (2009) Cell interactions with biomaterials gradients and arrays. Combinatorial Chemistry and High-Throughput Screening 12, 544-553. (*undergraduate) (review)
  • Simon Jr CG, Yang Y, Dorsey SM*, Ramalingam M, Chatterjee K (2009) 3D polymer scaffold arrays. Methods in Molecular Biology: Biological Microarrays, in press. [invited article from editor, Ali Khademhosseini (MIT)] (*undergraduate)
  • Simon Jr CG, Yang Y, Thomas V, Dorsey SM*, Morgan AW (2009) Cell interactions with biomaterials gradients and arrays. Combinatorial Chemistry and High-Throughput Screening 12, 544-553. (*undergraduate) (review)
  • Dorsey SM*, Lin-Gibson S, Simon Jr CG (2009) X-ray microcomputed tomography for the measurement of cell adhesion and proliferation in polymer scaffolds. Biomaterials 30, 2967–2974. (*undergraduate) (Leading Opinion Paper)
  • Xu HHK, Weir MD, Simon Jr CG (2008) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dental Materials 24, 1212-1222.
  • Yang Y, Becker ML, Bolikal D, Kohn J, Zeiger DN, Simon Jr CG (2008) Combinatorial polymer scaffold libraries for screening cell-biomaterial interactions in 3D. Advanced Materials 20, 2037-2043.
  • Chen RI*, Gallant ND, Smith JR, Kipper MJ, Simon Jr CG (2008) Time-dependent effects of pre-aging polymer films in cell medium on cell adhesion and spreading. Journal of Materials Science: Materials in Medicine 19, 1759-1766. (*undergraduate)
  • Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon Jr CG (2008) Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials 29, 2556-2563.
  • Yang Y, Dorsey SM*, Becker ML, Lin-Gibson S, Schumacher GE, Flaim GM, Kohn J, Simon Jr CG (2008) X-ray imaging optimization of 3D tissue engineering scaffolds via combinatorial fabrication methods. Biomaterials 29, 1901-1911. (*undergraduate)
  • Xu HHK, Carey LE, Simon Jr CG (2007) Premixed macroporous calcium phosphate cement scaffold. Journal of Materials Science: Materials in Medicine 18, 1345-1353.
  • Simon Jr CG, Stephens JS, Dorsey SM*, Becker ML (2007) Fabrication of combinatorial polymer scaffold libraries. Review of Scientific Instruments 78, 0722071-0722077. (*undergraduate)
  • Xu HHK, Carey LE, Simon Jr CG, Takagi S, Chow LC (2007) Premixed calcium phosphate cements: synthesis, physical properties and cell toxicity. Dental Materials 23, 433-441.
  • Kennedy SB, Washburn NR, Simon Jr CG, Amis EJ (2006) Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials 27, 3817-3824.
  • Weir MD, Xu HHK, Simon Jr CG (2006) Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering. Journal of Biomedical Materials Research 77A, 487-496. (Cover Image)
  • Simon Jr CG, Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR (2005) Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D,L-lactic acid) blends. Biomaterials 26, 6906-6915.
  • Zhang K, Simon Jr CG, Washburn NR, Antonucci JM, Lin-Gibson S (2005) In situ formation of blends by photopolymerization of poly(ethylene glycol) dimethacrylate (PEGDMA) and polylactide (PLA). Biomacromolecules 6, 1615-1622.
  • Simon Jr CG, Antonucci JM, Skrtic D (2005) In vitro cytotoxicity of amorphous calcium phosphate composites. Journal of Bioactive and Compatible Polymers 20, 279-295.
  • Carey LE, Xu HHK, Simon Jr CG, Takagi S, Chow LC (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26, 5002-5014.
  • Zhang K, Washburn NR, Simon Jr CG (2005) Cytotoxicity of three-dimensionally ordered macroporous sol-gel bioactive glass (3DOM-BG). Biomaterials 26, 4532-4539.
  • Xu HHK, Simon Jr CG (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26, 1337-1348.
  • Simon Jr CG, Deng Y, Eidelman N, Washburn NR (2004) High-throughput method for determining modulus of polymer blends. Macromolecular Rapid Communications 25, 2003-2007.  (Cover Image)
  • Simon Jr CG (2004) Imaging cells on polymer spherulites. Journal of Microscopy 216, 153-155. (Cover Image)
  • Eidelman N, Simon Jr CG (2004) Characterization of combinatorial polymer blend composition gradients by FTIR microspectroscopy. Journal of Research of the National Institute of Standards and Technology 109, 219-231.
  • Xu HHK, Smith DT, Simon Jr CG (2004) Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Biomaterials, 25, 4615-4626.
  • Xu HHK, Simon Jr CG (2004) Self-hardening calcium phosphate cement-mesh composite: reinforcement, macropores and biocomaptibility. Journal of Biomedical Materials Research 69A, 267-278. (Cover Image)
  • Xu HHK, Simon Jr CG (2004) Self-hardening calcium phosphate composite scaffold for bone tissue engineering. Journal of Orthopaedic Research 22, 535-543. 
  • Bailey LO, Washburn NR, Simon Jr CG, Wang FW, Chan E. (2004) Quantification of inflammatory cellular responses using real time polymerase chain reaction.  Journal of Biomedical Materials Research 69A, 305-313.
  • Simon Jr CG, Guthrie WF, Wang FW (2004) Cell seeding into calcium phosphate cement. Journal of Biomedical Materials Research 68A, 628-639.
  • Washburn NR, Yamada KM, Simon Jr CG, Kennedy SB, Amis EJ. (2004) High-throughput investigation of osteoblast response to crystalline polymers: influence of nanometer-scale roughness on proliferation. Biomaterials 25, 1215-1224.
  • Simon Jr CG, Khatri CA, Wight SA, Wang FW (2002) Preliminary report on the biocompatibility of a moldable, resorbable, composite bone graft consisting of calcium phosphate cement and poly(lactide-co-glycolide) microspheres. Journal of Orthopaedic Research 20, 473-482.
  • Washburn NR, Simon CG, Tona A, Elgendy HM, Karim A, Amis EJ (2002) Co-extrusion of biocompatible polymers for scaffolds with controlled morphology. Journal of Biomedical Materials Research 60, 20-29.  (Cover Image)
  • Dahir GA, Cui Q, Anderson P, Simon Jr CG, Joyner C, Triffitt JT, Balian G (2000) Pluripotential Mesenchymal Cells Repopulate Bone Marrow and Retain Osteogenic Properties. Clinical Orthopaedics and Related Research 379S, S134-S145.
  • Simon Jr CG, Holloway PW, Gear ARL (1999) Exchange of C16-ceramide between phospholipid vesicles. Biochemistry 38, 14676-14682.
  • Simon Jr CG, Gear ARL (1999) Sphingolipid metabolism during human platelet activation. Thrombosis Research 94, 13-23.
  • Polanowska-Grabowska R, Simon Jr CG, Gear ARL (1999) Platelet adhesion to collagen type I, collagen type IV, von Willebrand factor, fibronectin, laminin, and fibrinogen: rapid kinetics under shear. Thrombosis and Haemostasis 81, 118-123.
  • Simon Jr CG, Chatterjee S, Gear ARL (1998) Sphingomyelinase activity in human platelets. Thrombosis Research 90, 155-161.
  • Simon Jr CG, Gear ARL (1998) Membrane-destabilizing properties of C2-ceramide may be responsible for its ability to inhibit platelet aggregation. Biochemistry 37, 2059-2069.
  • Gear ARL, Simon CG, Polanowska-Grabowska R (1997) Platelet adhesion to collagen activates a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Journal of Neural Transmission 104, 1037-1047.
  • Polanowska-Grabowska R, Simon Jr CG, Falchetto R, Shabanowitz J, Hunt DF, Gear ARL (1997) Platelet adhesion to collagen under flow causes dissociation of a phosphoprotein complex of heat-shock proteins and protein phosphatase 1. Blood 90, 1516-1526.

 

carlsimon

Position:

Biologist
Biosystems & Biomaterials Division
Biomaterials Group

Employment History:

2007 - Present: Project Leader, NIST, Gaithersburg, MD

2003 - 2007: Staff Scientist, NIST, Gaithersburg, MD

1999 - 2003: Postdoctoral Researcher, NIST, Gaithersburg, MD

Education:

Ph.D. Biochemistry, University of Virginia, Charlottesville, VA, 1998

B.S. Biology, Bucknell University, Lewisburg, PA, 1992

Contact

Phone: 301-975-8574
Email: carl.simon@nist.gov
Fax: 301-975-4977