NIST logo
Dr. Marcia L. Huber

Brief

Dr. Huber came to NIST as a National Research Council Postdoctoral Associate working with Dr. Jim Ely where she worked extensively on various corresponding-states based models for the prediction of thermophysical properties of hydrocarbon mixtures for both defined and undefined (heavy oil fractions) mixtures. Some of this work was incorporated in the NIST Standard Reference Database 4 (SuperTrapp) which was one of NIST's early efforts to disseminate thermophysical property information in the form of computer programs. She later became involved in the research at NIST to model the thermophysical properties of alternatives to ozone-depleting CFC and HCFC refrigerants and fire suppression fluids. She now is the Group Leader of the Theory and Modeling of Fluids Group in the Thermophysical Properties Division. In her spare time she enjoys spending time with her family, eating chocolate and drinking coffee, identifying and photographing wildflowers, trail running, and hiking in the mountains. She may be the only person in Colorado who does not ski.

Google Scholar Citation Page

Research Interests:

Recently Dr. Huber has been involved in the development of thermophysical property models for environmentally friendly (low GWP and non-ozone depleting) refrigerants and fire suppression fluids. She also is active in the development of fluid models for the design of microscale heat exchangers. Other interest are developing thermodynamic and transport properties of alternative transportation fuels (including biofuels and hydrogen), thermophysical properties of heavy hydrocarbon systems, jet fuels, diesel, and rocket fuels through the use of surrogate mixture models, in which she works closely with the Experimental Properties of Fluids Group. Of particular interest are the development of models for viscosity and thermal conductivity of both pure fluids and mixtures. She also continues to be involved in the development of software to disseminate thermophysical property information (REFPROP, SuperTrapp).

Representative Publications:

 

Perkins, R.A., and Huber, M.L., “Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E))”, J. Chem. Eng. Data, in press   

Bruno, T.J., Lovestead, T.M., and Huber, M.L., “Prediction and Preliminary Standardization of Fire Debris Constituents with the Advanced Distillation Curve Method”, J. Forensic Sciences 56: S192-S202 (2011)

Perkins, R.A., and Huber, M.L., “Measurement and Correlation of the Thermal Conductivities of Biodiesel Constituent Fluids: Methyl Oleate and Methyl Linoleate”, Energy&Fuels 25:2383-2388 (2011).

Assael, M.J.,  Assael, J.-A., Huber, M.L.,  Perkins, R.A., Takata, Y., “ Correlation of the Thermal Conductivity of Normal and Parahydrogen from the Triple Point to 1000 K and up to 100 MPa,” J. Phys. Chem. Ref. Data 40 (2011) 1-13

Huber, M.L., Bruno, T.J., Chirico, R.D., Diky, V., Kazakov, A.F., Lemmon, E.W., Muzny, C.D., and Frenkel, M., “Equations of State on Demand: Application for Surrogate Fuel Development”, Int. J. Thermophys. 32:596-613 (2011).

Bruno, T.J., and Huber, M.L., “Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures. Part 2: Analysis and Prediction of Thermophysical Properties”, Energy & Fuels 24:4277-4284 (2010).

McLinden, M.O., Bruno, T.J., Frenkel, M., and Huber, M.L., “Standard Reference Data for the Thermophysical Properties of Biofuels”, J. ASTM International 7:1-18 (2010).

Huber, M.L., Lemmon, E.W., and Bruno, T.J., “Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A”, Energy & Fuels 24:3565-3571 (2010).

Lin, M.-H., Bradley, P.E., Huber, M.L., Lewis, R., Radebaugh, R., and Lee, Y.C., “Mixed refrigerants for a glass capillary micro cryogenic cooler”, Cryogenics 50:439-442 (2010).

Huber, M.L.,Perkins, R.A., Laesecke, A., Friend, D.G., Sengers, J.V., Assael, M.J., Metaxa, I.N., Vogel, E.,Mares, R., and Miyagawa, K., “New International Formulation for the Viscosity of H2O”, J. Phys. Chem. Ref. Data 38: 101-125 (2009)

Huber, M.L., Lemmon, E.W., Kazakov, A., Ott, L.S., and Bruno, T.J., “Model for the Thermodynamic Properties of a Biodiesel Fuel”, Energy&Fuels 23:3790-3797 (2009).

Sengers, J.V., Perkins, R.A., Huber, M.L. and Friend, D.G., “Viscosity of H2O in the critical region”, Int. J. Thermophysics (2009)30:374-384.

Huber, M.L., Lemmon, E.W., Ott, L.S., and Bruno, T.J., “Preliminary Surrogate Mixture Models for the Thermophysical Properties of Rocket Propellants RP-1 and RP-2”, Energy&Fuels 23:3083-3088 (2009).

Dr. Marcia L. Huber

Awards and Honors: 

NIST Standard Reference Data Measurement Services Award, 1992

NIST Standard Reference Data Measurement Services Award, 1995

Department of Commerce Bronze Medal Award, 2005


Education:

University of Pittsburgh: B.S., Chemical Engineering

Colorado School of Mines, Golden, Colorado: Ph.D., Chemical Engineering

Dissertation with M. C. Jones "An Investigation of Heat Transfer in Packed Beds at High Temperatures and Low Reynold’s Numbers”

Professional Service:

Vice-Chair for Fluids, 18th International Symposium on Thermophysical Properties,
http://thermosymposium.nist.gov/

Contact:

Group Leader, Theory and Modeling of Fluids
NIST
Applied Chemicals and Materials Division
Boulder, CO 80305-3337

phone: 303-497-5252
fax: 303-497-5044

marcia.huber@nist.gov