Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Rolled-Up Nanoporous Membranes by Nanoimprint Lithography and Strain Engineering

Published

Author(s)

Jaehyun Park, ChangKyu Yoon, Qianru Jin, Lei Chen, David . Gracias

Abstract

It is extremely challenging to enable nanoscale patterning in three dimensional (3D) curved geometries using conventional nanolithographic approaches. In this paper, we describe a highly parallel approach that combines nanoimprint lithography (NIL) and thin film bilayer strain engineering to spontaneously roll-up nanopatterned membranes into curved geometries. Specifically, we first patterned a silicon nitride (Si3N4) / silicon (Si) bilayer using nanoimprint lithography followed by plasma etching to create well defined pores. The diameter of the pores was further reduced by physical vapor deposition of platinum to sizes as small as 50 nm. After patterning, the bilayers were released from the substrate by etching an underlying SiO2 sacrificial layer. Based on the high deposition stress values for low pressure chemical vapor deposition (LPCVD) deposited Si3N4 and Si, we varied the thickness of the bilayer to realize rolled-up tubes with different radii of curvature; these curvature values were in good agreement with a finite element analysis model (FEM). The assembled nanoporous tubes had well defined pores along their curved interface and can be applied for drug delivery, separations and ion-sensing devices. We highlight biocompatibility of the devices by encapsulating β-TC-6 islet cells of relevance to cell encapsulation therapy for diabetes. More broadly, we believe that this approach of combining NIL with strain engineering processes could be utilized to create a range of precisely nanopatterned curved structures in a highly parallel manner.
Proceedings Title
IEEE-NEMS 2015
Conference Dates
April 7-11, 2015
Conference Location
Xi’an, CN

Keywords

Self-folding, NEMS, 3D, origami

Citation

Park, J. , Yoon, C. , Jin, Q. , Chen, L. and Gracias, D. (2015), Rolled-Up Nanoporous Membranes by Nanoimprint Lithography and Strain Engineering, IEEE-NEMS 2015, Xi’an, CN, [online], https://doi.org/10.1109/NEMS.2015.7147417, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=917673 (Accessed April 20, 2024)
Created April 6, 2015, Updated October 12, 2021