NIST logo

Publication Citation: Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition

NIST Authors in Bold

Author(s): Soong Ju Oh; Nathaniel E. Berry; Hi-Hyuk Choi; E. A. Gaulding; Hangfei Lin; Taejong Paik; Benjamin T. Diroll; Shinichiro Muramoto; Murray B. Christopher; Cherie R. Kagan;
Title: Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition
Published: February 06, 2014
Abstract: We report a facile, solution based, post synthetic colloidal atomic layer deposition (PS-cALD) process to engineer the surface stoichiometry and therefore electronic properties of lead chalcogenide nanocrystal (NC) thin films. Using the stepwise and systematic PS-cALD technique, we introduce a self-limited monolayer shell on lead chalcogenide NCs after their integration as thin films in devices, thereby requiring no further treatment or ligand exchange that unavoidably generates some surface defects. We found that chalcogen enriched NC surfaces are structurally, optically and electronically unstable due to their high surface energy, oxygen sensitivity, and introduction of many midgap and trap states. Lead chloride treatment creates a well-passivated, trap-free shell that stabilizes NCs structurally, optically and electronically, greatly enhancing charge transport. Using PS-cALD of lead chalcogenide NC thin films we demonstrate high electron field effect mobilities of approximately 4.5 cm2/Vs, comparable to record performing devices, without using expensive vacuum-based techniques.
Citation: Nano Letters
Keywords: nanocrystals; field-effect transistor; atomic layer deposition
Research Areas: Advanced Materials, Characterization, Nanochemistry
PDF version: PDF Document Click here to retrieve PDF version of paper (2MB)