NIST logo

Publication Citation: An Uncertainty Analysis of Mean Flow Velocity Measurements Used to Quantify Emissions from Stationary Sources

NIST Authors in Bold

Author(s): Rodney A. Bryant; Olatunde B. Sanni; Elizabeth F. Moore; Matthew F. Bundy; Aaron N. Johnson;
Title: An Uncertainty Analysis of Mean Flow Velocity Measurements Used to Quantify Emissions from Stationary Sources
Published: May 20, 2014
Abstract: Point velocity measurements conducted by traversing a pitot tube across the cross section of a flow conduit continues to be the standard practice for evaluating the accuracy of continuous flow monitoring devices. Such velocity traverses were conducted in the exhaust duct of a reduced-scale analog of a stationary source and mean flow velocity was computed using several common integration techniques. Sources of random and systematic measurement uncertainty were identified and applied in the uncertainty analysis. When applicable, the minimum requirements of the standard test methods were used to estimate measurement uncertainty due to random sources. Estimates of the systematic measurement uncertainty due to discretized measurements of the asymmetric flow field were determined by simulating point velocity traverse measurements in a flow distribution generated using Computational Fluid Dynamics. For the evaluated flow system, estimates of relative expanded uncertainty for the mean flow velocity ranged from ±1.4 % to ±9.3 % and depended on the number of measurement locations and the method of integration.
Citation: Journal of the Air & Waste Management Association
Volume: 64
Issue: 6
Pages: pp. 679 - 689
Keywords: point velocity measurements; emissions measurements; stack gas velocity; exhaust duct velocity
Research Areas: Fire Measurements, Environment/Climate, Building Energy Conservation
DOI: http://dx.doi.org/10.1080/10962247.2014.881437  (Note: May link to a non-U.S. Government webpage)
PDF version: PDF Document Click here to retrieve PDF version of paper (1MB)