NIST logo

Publication Citation: Field-driven sense elements for chirality-dependent domain wall detection and storage

NIST Authors in Bold

Author(s): Samuel R. Bowden; John Unguris;
Title: Field-driven sense elements for chirality-dependent domain wall detection and storage
Published: December 10, 2013
Abstract: A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray-field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.
Citation: Journal of Applied Physics
Volume: 114
Issue: 22
Keywords: Magnetic Logic; Domain Wall Chirality; Magnetic Nanowires; Magnetic Sensors
Research Areas: Electron microscopy (EM, TEM, SEM, STEM), Nanomagnetics
DOI: http://dx.doi.org/10.1063/1.4846075  (Note: May link to a non-U.S. Government webpage)
PDF version: PDF Document Click here to retrieve PDF version of paper (1MB)