NIST logo

Publication Citation: A Low-Complexity Solution to Decode Diversity-Oriented Block Codes in MIMO Systems with Inter-Symbol Interference

NIST Authors in Bold

Author(s): Hamid Gharavi; Chong Xu;
Title: A Low-Complexity Solution to Decode Diversity-Oriented Block Codes in MIMO Systems with Inter-Symbol Interference
Published: October 01, 2012
Abstract: In this paper we firstly propose a block-code based general model to combat the Inter-Symbol Interference (ISI) caused by frequency selective channels in a Multi-Input Multi- Output (MIMO) system and/or by asynchronous cooperative transmissions. The general model is not only exemplified by the Time-Reversed Space-Time Block Code (TR-STBC) scheme, but also by the Asynchronous Cooperative Liner Dispersion Codes (ACLDC) scheme. In these schemes a guard interval has to be inserted between adjacent transmission blocks to mitigate the effect of ISI. Consequently, this could degrade the effective symbol rate for a small block size. A larger block size would enhance the effective symbol rate and also substantially increase the decoding complexity. In the general model proposed in this paper, we further present a novel low-complexity breadthadjustable tree-search algorithm and compare it with Sphere-Decoding (SD) based algorithms. With simulation results we will illustrate that our algorithm is able to achieve the optimal performance in terms of Bit Error Rate (BER) with a complexity much lower than the SD-based algorithms, whether the ACLDC or TR-STBC scheme is employed. Through simulation we further demonstrate that when the block size of the ACLDC is equivalent to 20, the complexity of the proposed algorithm is only a fraction of 10−8 that of the Maximum Likelihood (ML) algorithm. This would allow us to practically enhance the effective symbol rate without any performance degradation.
Citation: IEEE Transactions on Wireless Communications
Volume: 11
Issue: 10
Pages: pp. 3574 - 3587
Keywords: Multiput Input Multiput Output (MIMO), tansmit diversity, Space-Time Block Code (STBC)
Research Areas: Wireless, Networking
PDF version: PDF Document Click here to retrieve PDF version of paper (522KB)