NIST logo

Publication Citation: Fourier Expansions for a Logarithmic Fundamental Solution of the Polyharmonic Equation

NIST Authors in Bold

Author(s): Howard S. Cohl;
Title: Fourier Expansions for a Logarithmic Fundamental Solution of the Polyharmonic Equation
Published: September 28, 2012
Abstract: In even-dimensional Euclidean space for integer powers of the Laplacian greater than or equal to the dimension divided by two, a fundamental solution for the polyharmonic equation has logarithmic behavior. We give two approaches for developing a Fourier expansion of this logarithmic fundamental solution. The first approach is algebraic and relies upon the construction of a sequence of two-parameter polynomials. We describe some of the properties of these polynomials, and use them to derive the Fourier expansion for a logarithmic fundamental solution of the polyharmonic equation. The second approach depends on the computation of parameter derivatives of Fourier series for a power-law fundamental solution of the polyharmonic equation. The resulting Fourier series is given in terms of sums over associated Legendre functions of the first kind. We conclude by comparing the two approaches and giving the azimuthal Fourier series for a logarithmic fundamental solution of the polyharmonic equation in rotationally-invariant coordinate systems.
Citation: Journal of Classical Analysis
Volume: 2
Issue: 2
Pages: pp. 107 - 127
Keywords: fundamental solutions; polyharmonic equation; Fourier series
Research Areas: Modeling
DOI: http://dx.doi.org/10.7153/jca-02-09  (Note: May link to a non-U.S. Government webpage)
PDF version: PDF Document Click here to retrieve PDF version of paper (219KB)