Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Acoustic damping in resonators of langasite and langatate at elevated temperatures

Published

Author(s)

Ward L. Johnson

Abstract

Langasite (LGS), langatate (LGT), and similar piezoelectric crystals in the P321 crystal class have become an increasing focus of research during the past two decades, in relation to their application in high-temperature resonant acoustic sensing. The quality factor Q of these materials directly affects the resolution of sensors, and the Q decreases dramatically at elevated temperatures. We present measurements and multi-frequency least-squares analysis of 1/Q of LGS and LGT bulk-acoustic resonators as a function of temperature that reveal a superposition of physical effects contributing to the damping, including point-defect relaxations and intrinsic phonon-phonon loss. In LGS, these effects are superimposed on a background that increases with increasing temperature. Parameters for this background obtained from least-squares analysis are found to be consistent with an anelastic dislocation mechanism with a distribution of activation energies. The absence of a significant background of this type in LGT, over the measured temperature range, and associated differences in the crystal growth and phase diagrams of LGS and LGT provide support for the view that LGT is a more attractive choice for high-temperature sensing applications.
Proceedings Title
IEEE Sensors 2011
Conference Dates
October 28-31, 2011
Conference Location
Limerick

Keywords

acoustic resonance, anelasticity, BAW resonators, dislocation damping, high-temperature sensors, internal friction, kink migration, langasite, langatate, point defect relaxations, phonon-phonon damping, quality factor, ultrasonic attenuation

Citation

Johnson, W. (2011), Acoustic damping in resonators of langasite and langatate at elevated temperatures, IEEE Sensors 2011, Limerick, -1, [online], https://doi.org/10.1109/ICSENS.2011.6127199 (Accessed March 28, 2024)
Created October 28, 2011, Updated November 10, 2018