NIST logo

Publication Citation: Improved activation and hydrogen storage properties of an amorphous Mg85Ni15 melt-spun alloy via surface treatment with NH4+ solution

NIST Authors in Bold

Author(s): Eric Lass;
Title: Improved activation and hydrogen storage properties of an amorphous Mg85Ni15 melt-spun alloy via surface treatment with NH4+ solution
Published: October 13, 2011
Abstract: An amorphous Mg85Ni15 melt-spun hydrogen storage alloy, processed by submersion in an aqueous solution of NH4+, is able to absorb >5 wt. % hydrogen at 473 K during the first hydrogenation cycle. The nanocrystalline microstructure formed during devitrification of the metallic glass is preserved by the lower required activation temperature of the NH4+-treated material; and the kinetics of subsequent absorption/desorption cycles at 573 K are dramatically improved, compared to the as-spun material. DSC experiments and thermodynamic calculations demonstrate that the decreased crystallite size of the 473 K activated material lowers the hydride decomposition temperature by 20 K to 50 K, in contrast to a sample activated at 573 K. The NH4+-treatment of a glassy alloy presented here provides a more practical approach to both forming a nanocrystalline material, and facilitating activation, compared to ball milling; requiring much less time and a more commercially scalable option.
Citation: Journal of Alloys and Compounds
Keywords: Mg-based alloy; metallic glass; hydrogen storage; metal hydride; nanocrystalline
Research Areas: Nanomaterials, Thermodynamics and kinetics, Energy Conversion, Storage, and Transport
PDF version: PDF Document Click here to retrieve PDF version of paper (4MB)