Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Bicubic B-Spline Surface Approximation of Invariant Tori

NIST Authors in Bold

Author(s): Sita Ramamurti; David E. Gilsinn;
Title: Bicubic B-Spline Surface Approximation of Invariant Tori
Published: October 20, 2010
Abstract: The invariant torus of a coupled system of Van der Pol oscillators is approximated using bicubic B-splines. The paper considers the case of strong nonlinear coupling. In particular, the shapes of invariant torii for the Van der Pol coupling parameter $\lambda$ are computed in the range [0.1, 2.0]. Comparisons are given with results obtained by the MATLAB differential equation solver ode45. Very good normed residual errors of the determining equations for the approximate tori for the cases $\lambda = 0.1,\ 0.6$ are shown. At the upper limit of $\lambda = 2.0$ memory errors occured during the optimization phase for solving the determining equations so that full optimization for some knot sets was not achieved, but a visual comparison of the resulting invariant torus figure showed a close similarity to the solution using ode45.
Citation: NIST Interagency/Internal Report (NISTIR) - 7731
Pages: 32 pp.
Keywords: bicubic B-splines, determining equations, invariant torus, large parameter case, optimization, Van der Pol oscillators
Research Areas: Software, Math
PDF version: PDF Document Click here to retrieve PDF version of paper (2MB)