NIST logo

Publication Citation: Improvements in the Measurement of Distillation Curves. 5. Reduced Pressure Advanced Distillation Curve Method

NIST Authors in Bold

Author(s): Bret Windom; Thomas J. Bruno;
Title: Improvements in the Measurement of Distillation Curves. 5. Reduced Pressure Advanced Distillation Curve Method
Published: January 06, 2011
Abstract: The distillation curve is the only practical measurement used to characterize the vapor/liquid equilibrium (volatility) of a complex mixture. In earlier work, we described an improved method and apparatus for distillation curve measurement at atmospheric pressure that is especially applicable to the characterization of fuels and complex mixtures, called the advanced distillation curve (ADC). While the ADC method has greatly improved volatility measurements performed at atmospheric pressure, it still encounters problems with applications to fluids of very low volatility. Performing atmospheric pressure distillations on fluids with high boiling temperatures (350 ‹ 450 °C) can lead to thermal degradation, cracking, or polymerization of the sample. Performing the distillation at reduced pressures can reduce such thermal effects by reducing the component boiling temperatures. In this paper we present a new apparatus and method that provides precise volatility measurements at reduced pressures. This new apparatus allows for nearly complete state variable (temperature, pressure and composition) control while performing volatility measurements, and also provides a composition-explicit data channel for each distillate fraction. Volatility measurements using the reduced pressure ADC apparatus were made on multiple samples, including two well characterized validation mixtures and a commercially available soy derived biodiesel fuel. In addition, chemical analyses were performed on the distillate fraction aliquots using gas chromatography- mass spectrometry. The results from the reduced pressure ADC were compared to predicted data using an equation of state model as well as distillation data measured at atmospheric pressure.
Citation: Industrial and Engineering Chemistry Research
Volume: 50
Pages: pp. 1115 - 1126
Keywords: Advanced distillation curve; composition-explicit; reduced pressure
Research Areas: Biofuels, Chemical Analysis, Thermophysics