NIST logo

Publication Citation: Effects of Edge Magnetism and External Electric Field on Energy Gaps in Multilayer Graphene Nanoribbons

NIST Authors in Bold

Author(s): Bhagawan Sahu; Hongki Min; Sanjay K. Banerjee;
Title: Effects of Edge Magnetism and External Electric Field on Energy Gaps in Multilayer Graphene Nanoribbons
Published: September 14, 2010
Abstract: Using a first principles density functional theory, we study electronic structure of multilayer graphene nanoribbons as a function of the ribbon widths and an external electric fields. We consider two types of edges (armchair and zigzag) and each with two edge alignments (referred to as alpha- and beta- alignments). We show that multilayer armchair nanoribbons exhibit three classes of energy gaps which decrease with increasing widths, similarly as in monolayer and bilayer armchair nanoribbons. Non-magnetic multilayer zigzag nanoribbons have band structures that are sensitive to the edge alignments and the number of layers, indicating different magnetic properties and resulting energy gaps. We find that energy gaps can be induced in ABC-stacked ribbons with an external electric field, while in other stacking sequences, the gaps decrease or remain closed as an external electric field increases.
Citation: Physical Review B
Volume: 82
Issue: 11
Pages: 7 pp.
Keywords: graphene; electronic structure
Research Areas: Condensed Matter Physics, Nanophysics, Electron Physics
PDF version: PDF Document Click here to retrieve PDF version of paper (483KB)