Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Temperature Regions of Optimal Chemical Inhibition of Premixed Flames

NIST Authors in Bold

Author(s): M D. Rumminger; Valeri I. Babushok; Gregory T. Linteris;
Title: Temperature Regions of Optimal Chemical Inhibition of Premixed Flames
Published: January 01, 2002
Abstract: Chemically-active fire suppressants may, due to their properties or the means by which they are added to flames, have strong inhibition effects in particular locations in a flame. To study the spatial effects of chemically-active inhibitors, numerical experiments are conducted in which the rates of reactions of model inhibitors are varied in spatial regions defined by temperature. The influence of three types of regions are investigated, those with the inhibitor: 1) active only within a narrow temperature band (off-on-off), 2) active below a cut-off temperature (on-off), and 3) active above a cut-off temperature (off-on). The effect of several localized chemical perturbations on the burning velocity are studied, including the variation of the H+O2=OH+O or the CO+OH=CO2+H reaction rate, and catalytic scavenging of radicals by an idealized perfect inhibitor or by CF3Br (halon 1301). The results indicate that the flame speed is reduced most when the perturbation location corresponds to the regions of maximum radical mole fraction or maximum chain-branching reaction rates. Each of the perturbations has a negligible effect below 1200 K. Calculations for CF3Br-inhibited flames indicate a temperature of maximum influence that is higher than previous suggestions for Br-based inhibitors. Calculations for flames with the H+O2 rate perturbed or with addition of the perfect inhibitor indicate that the important region for flame inhibition in lean, rich, and stoichiometric flames corresponds to the position of the peak H-atom mole fraction. The results of this work demonstrate that the burning velocity is sensitive to inhibition over a relatively small spatial region of the flame. Simulations with stepwise activation and deactivation of an inhibitor show that the effect of the inhibitor is small when the activation or deactivation temperature is below 1700 K.
Citation: Proceedings of the Combustion Institute
Volume: 29
Pages: pp. 329 - 336
Keywords: chemical inhibition,flame chemistry,halon replacements
Research Areas: Building and Fire Research
PDF version: PDF Document Click here to retrieve PDF version of paper (166KB)