NIST logo

Publication Citation: Using Pattern Homogenization of Binary Masks to Fabricate Microfluidic Structures With 3D Topography

NIST Authors in Bold

Author(s): Francisco J. Atencia; Susan E. Barnes; Jack F. Douglas; John Meacham; Laurie E. Locascio;
Title: Using Pattern Homogenization of Binary Masks to Fabricate Microfluidic Structures With 3D Topography
Published: May 02, 2007
Abstract: Because fluids at the microscale form three dimensional interfaces and are subject to three dimensional forces, the ability to create microstructures with modulated topography over large areas could greatly improve control over microfluidic phenomena (e.g., capillarity and mass transport) and enable exciting novel microfluidic applications. Here we report a method for the fabrication of three-dimensional relief microstructures, based on the emergence of smooth features when a photopolymer is exposed to UV light through a transparency mask with binary motifs. We show that homogeneous features emerge under certain critical conditions that are also common to other, apparently unrelated phenomena such as the emergence of macroscopic continuum properties of composite materials and the rates of ligand binding to cell membrane receptors. This fabrication method is simple, inexpensive and yet it allows for the fabrication of microstructures over large areas (centimeters) with topographic modulation of features with characteristic dimensions smaller than 100 micrometers
Citation: Lab on A Chip
Volume: 7
Issue: 11
Pages: pp. 1567 - 1573
Keywords: homogenization theory;microfabrication;microfluidics
Research Areas:
PDF version: PDF Document Click here to retrieve PDF version of paper (660KB)