NIST logo

Publication Citation: Force Control of Linear Motor Stages for Microassembly

NIST Authors in Bold

Author(s): Jason J. Gorman; Nicholas G. Dagalakis;
Title: Force Control of Linear Motor Stages for Microassembly
Published: November 21, 2003
Abstract: The microassembly of microelectromechanical systems from various micro-components requires the development of many new robotic capabilities. One of these capabilities is force control for handling micro-scale components with force control resolution on the order of micronewtons. In this paper, the force control of linear motor stages is discussed with application to the micorassembly of MEMS. Linear motor stages provide an attractive solution for microassembly robots because they have a large working volume and can achieve high-precision positioning. However, the nonlinear friction and force ripple effects inherent in linear stages provide an obstacle to the required level of force control. A model of a single motor stage has been developed including dynamic friction effects. Based on this model, a robust nonlinear force controller has been designed to meet the microassembly requirements. The controller has been tested in simulation to demonstrate its effectiveness.
Conference: 2003 ASME International Mechanical Engineering Congress
Proceedings: Proceedings of IMECE''03
Location: Washington, MD
Keywords: Control;force control;linear motor;Micro/Nano Systems;microassembly;Robotics & Intelligent Systems;sliding mode control
Research Areas:
PDF version: PDF Document Click here to retrieve PDF version of paper (906KB)