NIST logo

Publication Citation: Learning to Set Up Numerical Optimizations of Engineering Designs

NIST Authors in Bold

Author(s): Mark Schwabacher; T Ellman; H Hirsh;
Title: Learning to Set Up Numerical Optimizations of Engineering Designs
Published: January 01, 1998
Abstract: Gradient-based numerical optimization of complex engineering designs offers the promise of rapidly producing better designs. However, such methods generally assume that the objective function and constraint functions are continuous, smooth, and defined everywhere. Unfortunately, realistic simulators tend to violate these assumptions, making optimization unreliable. Several decisions that need to be made in setting up an optimization, such as the choice of a starting prototype, and the choice of a formulation of the search space, can make a difference in the reliability of the optimization. Machine learning can improve gradientbased methods by making these choices based on the results of previous optimizations. This article demonstrates this idea by using machine learning for four parts of the optimization setup problem: selecting a starting prototype from a database of prototypes, synthesizing a new starting prototype, predicting which design goals are achievable, and selecting a for- mulation of the search space. We use standard tree-induction algorithms (C4.5 and CART). We present results in two realistic engineering domains: racing yachts, and supersonic aircraft. Our experimental results show that using inductive learning to make setup decisions improves both the speed and the reliability of design optimization.
Citation: Artificial Intelligence in Engineering
Volume: 12:2
Keywords: Case-Based Reasoning;Decision Tree Induction;Engineering Design;Numerical Optimization;Reformulation
Research Areas: Manufacturing
PDF version: PDF Document Click here to retrieve PDF version of paper (323KB)