Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Empirical Modeling of Electromagnetic Accoustic Transducer Data

Published

Author(s)

Kevin J. Coakley, A V. Clark, C S. Hehman

Abstract

We characterize the observed phase and amplitude of acoustic birefringence data collected with an electromagnetic acoustic transducer (EMAT). Our characterization models are extended versions of an idealized model for acoustic birefringence. In the extended models, angle-dependent terms account for observed variability in phase and amplitude which is not predicted by the idealized theory. Possible sources of this extra variability include material inhomogeneity and angle-dependent sensor gain. The adjustable parameters in the model are determined by minimizing the sum of the squared phase residuals plus the sum of the squared amplitude residuals. To facilitate convergence, we determine the model parameters by fitting the extended models sequentially according to model complexity. Ten experimental data sets were collected from the same sample. We estimate the mean value of each model parameter and its associated standard error. For each extended model, we estimate the mean phase delay between the fast and slow modes. We also estimate the mean rotation angle of the pure-mode polarization directions (relative to a reference coordinate system in the specimen). From run to run, we observed phase data drift. However, the difference between the phases of the slow and fast modes did not follow this drift.
Citation
- 5087
Report Number
5087

Keywords

acoustic birefringence, spatial variability, statistical modeling, stress determination, ultrasonics

Citation

Coakley, K. , Clark, A. and Hehman, C. (1999), Empirical Modeling of Electromagnetic Accoustic Transducer Data, - 5087, National Institute of Standards and Technology, Gaithersburg, MD (Accessed April 24, 2024)
Created August 1, 1999, Updated October 16, 2008