Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Finite Element Modeling of Hybrid Polymer Composite Beams

NIST Authors in Bold

Author(s): Hai C. Tang; Tze J. Chuang; Tinh Nguyen; Joannie W. Chin; Hanchang F. Wu;
Title: Finite Element Modeling of Hybrid Polymer Composite Beams
Published: Date Unknown
Abstract: Fiber-reinforced polymeric composites provide lightweight, high strength, and corrosive resistance to severe environmental exposures. These composites have been extensively used in aerospace and military application over the last three decades and are being extended into civil engineering applications. The elastic modulus of glass fiber is approximately the same as that of aluminum, which is one-third that of steel. Thus, glass fiber reinforced alone composites can not replace steel or reinforced concrete in infrastructure applications because the load will cause excessive deflection. However, carbon fiber has the same or even higher modulus than that of steel. Unfortunately, carbon fiber is expensive in comparison to conventional construction materials, such as steel and reinforced concrete. Hybrid carbon fiber/glass fiber reinforced polymer composites have been considered to be economically feasible and have the strength and toughness to substitute for steel and steel reinforced concrete in infrastructure applications. A carbon fiber/glass fiber hybrid polymer composite beam can achieve the same yield strength and about three fourths of the stiffness of an equivalent steel beam. In this paper, we use advanced finite element analysis (FEA) computing methods to model the internal stress field in carbon/glass fiber hybrid composites and compare its load carrying capacity with that of steel having equivalent dimensions.
Citation: ANSYS Users Group Conference
Keywords: beam,finite element modeling,hybrid polymer composites,infrastructure beams carbon/glass hybrid,pultrusion residual stresses,structure performance
Research Areas: