
A VVSG-derived model of election data

David Flater, National Institute of Standards and Technology

2009-09-08

Abstract

An effort to define a common data format for voting systems should begin with a data model
that specifies the relevant concepts. To accelerate adoption and minimize conflicts, such a model
should define the smallest set of concepts needed by the desired functionality. We present a small
data model that suffices to cover the election definition and vote data reporting requirements of
VVSG 2.0, with the exception of reporting for ranked order contests. This model may be used
as the basis for continued work, in whole or in part, without restriction.

1 Introduction

The NIST Common Data Format Workshop was organized to identify and agree upon a set of
requirements for a common data format for voting systems. For the most part, those requirements
will follow from the goals that are identified for the format. However, regardless of what specific
goals are chosen, we anticipate agreement that a common data format should be based on a coherent
data model with strong conceptual integrity. In addition, to the extent that support for the common
data format could potentially someday become a requirement for voting system certification, the
format should support all of the voting variations defined in the Voluntary Voting System Guidelines
(VVSG) [1].

In support of those objectives, we present a small data model that suffices to cover the election
definition and vote data reporting requirements of VVSG 2.0, with the exception of reporting for
ranked order contests. While the VVSG’s lone requirement on ranked order reporting (Part 1
Req. 7.8.3.3-D) improves on the complete absence of such requirements in previous versions of the
VVSG, it still leaves much unspecified. A supporting data model would need to evolve in conjunc-
tion with requirements as ranked order voting becomes more prevalent and applicable practices
evolve.

We present the data model in two parts. The first part, in Section 3, is a minor revision of the data
model that was used in Votetest [2] to structure test data for use in VVSG conformity assessment. It
covers election definition and votes but not reporting. The second part, in Section 4, is an extension
of the Votetest model to cover vote data reporting for non-ranked-order contests. Section 5 follows
with description of some interesting design decisions that impacted the model.

1

2 Assumptions

This paper adopts and extends the terminology of VVSG 2.0 [1, Appendix A].

All entities in the data model are implicitly scoped by an election. It is assumed that different
elections are stored in different databases, and any reuse of definitions from one election to another
is accomplished by copying over the relevant data.

The data model is constructed from an integrated, top-level viewpoint. In practice, different por-
tions of a voting system and different steps in the voting process will deal with only a portion of the
data at any given time. It is expected that users of the data model will project and extract data
from the integrated model as needed to support these limited viewpoints. Conceptual integrity is
supported by traceability to the integrated model.

3 Election definition and votes

The data model is described in Figure 1 by a Unified Modeling Language (UML) class diagram [3].
Following sections explain the diagram.

3.1 Basic data types

BallotCategory (CodeList, a.k.a. “extensible enum”) Arbitrary tag that may be applied to
Ballots; e.g., Early, Regular, InPerson, Absentee, Provisional, Challenged, NotRegistered,
WrongPrecinct, IneligibleVoter, Blank. Categories are jurisdiction-defined but are likely to
include several classes of provisional.

Boolean True/false data type.

ContestCountingLogic (enum) N-of-M, Cumulative, Ranked order, or Straight party selection.
(1-of-M is a special case of N-of-M.) The tabulation logic for a straight party selection Contest
is implicitly 1-of-M, but with side-effects for other Contests.

NaturalNumber Integer greater than zero.

Text Character string.

WholeNumber Integer greater than or equal to zero.

3.2 Classes

3.2.1 Ballot

The technology-independent, conceptual equivalent of a traditional paper ballot. The Contests that
appear on a particular Ballot are defined by its BallotConfiguration. The applicable Reporting-
Contexts include all those specified for its BallotConfiguration, but additional ReportingContexts
may be specified for the individual Ballot.

Attributes of Ballot:

2

Figure 1: Data model for election definition and votes (Votetest)

Name : Text
ReportingContext

Name : Text
Party

0..*

0..*

Name : Text
IsWriteIn : Boolean

Choice

«datatype»
Text

«datatype»
Boolean

0..*

0..1

Affiliation

Description : Text
CountingLogic : ContestCountingLogic
N : NaturalNumber
MaxWriteIns : WholeNumber
Rotate : Boolean

Contest

Name : Text
BallotConfiguration

1..*

0..*

«datatype»
NaturalNumber

«datatype»
WholeNumber

Categories[0..*] : BallotCategory
Accepted[1] : Boolean

Ballot

0..*

10..*

0..*

0..*0..*

Value : NaturalNumber
VoterInput

0..*

0..*

0..*

1

0..*

Alias

Value : NaturalNumber
Endorsement

0..*

0..*

N-of-M
Cumulative
Ranked order
Straight party selection

«enumeration»
ContestCountingLogic

Early
Regular
InPerson
Absentee
Provisional
Challenged
NotRegistered
WrongPrecinct
IneligibleVoter
Blank

«enumeration»
BallotCategory
 «CodeList»

3

Categories Arbitrary, jurisdiction-defined tags applied to the Ballot; e.g., Early, Regular, In-
Person, Absentee, Provisional, Challenged, NotRegistered, WrongPrecinct, IneligibleVoter,
Blank.

Accepted True if the Ballot should be counted, false if not (e.g., for a provisional Ballot that was
not accepted).

3.2.2 BallotConfiguration

Set of Contests and ReportingContexts that is inherited by all Ballots of that configuration. Ballot-
Configuration is the conceptual equivalent of the paper ballot form that is handed to voters, while
Ballot represents the filled-in ballot that goes in the ballot box. Depending on the type of election
and local practices, a jurisdiction would define a separate BallotConfiguration for each precinct,
each split within a precinct, and/or for each political party.

Attributes of BallotConfiguration:

Name Human-readable identifier.

A closely related concept that is defined in VVSG 2.0, but not included in the data model, is
ballot style. The presentation issues that distinguish multiple ballot styles for the same ballot
configuration from each other have been abstracted out of the model, and to an extent it is possible
to merge the concepts with negligible impact. (In Votetest, this class was called BallotStyle simply
because that term was more familiar to the audience than ballot configuration.) However, the
distinction between the two concepts becomes important in the reporting requirements.

3.2.3 Choice

One of the things you can vote on in a Contest, such as a candidate, a political party, or yes or
no. Choice is scoped by Contest, so even if the same person runs as a candidate in two or more
Contests, those separate candidacies are represented by separate Choices. Choices do not map 1:1
with ballot positions—a Choice uniquely identifies a candidate, while a given ballot position might
just be a generic write-in slot.

Attributes of Choice:

Name Human-readable identifier.

IsWriteIn True if the Choice is a write-in candidate, false if not.

N.B., Choices could have complex descriptive data associated with them that must be displayed to
the user somehow, but this capability was not needed by Votetest.

4

3.2.4 Contest

Subdivision of a Ballot corresponding to a single question being put before the voters, consisting
of header text, a discrete set of Choices, and possibly write-in opportunities. It is possible for a
Contest to have zero Choices, e.g., if there are no registered candidates but write-ins are being
accepted. Choices corresponding to the candidates written in would be added later.

Attributes of Contest:

Description Human-readable header text.

CountingLogic Identifies the tabulation method used for the Contest.

N For CountingLogic other than ranked order, N is the maximum number of votes that may be
cast in the Contest by a given voter. In an N-of-M Contest, the voter may cast at most one
vote for each Choice, so N is equal to the maximum number of Choices that the voter may
select without overvoting.1 In a cumulative Contest, there is no such constraint—the voter
may cast more than one vote for a given Choice.

Typically, N also is the number of winners for the Contest, but not necessarily. The voting
system only needs to gather votes and report the totals; the picking of winners may be an
external process impacted by election law, late-breaking judicial rulings, etc. However, for
ranked order Contests, N is specifically the number of Choices to be elected, and has no other
meaning.

MaxWriteIns The number of ballot positions allocated for write-ins; the maximum number of
candidates that the voter may write in. Any value between zero and N is possible.

Rotate True if the ordering of Choices within the Contest should be rotated, false if not.

3.2.5 Party

Surrogate for real-world political party.

Attributes of Party:

Name Unique human-readable identifier.

3.2.6 ReportingContext

Particular scope within which the system must be capable of generating reports. E.g., to support
reporting at the precinct level, there must be a ReportingContext for each precinct.

The association between ReportingContexts and individual tabulators, precincts, election districts,
political parties, ballot categories, or other arbitrary scopes of reporting is jurisdiction-defined
and jurisdiction-managed, mostly using BallotConfigurations. Any relationship between particular
administrative divisions (predicts, election districts, etc.) and Contests appearing on the ballot in
those administrative divisions is implemented by BallotConfigurations.

1The value of M, for N-of-M voting, is simply the number of Choices associated with the Contest and is not
explicitly modelled.

5

The ways in which ReportingContexts overlap or include one another is entirely determined by the
assignment of multiple ReportingContexts to BallotConfigurations and Ballots.

Attributes of ReportingContext:

Name Human-readable identifier.

3.3 Named associations

3.3.1 Affiliation

Identifies the Party to which a candidate claims allegiance. Does not necessarily have anything to
do with Endorsements.

3.3.2 Alias

Identifies an alternative Choice that for tabulation purposes is considered equivalent to a particular
canonical Choice. Aliases will normally be variant spellings of a candidate’s name that appeared
in write-in positions.

3.3.3 Endorsement

Identifies a voter response that would be implied by a straight party vote for the endorsing Party.
Does not necessarily have anything to do with Affiliation.

Attributes of Endorsement:

Value Analogous to VoterInput Value, this is the vote recommended by the endorser.

In a 1-of-M or N-of-M Contest, an Endorsement with Value = 1 would exist for the single Choice
or for each of the Choices endorsed by the Party.

In a Cumulative Contest, Value may take on values greater than 1. For example, if the Party
recommended that voters cast two votes for the first Choice and one vote for the second, an
Endorsement with Value = 2 would exist for the first Choice and an Endorsement with Value = 1
would exist for the second Choice.

In a Ranked order Contest, Value contains the ranking that the Party recommends that voters
assign to each Choice, with Value = 1 for the most preferred Choice.

6

3.3.4 VoterInput

The response that a particular Ballot provides for a particular Choice.

Attributes of VoterInput:

Value The response of the voter in some ballot position. The absence of a response is equivalent to
a Value of 0 except in ranked order contests, where the behavior is implementation-defined.

In a 1-of-M or N-of-M Contest, a VoterInput with Value = 1 would exist for the single Choice or
for each of the Choices for which the voter voted.

In a Cumulative Contest, Value may take on values greater than 1. For example, if a voter cast
two votes for the first Choice and one vote for the second, a VoterInput with Value = 2 would exist
for the first Choice and a VoterInput with Value = 1 would exist for the second Choice.

In a Ranked order Contest, Value contains the ranking that the voter assigns to each Choice, with
Value = 1 for the most preferred Choice.

3.4 Unnamed associations

3.4.1 Ballot–BallotConfiguration

Every Ballot has a BallotConfiguration that determines which Contests appear on it as well as
ReportingContexts in which it should be reported.

3.4.2 Ballot–ReportingContext

Every Ballot must be reported in at least one ReportingContext (per Constraint V), and will
usually be reported in several (to implement multiple levels of reporting). In most cases, this
follows as a consequence of BallotConfiguration–ReportingContext associations. However, in cases
where the ReportingContexts in which a Ballot should be reported are not fully determined by its
BallotConfiguration, a Ballot may be directly and explicitly associated with ReportingContexts.

3.4.3 BallotConfiguration–Contest

A BallotConfiguration identifies a set of Contests that appear on every Ballot having that config-
uration.

3.4.4 BallotConfiguration–ReportingContext

As described under Ballot–ReportingContext, the ReportingContexts in which a Ballot should be
reported are usually determined by associations between its BallotConfiguration and Reporting-
Contexts.

3.4.5 Choice–Contest

Every Choice belongs to exactly one Contest.

7

3.4.6 Party–ReportingContext

In primary elections, ReportingContexts may be established to enable breaking down results by
Party even in non-party-specific Contests.

3.5 Constraints

I. For N-of-M and straight party selection Contests, the Value attribute of VoterInput or En-
dorsement must be 1. For cumulative Contests, 1 ≤ Value ≤ N. (Deliberately, there is no
analogous constraint for ranked order Contests.)

II. (In Contest) N > 0.

III. (In Contest) 0 ≤ MaxWriteIns ≤ N.

IV. In Contests with CountingLogic = Straight party selection, N = 1 and MaxWriteIns = 0.

V. Every Ballot must be associated with at least one ReportingContext either directly or through
its BallotConfiguration. (Otherwise the Ballot would never be reported.)

VI. A Ballot cannot have a VoterInput for a Choice in a Contest that does not appear in its
BallotConfiguration.

VII. A given BallotConfiguration may contain at most one Contest with CountingLogic = Straight
party selection.

VIII. A Contest with CountingLogic = Straight party selection cannot be straight-party-votable
(i.e., there can be no Endorsements referring to its Choices).

IX. In Contests with CountingLogic = Straight party selection, the Names of the Choices must
match the Names of Parties.

X. Party names must be unique.

XI. The Choice that an Alias cites as canonical cannot be aliased. (Corollary: There can be no
cycles or self-referential Aliases.)

XII. The Choice that an Alias cites as canonical must be in the same Contest.

XIII. The Choice referenced by an Endorsement must be canonical (it cannot be an Alias).

XIV. A Ballot cannot have VoterInput for more write-in Choices in a given Contest than is allowed
by the MaxWriteIns attribute of the Contest.

Votetest imposed two other constraints for testing purposes, but these are not appropriate for other
applications of the model:

• A Ballot may not simultaneously have VoterInput for a Choice and an Alias of that Choice.
(The handling of double votes for a given candidate resulting from write-in reconciliation is
deliberately unspecified in the VVSG, so for testing purposes it was considered an error.)

• A Ballot may not simultaneously have VoterInput in a straight-party-votable Contest and
a straight party vote that implies votes in that same Contest. (Resolution of straight party
overrides is deliberately unspecified in the VVSG, so for testing purposes they were considered
to be errors.)

8

3.6 Usage for all VVSG voting variations

3.6.1 In-person voting

No special requirements.

3.6.2 Absentee voting

Absentee voting is implemented in several different ways in practice, and it can be implemented in
several different ways using this model.

1. Absentee Ballots can be tagged with the Absentee category and otherwise mingled with other
Ballots.

2. A separate ReportingContext can be created for absentee Ballots and applied to the individual
absentee Ballots.

3. A separate BallotConfiguration can be used for absentee Ballots.

While the first option is the least invasive, absentee Ballots are in practice sometimes processed
as a separate precinct, which usually means both a separate ReportingContext and a separate
BallotConfiguration.

3.6.3 Review-required ballots

Use Categories and Accepted attributes of Ballot as needed.

3.6.4 Write-ins

The number of write-ins permitted is an attribute of the Contest. If the write-in is new, a new
Choice is created for it (with IsWriteIn = true). Votes are then associated with that Choice. Alias
associations are created as applicable during write-in reconciliation.

3.6.5 Split precincts

Ballots are associated with the ReportingContexts pertaining to the applicable precinct and election
district. If different BallotConfigurations are used for each split, the associations can be made on
the BallotConfigurations. Otherwise, each Ballot must be individually associated.

3.6.6 Straight party voting

A single Contest is created with CountingLogic = Straight party selection and Choice Names
being equal to the Names of the available Parties. In every other Contest that is straight-party-
votable, the straight party behaviors are configured by creating Endorsement associations between
the Choices and the Parties.

9

3.6.7 Cross-party endorsement

See straight party voting. Create additional Endorsement associations as needed for multiply
endorsed Choices.

3.6.8 Ballot rotation

Rotate is a Boolean attribute of Contest. The implementation of variable mapping between Choices
and ballot positions is out of scope because ballot positions are abstracted out of the model.
However, in paper-based systems, rotation may involve a proliferation of ballot styles for each
ballot configuration.

3.6.9 Primary elections

Create BallotConfigurations and ReportingContexts as needed to support the different political
parties and unaffiliated voters. Non-party-specific Contests appear in all BallotConfigurations
while party-specific Contests only appear in those BallotConfigurations applicable to the relevant
Party.

3.6.10 Closed primaries

Assignment of BallotConfigurations to voters is procedural and out of scope.

3.6.11 Open primaries

Assignment of BallotConfigurations to voters is procedural and out of scope.

3.6.12 Provisional / challenged ballots

Use Categories and Accepted attributes of Ballot as needed.

3.6.13 1-of-M voting

Set ContestCountingLogic = N-of-M and set N = 1.

3.6.14 N-of-M voting

Set ContestCountingLogic = N-of-M and set N appropriately.

3.6.15 Cumulative voting

Set ContestCountingLogic = Cumulative and set N appropriately.

10

3.6.16 Ranked order voting

Set ContestCountingLogic = Ranked order and set N appropriately. VoterInput Values specify the
rankings as provided on each Ballot.

4 Reporting

Figure 2 shows an example report that satisfies VVSG requirements for contests other than ranked
order voting. Certain requirements are satisfied through indirect means. Part 1 Req. 7.8.3.2-C.1
(report separate ballot counts for each party in primary elections) is satisfied because each party
gets a different ballot configuration and counts are already broken down by ballot configuration.
Part 1 Req. 7.8.3.2-C.2 (report counted provisional ballots) and Req. 7.8.3.2-C.3 (report blank
ballots) are satisfied by assuming support for the more general capability to break down ballot
counts by category and defining categories for blank ballots and provisional ballots.

Figure 3 shows an extension of the Votetest data model to support the vote data reporting require-
ments of the VVSG as interpreted by the example. Note that other reports, such as equipment
readiness reports and audit log reports, are not covered by this model.

4.1 Classes

The new classes added for vote data reporting functionality are a top-level class, VoteDataReport,
and six classes that are related to it by composite aggregation. The six contained classes include
four that give structure to Contest-independent ballot counts, which the VVSG requires both in
total and broken down by BallotConfiguration, and two that give structure to the vote totals and
ballot counts that must be reported for each Contest. The pertinent requirements appear in Part 1
Sections 7.8.3.2 and 7.8.3.3 of the VVSG.

Every part of the VoteDataReport is scoped by the ReportingContext with which it is associated
and the Timestamp indicating the point in time at which the report was generated.

4.1.1 CategoryCounts

Report of the number of Ballots of a particular BallotCategory (but any BallotConfiguration)
that were read and counted within the ReportingContext. The distinction between “read” and
“counted” is as defined in the VVSG, with provisional and challenged ballots normally accounting
for any ballots that were read but not counted.

4.1.2 ChoiceTotal

Report of the number of valid votes for a particular Choice. Totals are reported only for canonical
Choices; votes for Aliases are included in the total for the canonical Choice.

11

Figure 2: Sample report

Report for context Precinct 1 generated 2009-03-19 10:07:30-0400

BALLOT COUNTS

Configuration Cast Read Counted
------------- ---- ---- -------
Total 15 15 14

Provisional 2 1
Blank 1 1

Bipartisan Party Style 5 5 5
Provisional 1 1

Blank 1 1
Moderate Party Style 10 10 9

Provisional 1 0

VOTE TOTALS

Nonpartisan office, vote for at most 1
Car Tay Fower 4
Tayra Tree 3
Overvotes 1
Undervotes 6
Counted ballots 14

Nominee of the Bipartisan Party, vote for at most 1
Beeso Tu 2
Oona Won 1
Overvotes 0
Undervotes 2
Counted ballots 5

Nominee of the Moderate Party, vote for at most 1
Wu Fife 5
Nada Zayro 0
Overvotes 0
Undervotes 4
Counted ballots 9

12

Figure 3: Data model for reporting

Name : Text
ReportingContext

Name : Text
IsWriteIn : Boolean

Choice

«datatype»
Text

«datatype»
Boolean

Description : Text
CountingLogic : ContestCountingLogic
N : NaturalNumber
MaxWriteIns : WholeNumber
Rotate : Boolean

Contest

Name : Text
BallotConfiguration

«datatype»
NaturalNumber

«datatype»
WholeNumber

Alias

BallotsRead : WholeNumber
BallotsCounted : WholeNumber

CategoryCounts

BallotsCast : WholeNumber
BallotsRead : WholeNumber
PagesRead[0..1] : WholeNumber
BallotsCounted : WholeNumber

ConfigurationCounts

Overvotes : WholeNumber
Undervotes : WholeNumber
BallotsCounted : WholeNumber

ContestTotals

Votes : WholeNumber
ChoiceTotal

Timestamp : Text
VoteDataReportBallotsCast : WholeNumber

BallotsRead : WholeNumber
PagesRead[0..1] : WholeNumber
BallotsCounted : WholeNumber

Counts

No totals for aliases

BallotsRead : WholeNumber
BallotsCounted : WholeNumber

ConfigurationCategoryCounts

1

0..*

0..*

0..*

1 0..*

0..*

1

0..*

1

0..*

1

0..*

0..*

1

1 0..*
0..*

0..*

0..*

1

0..*

1..* 0..*

0..*

Early
Regular
InPerson
Absentee
Provisional
Challenged
NotRegistered
WrongPrecinct
IneligibleVoter
Blank

«enumeration»
BallotCategory
 «CodeList»

13

4.1.3 ConfigurationCategoryCounts

Report of the number of Ballots of a particular BallotCategory and BallotConfiguration that were
read and counted within the ReportingContext. Similar to CategoryCounts, but scoped by a specific
BallotConfiguration.

4.1.4 ConfigurationCounts

Report of the number of Ballots of a particular BallotConfiguration (but any BallotCategory) that
were cast, read and counted within the ReportingContext. The distinction between “cast,” “read”
and “counted” is as defined in the VVSG, with unreadable paper ballots normally accounting for
any ballots that were cast but not read. An optional PagesRead attribute is provided to enable
satisfaction of VVSG Part 1 Req. 7.8.3.2-B.1, which only applies when there are multi-page paper
ballots.

4.1.5 ContestTotals

Report of the number of overvotes and undervotes for a particular Contest, and the number of
Ballots including that Contest that were counted within the ReportingContext.

4.1.6 Counts

Report of the number of Ballots of any BallotCategory and BallotConfiguration that were cast,
read and counted within the ReportingContext. Similar to ConfigurationCounts, but not scoped
by a specific BallotConfiguration.

In the trivial case of a VoteDataReport that reports on zero ballots, an instance of Counts is the
only report content that would be required.

4.1.7 VoteDataReport

Report of all vote data pertinent to a particular ReportingContext as of the time indicated in the
Timestamp attribute.

5 Design decisions

The limited size and scope of the data model presented here belie the subtlety of some aspects of
its design. Some interesting design decisions are described in the following subsections.

14

5.1 No explicit associations among ReportingContexts

Election management systems generally provide some functionality to allow election officials to set
up administrative divisions, such as precincts and election districts, in some regular structure that
facilitates hierarchical accumulation of votes. The votes from a particular precinct are automatically
included in the totals for the larger administrative divisions that contain it. The implied model is
one of nested ReportingContexts forming a tree structure.

However, administrative divisions do not actually form a tree structure, as shown by the coun-
terexample (and associated technical workarounds) of split precincts. Despite expectations to the
contrary, the partitioning of the region that is done by one authority need have no similarity to
the partitioning that is done by another authority. Any relationships among the administrative
divisions at different levels are fortuitous and possibly convenient, but unreliable as a basis for
roll-up of results.

Instead of representing an inheritance-based reporting structure with exceptions, which is then
interpreted to determine the contexts in which a Ballot should be reported, the data model presented
here associates all applicable ReportingContexts directly with BallotConfigurations (or, if needed,
with individual Ballots). In concrete terms, instead of representing that Ballot B is in Precinct P
and that Precinct P is in District D, it simply represents that Ballot B is in Precinct P and in
District D. The fact that Precinct P is fully contained in District D, if it is the case, is evidenced
by the fact that every ballot in Precinct P is also in District D; but that association between P and
D is not directly represented in the model.

This approach supports any possible reporting structure without resort to workarounds. Moreover,
it does not force any changes to the structural view that the election management system presents to
election officials. The inheritance tree of ReportingContexts is simply “compiled” into an equivalent
set of associations between BallotConfigurations and ReportingContexts. The preservation of the
“syntactic sugar” view of ReportingContexts that an election management system presents may be
desirable in a common data format, but it is not essential for the scope of functionality required
by the VVSG.

5.2 VoterInput is an association class

At first glance, voter input is most likely viewed as an attribute of Ballot or as a regular class;
however, refinement of the model reduced it to an association between Ballot and Choice whose
attribute quantifies the number of votes cast in a non-ranked Contest or the ranking in a ranked
order Contest. Conceptually, VoterInput establishes a new association between a Ballot and the
Choices that is distinct from the association that already exists by virtue of the BallotConfiguration.

The Endorsement association is symmetrical with VoterInput except that it relates to a Party
instead of a particular Ballot. As modelled, a party’s set of endorsements forms a voting template,
providing affiliated voters with a recommended set of votes to cast.

5.3 On the meaning of N

In the commonly used term N-of-M voting, there are three possible interpretations of N: the number
of seats to fill (number of Choices to be elected), the maximum number of Choices that may be
selected in the Contest by a given voter, or the maximum number of votes that may be cast in

15

the Contest by a given voter. Usually, these quantities will be equal, but they are not necessarily
equal, so it is important to decide which of them must be represented in a minimal data model.

In N-of-M Contests, Constraint I causes the latter two possibilities to be equivalent. Only in
cumulative Contests might they be distinguished. However, the VVSG does not require support
for esoteric variants of cumulative voting, so the latter two possibilities can be merged.

The output of the voting system is a list of choices with their vote totals, sorted into descending
order. In order to generate this ranking, the voting system needs to know the maximum number
of votes that may be cast in the Contest by a given voter, as this is what distinguishes votes from
overvotes. However, the voting system does not need to know the number of seats to fill. Having
generated a ranking of candidates, the voting system can leave the task of declaring winners as
an exercise for election officials. Any complications resulting from the disqualification or death of
candidates or other external factors then have no effect on the validity of the system’s report. The
vote totals have been reported and the task of the voting system is complete.

Unfortunately, this design decision cannot be applied consistently for ranked order voting. Since the
voter is just ranking all of the candidates, there is no analog to maximum number of votes; however,
an implementation of ranked order voting cannot reach a reportable result without knowing the
number of winners. So in the case of ranked order voting, N is defined (inconsistently) as the
number of Choices to be elected.

While it was expedient within the original application of the data model, the inconsistent interpre-
tation of N for ranked order voting is a conceptual integrity compromise that should be removed
through subclassing of Contest when support for ranked order voting is improved overall.

5.4 A Choice is scoped by a Contest

While a particular person may be running as a candidate in more than one Contest, that fact and
the additional complexities attached to it are unnecessary for the function that the voting system
must accomplish. Instead, we use a simpler abstraction that suffices for the functional view. The
“black diamond” composite aggregation relationship from Choice into Contest specifies that a given
Choice exists as a part of exactly one Contest. If a person runs as a candidate in two contests,
then there are two separate Choices, one associated with each of the two contests, that happen to
display the same name.

5.5 Accounting for every ballot

While it is commonly understood that some ballots may be cast that are not counted for one reason
or another, the VVSG distinguishes that in paper-based systems there are actually three possible
outcomes. A paper ballot that is found in a ballot box or received as a mail-in absentee ballot,
but that is so damaged that its content cannot be recovered, is cast but not read or counted. A
readable ballot of any sort that is not counted because of failure to register, voting in the wrong
precinct, or other anomalies is cast and read but not counted. A ballot with no such problems is
cast, read and counted. By separating the cases, it becomes possible to do ballot accounting in
terms of physical ballots received and in terms of ballots interpreted by the voting system, without
ambiguity.

16

5.6 Accounting for every vote

The content of ContestTotals, together with the associated ChoiceTotals, suffices to account for
every vote cast in a given Contest and ReportingContext.

Letting Vi represent the value of the Votes attribute of ChoiceTotal associated with a particular
Choice in the Contest, the following equation should hold:∑

Vi + Overvotes + Undervotes = BallotsCounted×N

Critically, the Overvotes and Undervotes values are defined in the VVSG as reporting the number
of votes, as opposed to simply the number of Ballots that exhibited the relevant voting behavior,
as is sometimes done.

6 Conclusion

We have presented a small data model that suffices to cover the election definition and vote reporting
requirements of VVSG 2.0, with the exception of reporting for ranked order contests. Assuming
that VVSG compliance is among the goals of a common data format, this contribution should
expedite the process of constructing an underlying common data model, either by providing the
starting point for that work or by inspiring others to propose significantly different alternatives.

Continued evolution of this model should include revisiting ranked order voting in coordination with
an expansion of the ranked order reporting requirements in the VVSG. Depending on the goals
and scope of a common data format, extensions to cover other reports such as equipment readiness
reports and audit log reports may also be needed. It may also be desirable to represent explicitly the
relationships that exist among ReportingContexts at different levels. Finally, additional attributes,
such as for storing complex descriptive data associated with Choices, may need to be added to
support important but non-standardized requirements of elections in practice.

Acknowledgment

Thanks to Ed Barkmeyer, Vadim Okun and Lynne Rosenthal for their reviews and comments.

References

[1] Election Assistance Commission. Voluntary Voting System Guidelines Recommendations to
the Election Assistance Commission, August 31, 2007. http://purl.org/net/dflater/VVSG/
20070831.

[2] Votetest test suite for the VVSG-NI, version 1.0, April 1, 2009. http://vote.nist.gov/
SystemTesting/reviewer-notes-votetest.htm.

[3] OMG Unified Modeling Language specification, version 2.2. Documents formal/2009-02-02 and
formal/2009-02-04, Object Management Group, February 2009. http://www.omg.org/spec/
UML/2.2/.

17

http://purl.org/net/dflater/VVSG/20070831
http://purl.org/net/dflater/VVSG/20070831
http://vote.nist.gov/SystemTesting/reviewer-notes-votetest.htm
http://vote.nist.gov/SystemTesting/reviewer-notes-votetest.htm
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/

	Introduction
	Assumptions
	Election definition and votes
	Basic data types
	Classes
	Ballot
	BallotConfiguration
	Choice
	Contest
	Party
	ReportingContext

	Named associations
	Affiliation
	Alias
	Endorsement
	VoterInput

	Unnamed associations
	Ballot--BallotConfiguration
	Ballot--ReportingContext
	BallotConfiguration--Contest
	BallotConfiguration--ReportingContext
	Choice--Contest
	Party--ReportingContext

	Constraints
	Usage for all VVSG voting variations
	In-person voting
	Absentee voting
	Review-required ballots
	Write-ins
	Split precincts
	Straight party voting
	Cross-party endorsement
	Ballot rotation
	Primary elections
	Closed primaries
	Open primaries
	Provisional / challenged ballots
	1-of-M voting
	N-of-M voting
	Cumulative voting
	Ranked order voting

	Reporting
	Classes
	CategoryCounts
	ChoiceTotal
	ConfigurationCategoryCounts
	ConfigurationCounts
	ContestTotals
	Counts
	VoteDataReport

	Design decisions
	No explicit associations among ReportingContexts
	VoterInput is an association class
	On the meaning of N
	A Choice is scoped by a Contest
	Accounting for every ballot
	Accounting for every vote

	Conclusion

