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This Talk

Goal: give an example of these emerging connections:

Connect behavior of correlation functions to
entanglement



Entanglement

Entanglement in quantum information science is a resource
(teleportation, quantum key distribution, metrology, ...)

Ex. EPR pair ‘¢+> = (|0,0) + |1, 1>)/\ﬁ

How to quantify it?

Bipartite Pure State Entanglement
Given |1)) 4 g, its entropy of entanglement is

E(|Y)ag) := S(pa) = S(pB)

Reduced State: p4 := trB(|¢> <¢‘AB)

Entropy: S(p) = —tr(plog p) (Renyi Entropies: So(p) := = log tr(p®))



Entanglement in Many-Body
Systems

A quantum state ( of n qubits is a vector in (@2)@715 c?"

[O) = > Cirpin i)

For almost every state ¢, S(X),, = |X]| (for any X with |X| <n/2)
|X]| := #qubits in X

Almost maximal
~— entanglement

Exceptional Set
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Area Law
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Def: y satisfies an area law if there is
c > 0 s.t. for every region X,

S(X) < c Area(X)

Entanglement is Holographic
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Def: y satisfies an area law if there is
c > 0 s.t. for every region X,

S(X) < c Area(X)

Entanglement is Holographic

When do we expect an area law?

Low-energy states of many-body local

models: H |1)g) = Eg|to)




Area Law

Area(X) W

g g g g g Def: satisfies an area law if there is

S i c > 0 s.t. for every region X,

@@ e e

® @ @ 0 0 S(X) < c Area(X)

@@ e e

@@ e e Entanglement is Holographic

@@ N

® o0 e When do we expect an area law?

H— o Low-energy states of many-body local

H; =25 Hii models: H o) = Eol|wo)

(Bombeli et al ’86) massless free scalar field (connection to Bekenstein-Hawking entropy)
(Vidal et al ‘03; Plenio et al’05, ...) XY model, quasi-free bosonic and fermionic models, ...
(Holzhey et al “94; Calabrese, Cardy ‘04) critical systems described by CFT (log correction)

(Aharonov et al ‘09; Irani ‘10) 1D model with volume scaling of entanglement entropy!



Why is Area Law Interesting?

* Connection to Holography.

* Interesting to study entanglement in physical states with
an eye on quantum information processing.

* Area law appears to be connected to our ability to write-
down simple Ansatzes for the quantum state.

(e.g. tensor-network states: PEPS, MERA)

This is known rigorously in 1D:



Matrix Product States

(Fannes, Nachtergaele, Werner '92; Affleck, Kennedy, Lieb, Tasaki ‘87)
2

), = E...itr(AiE”...AiEl”])‘il,...,in>, A" € Mar(D, D)
=1

i =1
D : bond dimension

D—l/QzD:u,z') A= Z Az],ﬁ\iﬂ&aﬁ’

i=1 e 1,00,
. N N TN

 Only nD? parameters.

* Local expectation values computed in nD? time

e Variational class of states for powerful DMRG (White ‘)
 Generalization of product states (MPS with D=1)



MPS & Area Law

I I
X Y

* For MPS, S(p,) <log(D)

 (Vidal’03; Verstraete, Cirac ‘05)

If ¢ satisfies S(py) < log(D) for all X,
then it has a MPS description of bond dim. D

(obs: must use Renyi entropies)



Correlation Length

Correlation Function:

cor(X 1 Z)y 1=
max_(P|M @ N|ip) — ([ M|1p) (| N|h)

MeX,NeY

Correlation Length: | has correlation length ¢ if for every regions X, Z:

cor(X : Z)ljJ < -dist(X,2) /¢

dist(X, Z) := minge x .cz dist(z, 2)



When there is a finite
correlation length?

(Hastings ‘04) In any dim at zero temperature for gapped models
(for groundstates; € = O(1/gap))

(Hastings '11; Hamza et al '12; ...) In any dim for models with mobility gap
(many-body localization)

(Araki ‘69) In 1D at any finite temperature T
(for p = e/T/Z; €= 0(1/T))

(Kliesch et al ‘13) In any dim at large enough T

(Kastoryano et al ‘12) Steady-state of fast converging dissipative
processes (e.g. gapped Liovillians)



Area Law from Correlation Length?

p
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Area Law from Correlation Length?

'Y
0000600060000 Ent(X:XC)zE Ent(X : X7)
eeeee eeeee |
XK eee e X -
ee e ee e ~ > 9—dist(X,2) /€

1€X¢

ee e ee e
ee e XK = O(Area(X)¢§)
ee e eeeeeoe
0000 Cee0 © That’s incorrect!
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Ex. For almost every n qubit state: S(X) = vol(X)
p <27

C
and foralliin X, [|[PXX¢ — Px & Px,

Entanglement can be scrambled, non-locally encoded
(e.g. QECC, Topological Order)



Area Law from Correlation Length?
V) xvz
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Suppose Px 7 = PxX & pPz.



Area Law from Correlation Length?

M) xx. I V)77
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Suppose Pxz = Px X Pz.

Then |¢>XYZ — (UX—Z_>Y =y IXZ)|77>X7 X ‘V>Z7

X is only entangled with Y



Area Law from Correlation Length?

/@@/—> ’V>27\ V) xy 2
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X Y V4

Suppose Px 7 = Ppx & Pz

Then |¢>XYZ — (UX—Z_>Y =y IXZ)|77>X7 X ‘V>Z7

X is only entangled with Y

What if merely cor(X : Z) < 9=l/& 5



Area Law from Correlation Length?
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Suppose Pxz ~ px X Pz

Then V) xvz = (Ux%_,v @ Ixz)|N) x5 @ |V) ;%



Area Law from Correlation Length?

M) xx. I V)77
P — V) xvz
OOOOOOOOO‘OOOO;I/OOTOOOOOOOOOOOOOOOOOOOO
| A A )
! 1 |
X Y Z

Suppose Pxz = px K pz
Then V) xvz = (Uxz_y @ Ix2)|0) xx @ V) 47

True (Uhlmann’s thm). But we need 1-norm (trace-distance):
Pxz = pPpx Q pz = HPXZ — pPx & ,OZH1 <e¢€

||PXZ — px & ,OZ||1 .= QO?Z\?TEIU(M(PXZ — px & pz))

In contrast cor(X, Z) := rilabxtr((A R B)pxz — px ® pz))



Data Hiding States

Well distinguishable globally, but poorly distinguishable locally
(DiVincenzo, Hayden, Leung, Terhal '02)

Ex. 1 Antisymmetric Werner state w,; = (I —F)/(d?-d)
cor(A: B) <1/d | -0, ® | ~1/2
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(DiVincenzo, Hayden, Leung, Terhal '02)

Ex. 1 Antisymmetric Werner state w,; = (I —F)/(d?-d)
cor(A: B) <1/d | -0, ® | ~1/2
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S(X)=~(n-1)/2 X Y z




Data Hiding States

Well distinguishable globally, but poorly distinguishable locally
(DiVincenzo, Hayden, Leung, Terhal '02)

Ex. 1 Antisymmetric Werner state w,; = (I —F)/(d?-d)
cor(A: B)<1/d | -0, @ | =172

Ex. 2 Random state |1/J>XYZ with |X]|=|Z]| and |Y|=l
Cor(X : Z) S 2_Cl OOOOOOOOOOOOO'OOOOOO'OOOOOOOOOOOOO

S(X)=~(n-1)/2 X Y z

Ex. 3 (Hastings '07) Quantum Expanders States: States with big entropy
but s.t. for every regions X, Z far away from edge

cor(X : Z) < 27¢dsUXZ) i iiiieinienessinscanosanenes

I —
X z
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Area Law in 1D

(Hastings '07)
Hastings 04

(Hizstings €8 Finite Correlation 7?77

Gapped Ham > Length Area Law
(Vidal '03)
thm (Hastings ‘07) For H with spectral gap A and
unique groundstate W, for every region X,
S(X) . < /A MPS
(X), < exp(c/A) Representation

OOOOOOOOO‘OOOOOOOOOOOOOOOO

\ )
I

X
(Arad, Kitaev, Landau, Vazirani ‘12) S(X)Lp <c/A




Area Law in 1D

(Hastings '07)

f v

(Hastings '04)

> Finite Correlation plple.

Length ! Area Law

(vidal '03)@

MPS
Representation

Gapped Ham

(Rev. Mod. Phys. 82, 277 (2010))

“Interestingly, states that are defined by
guantum expanders can have exponentially
decaying correlations and still have large
entanglement, as has been proveniin (...)”



Correlation Length vs
Entanglement

thm 1 (B., Horodecki ‘12) Let W>1n be a quantum state in 1D
with correlation length €. Then for every X,

S(X), < 2¢
eeccecececcclecccccee (festines 0% ginite Correlation ™™™~
Gapped Ham Length ‘:/ \," A

l J Seeooes y

! Vidal’03£2'

X

) MPS

 The statement is only about quantum states, Representation

no Hamiltonian involved.

Applies to degenerate groundstates,
and gapless models with finite correlation length
(e.g. systems with mobility gap; many-body localization)



Summing Up

Area law always holds in 1D whenever there is a
finite correlation length:

Groundstates (unique or degenerate) of gapped models

Eigenstates of models with mobility gap (many-body localization)

Thermal states at any non-zero temperature

Steady-state of gapped dissipative dynamics

Implies that in all such cases the state has an
efficient classical parametrization as a MPS

(Useful for numerics — e.g. DMRG.
Limitations for quantum information processing
e.g. no-go for adiabatic guantum computing in 1D)



Proof Idea

OOOOOOOOO‘OOOOOOOOOOOOOOOOOOOOOOOOOOOO

\ J
!

X

We want to bound the entropy of X using the fact the correlation
length of the state is finite.

Need to relate entropy to correlations.



Random States Have Big Correl.

|<I>> |1/J>XYZ : Drawn from Haar measure

——
OOOOOO'OOOOO'OOOOOOOOOOOOOOOOOOOOO

1l J | J \ J
I i I

X Y Z
Let size(XY) < size(2). W.h.p. [0y — Ty ® Ty | =27%" 7x :=1id/dx

X is decoupled fromY.

Extensive entropy, but
also large correlations:

@)

U 77,7,

w>XYZ = ‘(I)>X21 ® ‘(I)>Y22

X7 . Maximally entangled state between XZ,.
1

Cor(X:Z) = Cor(X:Z,) = 1/4 >> 2% : Jong-range correlations



Entanglement Distillation

Consists of extracting EPR pairs from bipartite entangled states by Local
Operations and Classical Communication (LOCC)

Central task in quantum information processing for distributing
entanglement over large distances (e.g. entanglement repeater)

Bob

(Pan et al '03)




Entanglement
Distillation Protocol

We apply entanglement distillation to show large entropy
implies large correlations

A . Ve
\Q ____— \Q

m g

PAB

Entanglement distillation: Given ‘I/J>ABE Alice can distill
-S(A|B) = S(B) — S(AB) EPR pairs with Bob by making

a measurement with N= 2'(A:E) elements, with

I(A:E) := S(A) + S(E) — S(AE), and communicating the
outcome to Bob. (Devetak, Winter ‘04)




Distillation Bound

I
f
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1
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\\
2%
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&

S(X)>S(Y)= Cor(X:Z)= 0(2-’””))




Distillation Bound

/

f
OOOOOO'OOOOOIOOOOOOOOOOOOOOOOOOOOO ‘I/}>XYZ

i J \ J \ ]
1 i

I
X Y VA
B \ E A _J

S(X)>S(Y)= Cor(X:Z)= 0(2-’””))
I
I i
S(X) —S(XZ) >0 Prob. of getting one of the
(EPR pair distillation rate) 2'X¥) outcomes




Area Law from “Subvolume Law”
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SX)>8Y)= Cor(X:Z)= 0(2"(”))




Area Law from “Subvolume Law”
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5(X)=58(Y) = Cor(X:Z)<0(2"(X:Y>)




Area Law from “Subvolume Law”
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5(X)=58(Y) = Cor(X:Z)<0(2"(X:Y>)

Suppose S(Y) < 1/(4€)  (“subvolume law” assumption)




Area Law from “Subvolume Law”
I &

[
OOOOOO'OOOOOIOOOOOOOOOOOOOOOOOOOOO ‘w>XYZ

l )\ J \ ]
1 I 1

X Y VA

5(X)=58(Y) = Cor(X:Z)<0(2"(X:Y>)

Suppose S(Y) < 1/(4€)  (“subvolume law” assumption)

Since I(X:Y) < 25(Y) < 1/(2€), a correlation length & implies

Cor(X:Z) < 278 < 2-1xY)
Thus: S(X) < S(Y)



Actual Proof

We apply the bound from entanglement distillation to prove
finite correlation length -> Area Law in 3 steps:

c. Get area law from finite correlation length under assumption
there is a region with “subvolume law”

b. Get region with “subvolume law” from finite corr. length
and assumption there is a region of “small mutual information”

a. Show there is always a
region of “small mutual info”

Each step uses the assumption
of finite correlation length.

Obs: Must use single-shot
info theory (Renner et al)

a) <exp(O(1/g))

B, Bc By c
oooooooooonmuooooooooooooooooo
/ 2/ / site s
b) JEDC LEDC
R 1 B Be : Bp 3 R

000000000000000000000000000000000000000

c) X £ N z
OOOOOOOOOOOOQOOOOO@OOOOOOOOOOOOOOOOOOOO

EDC



Area Law in Higher Dim?

Wide open...
Known proofs in 1D (for groundstates gapped models):

1. Hastings ‘07. Analytical
(Lieb-Robinson bounds, Fourier analysis,...)

2. Arad, Kitaev, Landau, Vazirani ‘13. Combinatorial
(Chebyshev polynomial, ...)

3. B., Horodecki ‘12 (this talk). Information-Theoretical

All fail in higher dimensions....



Area Law in Higher Dim?

New Approach:

“Conditional

'kCOI’(X . Z)wil,. < 2—l/§

Correlation length”: Eil,...,z

.’Lk—

Y

@000 0Qe0eee
o cccgcccc
Qeeeeeee

'Q N
‘coccc £©d999
Qcocccc ZOoO0oO

‘e eeeev@ooo0
Do rwenstT00000

©00000000000

sz’l ,...,1L ' post-measured state
after measurement on sites (a,,..., a,)
with outcomes (i, ..., i\) in {0, 1}

m (id 0% |7/k><2k|ak X...® ‘i1><i1‘a1> |¢>

Measurement on site g,



Area Law from Finite Conditional
Correlation length

thm (B. ‘14) In any dim, if ¢ has conditional correlation length £, then
S(X), < 4€ Area(X)

Which states have a finite conditional

Yy
- ?

I E correlation length®
: : : : 2 : Conjecturel: Any groundstate of
S oo o oo gapped local Hamiltonian.
e e e e Conjecture 2: Any state with a finite
e e eeee correlation length.
e e e 0o
00000000 ¢ Obs: Can prove it for 1D models
0000 QCQCEQOCGEOEOGEEOQOO

(finite CL -> area law -> MPS -> finite CCL)




Area Law from Finite Conditional
Correlation length

thm (B. ‘14) In any dim, if ¢ has conditional correlation length £, then

S(X), < 4€ Area(X)
W Proof by quantum information theory:
N KK .
eeoeee coooe 20Xy = IX:X%y
e e @ 0ee < I(X:X9,+26Area(X)
e e e e
e e e e . -
conditional corr. length
e e e ee@ .
ee e D000 p=idy ®A®SIZG(XC)(,¢><¢D
AR KRR ©
AN XK

A(X) = (0[X]0)]0) (O] 4 (L[X 1) [1){1]



Application to Systems with Robust
Gap

thm (B. ‘14) In any dim, if ¢ has conditional correlation length £, then
S(X),, < 4€ Area(X)

(Verstraete ‘14) Groundstates of Hamiltonians with local topological order have
finite conditional correlation length.

LTQO : Closely related to “robust gap”, i.e. H + ¢ Z Vi is gapped for €
small enough and all V,. k

cor Every groundstate of a system with local topological order fulfills area law




Application to Systems with Robust
Gap

thm (B. ‘14) In any dim, if ¢ has conditional correlation length £, then
S(X),, < 4€ Area(X)

(Verstraete ‘14) Groundstates of Hamiltonians with local topological order have
finite conditional correlation length.

LTQO : Closely related to “robust gap”, i.e. H + ¢ Z Vi is gapped for €
small enough and all V,. k

cor Every groundstate of a system with local topological order fulfills area law

Improves on (Michalakis, Pytel ‘11) who proved S(X) < Area(X)log(vol(X)).

Obs: Strict area law is important, as it allows us to define the concept of
topological entanglement entropy (Kitaev, Preskill ‘05, Levin, Wen ‘05)



Summary

Finite correlation length gives an area law for entanglement
in 1D. We don’t know what happens in higher dimensions.

More generally, thinking about entanglement from the
perspective of qguantum information theory is useful.

Growing body of connections between concepts/techniques
in quantum information science and other areas of physics.

Thanks!



