
Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol. 105, 875-894 (2000)]

Accelerating Scientific Discovery
Through Computation and Visualization

Available online
http://www.nist.gov/jres

Please note that although all figures
in the printed version of this paper are
in black and white, Figs. 1–3, 7–9,
12–14, and 17–19 in the online ver-
sion are in color.

Volume 105 Number 6 November–December 2000

James S. Sims, John G. Hagedorn, Peter
M. Ketcham, Steven G. Satterfield,
Terence J. Griffin, William L. George,
Howland A. Fowler, Barbara A. am Ende,
Howard K. Hung, Robert B. Bohn, John E.
Koontz, Nicos S. Martys, Charles E.
Bouldin, James A. Warren, David L.
Feder, Charles W. Clark, B. James Filla,
and Judith E. Devaney

National Institute of Standards and
Technology, Gaithersburg, MD 20899-0001

james.sims@nist.gov
john.hagedorn@nist.gov
peter.ketcham@nist.gov
steven.satterfield@nist.gov
terence.griffin@nist.gov
william.george@nist.gov
howland.fowler@nist.gov
barbara.amende@nist.gov
howard.hung@nist.gov
robert.bohn@nist.gov
koontz@boulder.nist.gov
nicos.martys@nist.gov
charles@boulder.nist.gov
james.warren@nist.gov
david.feder@nist.gov
jcharles.clark@nist.gov
filla@boulder.nist.gov
judith.dewaney@nist.gov

The rate of scientific discovery can be
accelerated through computation and
visualization. This acceleration results from
the synergy of expertise, computing
tools, and hardware for enabling high-
performance computation, information
science, and visualization that is provided
by a team of computation and visualiza-
tion scientists collaborating in a peer-to-
peer effort with the research scientists.

In the context of this discussion, high
performance refers to capabilities beyond
the current state of the art in desktop
computing. To be effective in this arena,
a team comprising a critical mass of talent,
parallel computing techniques, visualiza-
tion algorithms, advanced visualization
hardware, and a recurring investment is
required to stay beyond the desktop
capabilities.

This article describes, through examples,
how the Scientific Applications and
Visualization Group (SAVG) at NIST
has utilized high performance parallel
computing and visualization to accelerate

condensate modeling, (2) fluid flow in
porous materials and in other complex
geometries, (3) flows in suspensions,
(4) x-ray absorption, (5) dielectric
breakdown modeling, and (6) dendritic
growth in alloys.

Key words: discovery science; distri-
buted processing; immersive environments;
IMPI; interoperable MPI; message pass-
ing interface; MPI; parallel processing;
scientific visualization.

Accepted: December 22, 2000

Available online: http://www.nist.gov/jres

1. Introduction

Science advances through iterations of theory and
experiment. Increasingly, computation and visualization
are an integral part of this process. New discoveries
obtained from an experiment or a computational model
are enhanced and accelerated by the use of parallel
computing techniques, visualization algorithms, and
advanced visualization hardware.

A scientist who specializes in a field such as chem-
istry or physics is often not simultaneously an expert in
computation or visualization. The Scientific Applica-
tions and Visualization Group (SAVG [1]) at NIST

provides a framework of hardware, software and
complementary expertise which the application scientist
can use to facilitate meaningful discoveries.

Parallel computing allows a computer code to use
the resources of multiple computers simultaneously.
A variety of parallel techniques are available which
can be used depending upon the needs of the applica-
tion. Generally, parallel computing is thought of in
terms of speeding up an application. While this is true,
experience is showing that users often prefer to use this
increased capability to do more computation within the

875



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

same amount of time. This may mean more runs of the
same complexity or runs with more complex models.
For example, parallel computing can use the combined
memory of multiple computers to solve larger problems
than were previously possible. An example of this is
described in Sec. 8, Dendritic Growth in Alloys.

Visualization of scientific data can provide an intu-
itive understanding of the phenomenon or data being
studied. One way it contributes to theory validation is
through demonstration of qualitative effects seen in
experiments such as Jefferies orbits as described in
Sec. 5, Flow of Suspensions. Proper visualization can
also exhibit structure where no structure was previously
known. In the Bose-Einstein condensate (BEC) example
(Sec. 3), visualization was key to the discovery of a
vortex array. Current visualization technology provides a
full range of hardware and techniques from static two-
dimensional plots, to interactive three-dimensional
images projected onto a monitor, to large screen fully
immersive systems allowing the user to interact on a
human scale.

Immersive virtual reality (IVR) [2] is an emerging
technique with the potential for handling the growing
amount of data from large parallel computations or
advanced data acquisitions. The IVR systems take
advantage of human skills at pattern recognition by
providing a more natural environment where a stereo-
scopic display improves depth perception and peripheral
vision provides more context for human intuition.

The techniques used for parallel computing and visu-
alization, as well as the knowledge of hardware, are
specialized and outside the experience of most scientists.
SAVG makes use of our experience in solving computa-
tional and visualization problems as we collaborate with
scientists to enhance and interpret their data. Results of
this work include theory validation, experiment valida-
tion, new analysis tools, new insights, standard reference
codes and data, new parallel algorithms, and new visual-
ization techniques.

2. Tools

SAVG has worked with many scientists at NIST on a
wide variety of problems, and makes use of an array of
resources that it can bring to bear on these diverse
projects. Of course we make use of the central comput-
ing resources that include several SGI Origin 2000
systems,1 an IBM SP system, a cluster of PCs running

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the
purpose.

Linux, as well as virtual parallel machines created from
workstation clusters. Each of these systems can be
used for parallel as well as sequential implementations
of scientific algorithms. In addition to these central
computing resources, SAVG uses commercial tools
and freely available tools where appropriate, augment-
ing these with locally developed tools when necessary.
The following are some tools in common use by SAVG.

2.1 Computation

MPI—Message Passing Interface

The majority of our parallel applications are written
using the message-passing model for parallel programs.
In the message-passing model each process has exclu-
sive access to some amount of local memory and only
indirect access to the rest of the memory. Any process
that needs data that is not in its local memory obtains
that data through calls to message passing routines. MPI
is a specification for a library of these message-passing
routines. Since its introduction in 1994, MPI has
become the de facto standard for message-passing
programming and is well supported on high perfor-
mance machines as well as on clusters of workstations
and PCs.

MPI was designed to support its direct use by appli-
cations programmers as well as to support the develop-
ment of parallel programming libraries. We have used
MPI in both of these contexts (see the descriptions
of C-DParLib, F-DParLib, and AutoMap/AutoLink
below).

Interoperable MPI (IMPI) [6, 7] is a cross-implemen-
tation communication protocol for MPI that greatly
facilitates heterogeneous computing. IMPI enables the
use of two or more parallel machines, regardless of
architecture or operating system, as a single multi-
processor machine for running any MPI program. SAVG
was instrumental in the development of the IMPI
protocol.

C-DParLib and F-DParLib

The libraries C-DParLib and F-DParLib [8, 9, 10,
11],, developed by SAVG, support data-parallel style
programming in C and Fortran 90, respectively. These
libraries make heavy use of MPI to handle all communi-
cation. Data-parallel programming refers to parallel
programming in which operations on entire arrays are
supported such as A = A + B, where A and B are arrays
of values. C-DParLib and F-DParLib were developed
specifically to support parallel applications that derive
parallelism primarily from the distribution of large
arrays among processing nodes such as in most finite-
difference based parallel applications.

876



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

Both libraries support basic data-parallel operations
such as array initialization, array shifting, and the
exchanging of array data between adjacent processing
nodes. In addition, C-DParLib provides additional
services such as assisting in the balancing of computa-
tional loads among the processing nodes and the gener-
ation of arrays of pseudo-random values. Both libraries
are portable to any platform that supports MPI and C or
Fortran 90.

OpenMP

A standardized, portable tool set for implementing
parallel programs on shared-memory systems in C,
C++, and Fortran [12, 13].

AutoMap/AutoLink

Tools for simplifying the use of complex dynamic
data structures in MPI-based parallel programs [14].
This software was developed at NIST and is fully
portable to any platform that supports MPI and C [15,
16, 17, 18].

WebSubmit

A Web-based interface [19] that simplifies remote
submission of jobs to NIST’s heterogeneous collection
of high-performance computing resources. It presents a
single seamless user interface to these diverse platforms.
WebSubmit was developed at NIST and is portable to
other environments [20, 21].

2.2 Visualization

OpenDX—Open Data Explorer

An open-source visualization software package [22]
with a sophisticated data model. OpenDX can take
advantage of multiple processors on a high performance
multiple CPU system. OpenDX is very useful for the
rendering of volumetric data.

IDL—Interactive Data Language

A commercially available high-level language [23]
used for data processing and analysis. Many standard
analysis routines such as image processing are included
as easily callable functions. Additionally, IDL has
routines for developing graphical user interfaces (GUI)
allowing rapid development of powerful interactive two
and three dimensional graphics.

Interactive Graphics Workstations

SAVG maintains a Visualization Laboratory where
high performance graphics workstations are made avail-
able for collaborators. These workstations provide a

facility for NIST scientists to run a wide range of inter-
active computational and visualization software.

OpenGL—Performer

A commercial product for performance-oriented 3D
graphics applications. Performer [24] provides a scene
graph API (application programming interface) and the
ability to read a variety of data formats.

RAVE—reconfigurable automatic virtual environment

A commercially available product which provides a
visually immersive environment for data display and
interaction. It is driven by an SGI Onyx2 visual super-
computer. Our current configuration has a single
2.29 m�2.44 m rear projection screen utilizing Crystal
Eyes active stereoscopic glasses with head and wand
tracking.

DIVERSE

The primary software library used to develop RAVE
applications. Developed at the Virginia Tech CAVE,
DIVERSE [25] software has the advantage of providing
a device-independent virtual environment. The same
application can run on a desktop workstation as well as
on single and multi-wall immersive systems. In addition,
the software is based on SGI’s OpenGL Performer
allowing applications to take advantage of a wide variety
of Performer data formats. These design features can
provide an application continuum from the desktop to
the visualization lab to the RAVE.

VRML—Virtual Reality Modeling Language

A Web based standard that allows interactive viewing
of three dimensional data. SAVG uses VRML [26] as a
mechanism for distributing visualizations and graphical
simulations to collaborators.

Non-linear Video Editing

A computer/disk based video editing system that
allows random access to video and computer graphics
sources. Because it is digital, sophisticated editing
techniques such as motion effects, keying, titling, and
resizing can easily be used. Also, it is very easy to create
movies in many different digital formats for dissemi-
nation over the Internet, or movies can be written out in
several video tape formats for use at presentations and
meetings or for distribution.

The computation and visualization resources de-
scribed here, together with the expertise to use them,
enable SAVG to collaborate on a wide range of research
problems with NIST scientists.

877



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

3. Bose-Einstein Condensates

A Bose-Einstein condensate (BEC) is a state of matter
that exists at extremely low temperatures. BECs were
first predicted in 1925 by Albert Einstein as a conse-
quence of quantum statistics [27].

3.1 Scientific Background

Researchers at the National Institute of Standards and
Technology are studying BECs of alkali atoms confined
within magnetic traps. These studies are conducted
through numerical simulation as well as laboratory
experiments. Numerical simulation of BECs is ad-
dressed by solving the appropriate many-particle wave
equation. The wave function of a BEC corresponds to a
macroscopic quantum object. In other words, a collec-
tion of atoms in a BEC behaves as a single quantum
entity and is therefore described by a single wave
function.

The evolution of the BEC wave function is in question
when the trapped BEC is subjected to rotation. Upon
rotation, quantized vortices may form within the BEC.
These vortices are of interest because of their theoretical
implications for the characteristics of BECs, such as
superfluidity (see Fig. 1).

Researchers perform numerical simulations of the
BEC wave function based on first principles to deter-
mine if quantized vortices exist in these systems. A
typical result of such a simulation is a sequence of
three-dimensional arrays of complex numbers. Each
complex number reflects the value of the BEC wave
function at a particular position and time.

3.2 Data Analysis

Simulations of rotating BECs are computed on a
three-dimensional grid of order 100 grid points along
each dimension. The simulation data are subsequently
interpolated onto a mesh with 200 points in each dimen-
sion for the purposes of visualization. When each
complex number is decomposed into two real compo-
nents, there are 16�106 scalar values to consider at each
time step. Traditional line and surface plots, for exam-
ple, are not adequate for the investigation of three-
dimensional qualitative features such as vortices. More
suitable techniques, such as scientific visualization, are
required.

3.3 Visualization

In some respects, scientific visualization is a general-
ization of traditional two-dimensional plotting and
graphing. One goal of visualization is the creation of a
single “picture” that conveys to the researcher a small
number of high-level concepts. A collection of such
pictures may be concatenated into an animated
sequence to convey concepts that vary over position and
time, for example.

In the case of BECs, the goal of the visualization task
is to identify and isolate possible vortex structures
within a three-dimensional volume. Volume rendering
techniques are appropriate for this situation. In particu-
lar, the volume rendering model used for this investiga-
tion assumes that each point in three-dimensional
space both emits and absorbs light.

In an abstract sense, the visualization of a three-
dimensional array of BEC data requires the construction
of a function to map from the BEC data domain to an
image domain. The BEC data domain is composed of
three-dimensional positions along with complex values
from the associated wave function. The image domain
consists of an opacity component and three color
components: hue, saturation, and brightness. Opacity
describes the extent to which a point in three-
dimensional space absorbs light. Hue describes the
gradation among red, green, or blue. Saturation
describes the degree of pastelness. Brightness describes
the degree of luminance.

The construction of a function from the BEC data
domain to the image domain proceeds as follows: The
complex values associated with the wave function are
decomposed into polar form. The angular component of
a complex value determines the hue by mapping the
angle to a corresponding position on a color circle. A
color circle, as used here, begins with red at 0 radians
and then traverses through green and blue with a return
to red at the completion of the circular trip. The radial
component of a complex value determines the bright-

Fig. 1. Array of vortices in a Bose-Einstein condensate under
rotation.

878



Volume 105, Number 6, November–December 2005
Journal of Research of the National Institute of Standards and Technology

ness by mapping small radii to high brightness and large
radii to low brightness. The radial component of the
brightness mapping corresponds to density, where low
density regions are bright. The intent is to exhibit
low-density vortices as bright regions and suppress the
visibility of high-density regions. The saturation is
determined by a constant function; all regions are fully
saturated. Finally, the opacity is determined by a
constant function as well; all regions have zero opacity
(that is, complete transparency).

The function described above is further modified
with respect to the magnetic trap in which the BEC
exists. The purpose of this modification is the suppres-
sion of unimportant regions beyond the confines of the
magnetic trap. The BEC in the magnetic trap is ellip-
soidal in shape and the required modifications are
straightforward applications of analytic geometry.

3.4 Results

The result of the visualization process is a sequence
of images, one for each time step, which form a 3D
stereoscopic animation. In this study, the BEC images
did indeed show the presence of quantized vortices.
In addition, the visualization also discovered an unantic-
ipated structure of concentric vortex rings, shown in
Fig. 2, instead of the line vortices as shown in Fig. 1.
Further, the images are the first three-dimensional
visualization of vortex structures in a rotating BEC [28].

Additionally, a BEC image of a soliton, produced at
the trap center by a phase imprinting technique, looks
like a flat disk, corresponding to a low-density plane
within the condensate cloud. As the soliton propagates
through the condensate, it becomes more curved
because the soliton moves fastest in the condensate
center, and doesn’t move at all at the condensate surface.

At a later time, the entire soliton stops completely and
becomes a nodal surface. Rather than returning to the
point of creation, it spontaneously decays into concen-
tric quantized vortex rings, in a process known as a
snake instability ; see Fig. 2 [29].

This instability provoked a great deal of further
simulations and calculations. The results were presented
in Ref. [30].

Experimentalists at JILA, Brian Anderson and Eric
Cornell, attempted to generate these vortex rings in
condensates in exactly this way. They have confirmed all
the predictions.

4. Fluid Flow in Porous Materials and in
Other Complex Geometries

The flow of fluids in complex geometries plays an
important role in many environmental and technological
processes. Examples include oil recovery, the spread of
hazardous wastes in soils, and the service life of build-
ing materials. Further, such processes depend on the
degree of saturation of the porous medium. The detailed
simulation of such transport phenomena, subject to
varying environmental conditions or saturation, is a
great challenge because of the difficulty of modeling
fluid flow in random pore geometries and the proper
accounting of the interfacial boundary conditions.

The work described here involves the application of
the lattice Boltzmann (LB) method to this problem. The
LB method of modeling fluid dynamics naturally
accommodates multiple fluid components and a variety
of boundary conditions such as the pressure drop across
the interface between two fluids and wetting effects at
a fluid-solid interface. Indeed, the LB method can be
applied to a wide variety of complex flow problems that
strongly depend on boundary conditions including
phase separation of polymer blends under shear, flow in
microchannel devices, and the modeling of hydro-
dynamic dispersion. For example, Fig. 3 shows an
LB simulation of a phase separating binary mixture
under shear [31]. The LB and related methods are
currently in a state of evolution as the models become
better understood and corrected for various deficiencies
[32, 33].

One difficulty with LB methods is that they are
resource intensive. In general, running simulations on
large systems (greater than 1003 grid points) is not
practical due to the lack of memory resources and long
processing times. Because of these extreme demands
on memory and computation, and the fact that the
LB method generally needs only nearest neighbor
information, the algorithm was an ideal candidate to
take advantage of parallel computing resources.Fig. 2. Soliton produced by phase imprinting of a Bose-Einstein

condensate.

879



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

4.1 Implementation of the LB Algorithm

The approach of the LB method is to consider a
typical volume element of fluid to be composed of a
collection of particles that are represented by a particle
velocity distribution function for each fluid component
at each grid point. The time is counted in discrete time
steps and the fluid particles can collide with each other
as they move, possibly under applied forces.

The sequential implementation of the algorithm was
relatively straightforward. We have both active sites (that
hold fluid) and inactive sites (that consist of material
such as sandstone). For efficient use of memory we use
an indirect addressing approach where the active sites
point to fluid data and the inactive sites point to
NULL. Hence only minimal memory needs to be
devoted to inactive sites. At each active site we point to
the necessary velocity and mass data for each fluid
component. Over the course of an iteration we visit each
active cell in the data volume and calculate the distribu-
tion of each fluid component to be streamed to neigh-
boring cells. New mass and velocity values are accumu-
lated at each active cell as its neighbors make their
contributions.

We implemented the parallel version of the algorithm
using the Message Passing Interface [3] (MPI). The
parallelization was accomplished within a simple sin-
gle-program multiple-data (SPMD) model. The data
volume is divided into spatially contiguous blocks

along the z axis; multiple copies of the same program
run simultaneously, each operating on its own block of
data. Each copy of the program runs as an independent
process and typically each process runs on its own
processor. At the end of each iteration, data for the
planes that lie on the boundaries between blocks are
passed between the appropriate processes and the
iteration is completed.

The mechanisms for exchanging data between
processes via MPI calls and for managing the minor
housekeeping associated with MPI are concealed within
a few routines. This enables us to have a purely serial
version of the program and a parallel version of the code
that are nearly identical. The code is written in standard
ANSI C, and the only external library that has to be used
is the MPI library, which is available on all of NIST’s
parallel systems as well as many other parallel comput-
ing environments. These implementation strategies
enable us to run the program, without any modification
on any of NIST’s diverse computing platforms.

4.2 Verification

We verified the correctness of the model with several
numerical tests. For example, one test involved comput-
ing the permeability of porous media composed of a
periodic array of (possibly overlapping) spheres. In
Fig. 4 we compare our simulation data with those of
Chapman and Higdon [34], which are based on the
numerical solution of coefficients of a harmonic
expansion that satisfies the Stokes equations. Agreement
is very good, especially given that the solid inclusions
are digitized spheres.

We then determined the permeability of several
microtomography-based images of Fontainebleau
sandstone. Figure 5 depicts a portion of one of these
sandstone images. The resolution is 5.72 �m per lattice
spacing and data sets were 5103 voxels (volume
elements). Figure 6 shows the computed permeability
compared to experimental data [35]. Clearly there is
good agreement, especially at the higher porosities.

4.3 Performance of the Parallel Code

We ran a series of timing tests on several of the
parallel systems at NIST, including an SGI Origin 2000,
an IBM SP2, and an Intel Pentium cluster. Because of
the portability of the MPI calls and our standard ANSI
C code it was easy to run the same code and test cases
on each platform.

Fig. 3. Phase separating binary mixture under shear simulated using
a lattice Boltzmann method.

880



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

The timings recorded for these runs closely agree
with a very simple model describing performance:

T = S + P/N ,

where

T is total time for a single iteration,
S is time for the non-parallelizable computation,
P is time for the parallelizable computation, and
N is number of processors.

The parallelizable computation is that portion of the
processing that can be effectively distributed across
the processors. The non-parallelizable computation
includes processing that cannot be distributed; this
includes time for inter-process communication as well
as computation that must be performed either on a
single processor, or must be done identically on all
processors.

We found in all cases that the non-parallelizable
computation S accounts for between 0.7 % and 3 % of
the total computational load. In one of the test cases the
performance data from the SGI Origin 2000 closely
matches this formula (T is the total time in seconds
for an iteration):

T = 0.090 s + 11.98 s/N .

The non-parallizable computation S is 0.090 s, while
the parallelizable portion of the computation P uses
11.98 s. So, for example, a single iteration took 12.08 s
on one processor but only 1.11 s on 12 processors.
These results indicate that the algorithm is, indeed, well
suited to a parallel computing environment.

Other timing tests indicate that the time for the
parallelizable portion of the code is roughly propor-
tional to the number of active sites over the entire
volume, while interprocess communication time is
roughly proportional to the size of an xy cross-section of
the volume. So as we process larger systems, the time
for the parallelizable portion of the code should increase
proportionally with the cube of the linear size of the
system, while the non-parallelizable portion should
increase with the square of the linear size of the system.
This means that for larger systems, a larger proportion
of the time is in the parallelizable computation and
greater benefits can be derived from running on
multiple processors.

4.4 Results

The modeled permeabilities of the Fontainebleau
sandstone media and their agreement with experimental
results verified the correctness and utility of our parallel
implementation of the LB methods. These simulations
would not have been possible without parallelizing the

Fig. 4. Normalized flow through spheres, as a function of the solid
fraction C , centered on a simple cubic lattice. The permeability k is
normalized by the square of the distance d between sphere centers.
The solid fraction C is (1—porosity).

Fig. 5. A 643 portion of the 7.5 % porosity Fontainebleau sandstone
media. The solid matrix is made transparent to reveal the pore space
(grey shaded region).

Fig. 6. Measured and modeled permeabilities (k ) of Fontainebleau
sandstone media as a function of porosity. The solid rectangles show
the modeled results.

881



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

algorithm. The requirements for computing resources
are beyond the capacity of single-processor systems.

In addition, parallelization has enabled us to try
alternatives that would have been prohibitive in the past.
For example, when calculating the permeabilities of the
Fontainebleau sandstone samples, we found that at the
lowest porosity (7.5 %), there were not enough nodes
across the pores to produce a reliable flow field.
Because we could handle large volumes, we were able
to double the resolution on a large subset of the low-
porosity sample. This yielded very satisfactory results,
as indicated above.

Lattice Boltzmann methods for simulating fluid flow
in complex geometries have developed rapidly in recent
years. The LB method produces accurate flows and
can accommodate a variety of boundary conditions
associated with fluid-fluid and fluid-solid interactions.
With the advent of parallel systems with large memo-
ries, computations on large systems that were consid-
ered beyond the reach of even some “super” computers
from a few years ago can now be considered routine.

5. Computational Modeling of the Flow
of Suspensions

Understanding the flow properties of complex fluids
like suspensions (e.g., colloids, ceramic slurries, and
concrete) is of technological importance and presents a
significant theoretical challenge. The computational
modeling of such systems is also a great challenge
because it is difficult to track boundaries between
different fluid/fluid and fluid/solid phases. Recently, a
new computational method called dissipative particle
dynamics (DPD) [36] has been introduced which has
several advantages over traditional computational
dynamics methods while naturally accommodating such
boundary conditions. In structure, a DPD algorithm
looks much like molecular dynamics (MD) where
particles move according to Newton’s law. That is, in
each time step, the forces on each particle are computed.
The particles are then moved and the forces recalcu-
lated. However, in DPD, the interparticle interactions
are chosen to allow for much larger time steps so that
physical behavior, on time scales many orders of magni-
tude greater than that possible with MD, may be studied.
The original DPD algorithm used an Euler algorithm for
updating the positions of the free particles (which
represent “lumps” of fluid), and a leap frog algorithm
for updating the positions of the solid inclusions. Our
algorithm QDPD [37] is a modification of DPD that
uses a velocity Verlet [38] algorithm to update the
positions of both the free particles and the solid
inclusions. In addition, the solid inclusion motion is

determined from the quaternion-based scheme of
Omelayan [39] (hence the Q in QDPD).

QDPD uses an implementation of the linked cell
method [40, 41] which is a true O (N ) algorithm. The
QDPD cell is partitioned into a number of subcells. For
every time step a linked list of all the particles contained
in each subcell is constructed. The selection of all pairs
of particles within the cutoff is achieved by looping over
all pairs of subcells within the cutoff and particles
within the subcells. Because of their regular arrange-
ment, the list of neighboring subcells is fixed and may
be precomputed.

QDPD was originally written in Fortran 77 as a serial
program. To improve performance, a parallelization of
the code was done in MPI [42] using a simplified
version of the replicated data approach.

5.1 Replicated Data Approach

In the replicated data approach [43, 44, 45] every
processor has a complete copy of all the arrays contain-
ing dynamical variables for every particle. The compu-
tation of forces is distributed over processors on the
basis of cell indices. This is a very efficient way of
implementing parallelism since the forces must be
summed over processors only once per time step, thus
minimizing interprocessor communication costs. On
“shared-memory” machines like an SGI Origin 2000,
this approach is very attractive, since all processors can
share the arrays containing dynamical variables.

The biggest disadvantage of the replicated data
strategy is that every processor must maintain a copy of
all of the data and therefore the data must be updated on
each processor at the end of each time step. This is not
a problem in the shared-memory multiprocessor version
if the MPI implementation is smart enough to take
advantage of the shared memory. In our implementation,
a global sum technique is used to add the separate
contributions to the forces via an MPI_Allreduce library
call. This approach has worked well for small to
medium sized problems (tens-of-thousands of particles)
on the shared-memory SGIs. We have found speedups of
as much as 17.5 times on 24 processors of a 32 proces-
sor SGI Origin 2000. Utilizing three such systems, we
were able to complete a year’s worth of conventional
computing in a week. Among the results obtained by
this technique has been the calculation and subsequent
visualization of a sheared suspension of ellipsoids.

5.2 Spatial Decomposition

While the replicated data approach of the previous
section has been the workhorse of QDPD work for
some time now, it has had its disadvantages. The biggest
disadvantage is that scaling to very large numbers

882



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

of processors in a shared-memory environment is poor
(24 is the practical limit for us), and it has turned out to
be almost unusable on distributed memory systems
including those with high speed interconnects like the
IBM SP2/SP3 systems.

When the goal is to simulate an extremely large
system on a distributed-memory computer to allow for
the larger total memory of the distributed-memory
computer and also to take advantage of a larger number
of processors, a different approach is needed. Our
spatial decomposition [46, 47] replaces the serial linked
cell algorithm with a parallel linked cell algorithm
[44, 48]. The basic idea is this:

Split the total volume into P volumes, where P is the
number of processors. If we choose a one dimensional
(1D) decomposition (“slices of bread”), then the p th
processor is responsible for particles whose x -coordi-
nates lie in the range

(p–1)Mx /P�x�pMx /P ,

where Mx is the size of the volume along the x axis.
Similar equations apply for 2D and 3D decomposi-

tions for simulation dimensions My and Mz . Whether the
decomposition is 1D, 2D, or 3D depends on the number
of processors: First assign particles to processors.
Augment particles on each processor with neighboring
particles so each processor has the particles it needs.
Now on each processor, form a linked cell list of all
particles in the original volume plus an extended volume
that encompasses all of the particles that are needed for
computations on this processor. Loop over the particles
in the original volume, calculating the forces on them
and their pair particle (for conservation of momentum).
Care must be taken to add these forces on particles in
the extended volume to the forces on the processor
“owning” them. Finally calculate the new positions of
all particles and move the particles which have left the
processor to their new home processors.

We distinguish between “owned” atoms and “other”
atoms, where the later are atoms that are on neighboring
processors and are part of the extended volume on any
given processor. For “other” atoms only the information
needed to calculate forces is communicated to neigh-
boring processors. Second, the QDPD technique is
being applied to suspensions, so there are two types of
particles: “free” particles and particles belonging to
solid inclusions such as ellipsoids. A novel feature of
this work is that we explicitly do not keep all particles
belonging to the same solid inclusion on the same pro-
cessor. Since the largest solid inclusion that might be
built can consist of as many as 50 % of all particles, it
would be difficult if not impossible to handle in this way

without serious load-balancing implications. What we
do is assign each particle a unique particle number when
it is read in. Each processor has the list of solid inclusion
definitions consisting of lists of particles defined by
these unique particle numbers. Each processor com-
putes solid inclusion properties for each particle it
“owns,” and these properties are globally summed over
all processors so that all processors have solid inclusion
properties. Since there are only a small number of solid
inclusions (relative to the number of particles), the
amount of communication necessary for the global
sums is small and the amount of extra memory is also
relatively small. Hence it is an effective technique.

Current results show a speed up of a factor of 22.5 on
27 200 MHz Power3 processors on an IBM SP2/SP3
distributed memory system. The same technique also is
very effective in a shared-memory environment,
where the speedups are a factor of 29 on 32 processors
of an SGI Origin 3000 system and a factor of 50 on
64 processors.

5.3 Visualization

While various quantitative tests are used to help
validate our algorithms, visualization plays an important
role in the testing and validation of codes. Even simple
visual checks to make sure the solid inclusions satisfy
boundary conditions can be helpful.

Figure 7 shows a time series of the motion of a single
ellipsoidal inclusion subject to shear. The different
colors correspond to the time sequence. The shearing
boundary conditions were obtained by applying a con-
stant strain rate to the right at the top of the figure and
to the left at the bottom. Note that the single ellipsoid
rotates. This is a well known phenomenon seen in exper-
iments called Jefferies orbits.

In contrast, we found that when several elliposidial
inclusions were added to the system (Fig. 8) the Jefferies

Fig. 7. Motion of a single ellipsoidal inclusion subject to shear. The
single ellipsoid rotation is a well known phenomenon seen in experi-
ments called Jefferies orbits.

883



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

orbits were suppressed and the ellipsoids had a tendency
to align as their relative motion was partly stabilized by
mutual hydrodynamic interactions.

Virtual Reality Modeling Language (VRML) [26]
has been used to distribute animations of the results
from this computation (Fig. 9). VRML is a Web-based
standard that allows interactive viewing of three dimen-
sional data. In contrast to movie loop animations,
VRML allows the user to interactively view the anima-
tion while the results of the computational model is
cycled. This interactive viewing capability allows users
to select their own point of view. Since it is Web based,
the animation can be distributed to any PC or UNIX
based system with a VRML viewer installed. The
amount of data displayed and speed of viewing is only
limited by the speed of the viewing system. An example
of using VRML to animate the results from a computa-
tional model of the flow of suspensions can be found on
the Web [49].

6. Rapid Computation of X-Ray
Absorption Using Parallel
Computation: FeffMPI

X-ray absorption spectroscopy (XAS) uses energy-
dependent modulations of photoelectron scattering to
determine local atomic structure [50]. XAS is usually
divided into the extended x-ray absorption fine structure
(EXAFS) with photoelectron energies above approxi-

mately 70 eV, and the x-ray absorption near edge
structure (XANES) in the 0 eV to 70 eV range. Theoret-
ical calculations of photoelectron scattering are now an
integral part of both EXAFS and XANES analysis.
These theoretical calculations have grown in sophistica-
tion and complexity over the past 20 years. Fortunately,
during the same time period, Moore’s law [51]
has increased computing power dramatically, so that
EXAFS calculations are now fast, accurate, and easily
executed on inexpensive desktop computers [52, 53].
However, XANES calculations remain time-consuming
in spite of these improvements. The photoelectron mean
free path is large at the low photoelectron energies of
the XANES region, so accurate XANES calculations
require large atomic clusters and remain challenging on
even the fastest single processor machines. Further-
more, the photoelectron scattering is strong for low
energies, so that full multiple scattering calculations are
required. These calculations require repeated inversions
of large matrices which scale as the cube of the size of
the atomic cluster [54]. Further sophistication in the
computer codes, such as the use of non-spherically
symmetric potentials, will improve accuracy but
increase computational requirements even further. The
computation required for XANES calculations led us to
investigate the use of parallel processing.

To implement parallel processing of XANES we
started from the serial version of the computer code
Feff [54]. Feff (for effective potential Feff) does
real-space calculations of x-ray absorption, is written
in portable Fortran 77, and uses a number of

Fig. 9. A screen shot of a Web based animation using VRML to
allow interactive viewing of the time series animation.

Fig. 8. Motion of twenty eight ellipsoidal inclusions, of size varying
up to a factor of two, subject to shear. Note that the Jefferies orbits are
suppressed due to hydrodynamic interactions between ellipsoids.

884



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

computational strategies for efficient calculations. Our
goal was to implement a parallel processing version of
Feff that retained all the advantages and portability of
the single-processor code while gaining at least an order
of magnitude improvement in speed. Feff models the
physical process of x-ray absorption, so it was natural to
exploit the intrinsic task or physical parallelism, namely,
that x-ray absorption at a given x-ray energy is indepen-
dent of the absorption at other energies. We use this
physical parallelism to make simultaneous calculations
of the XANES at different energies using multiple pro-
cessor clusters, and then assemble the results from the
individual processors to produce the full XANES spec-
trum. We use the Message Passing Interface (MPI)
to implement this idea [42]. We have run the parallel
Feff code (FeffMPI) on Linux, Windows NT, IBM-AIX,
and SGI systems with no changes to the code. FeffMPI
can run on any parallel processing cluster that supports
MPI, and these systems can use distributed or shared
memory, or even a mixture of distributed and shared
memory.

The starting point for “parallelizing” Feff was to
determine which parts of the code were the most time
consuming. As expected on physical grounds, profiling
tests showed that the loop over x-ray energies in the
XANES computation dominated the time; over 97 % of
the CPU time is spent inside this loop. Therefore, we
chose this part of the code for the initial work on a
parallel version of Feff. A secondary hot spot is a similar
loop that is used to construct self-consistent potentials.
In this first version of FeffMPI the self-consistency
calculation does not execute in parallel; we plan to
implement this in a later revision.

By concentrating on a single hot spot in the code, we
leave 99.7 % of the existing single-processor code of
Feff unchanged. We use the MPI libraries to arbitrarily
designate cluster node number one as the master node,
and designate the other Nprocs–1 nodes as workers . In
the energy loop of the XANES calculation each node
(master and workers ) executes 1/Nprocs XANES calcula-
tions that each cover 1/Nprocs of the energy range of
the XANES calculation. After each worker completes
its part of the task, the results are sent back to the master
and the worker processes can be terminated. This
approach means that (1) exactly the same executable is
run on every node in the cluster; (2) virtually all of the
changes to the single-processor Feff are confined within
a single subroutine; (3) the FeffMPI code is nearly
identical to the single-processor version of Feff, the only
difference being that each instance of the FeffMPI
process is aware that it is a particular node of a cluster
of Nprocs processors; and (4) communication between
master and worker processors is kept to a minimum.

To evaluate how well the parallel algorithm succeeds,
we conducted tests on six systems. As representative
single-processor systems, we did benchmarks on a
450 MHz AMD K6-3 running SuSe Linux 6.1, and an
Apple PowerMac G4 running at 450 MHz. We then
ran FeffMPI on four MPI clusters: (1) a cluster of
16 Pentium II 333 MHz systems running Redhat Linux
connected via 100 Mbit Ethernet; (2) a similar cluster of
Pentium III 400 MHz machines running Windows NT
connected by 100 Mbit Ethernet; (3) a cluster of SGI
machines; and (4) an IBM SP2/3 using up to 32 proces-
sors. The fastest times were turned in by using 32 IBM
SP3 processors. That system was 25 times faster than
the PowerMac G4 and 40 times faster than the single
processor Linux system. We found that processing speed
could be predicted, as a function of cluster size, by the
simple scaling law T = � (0.03 s + 0.97 s/Nproc), where T
is the runtime in seconds (s), � is a scaling factor that
accounts for the speed of a given single processor type
and the efficiency of the compiler, and Nproc is the
number of processors in the cluster. As shown in Fig.
10, if the runtimes on the various clusters are rescaled by
the � for that cluster, giving a normalized runtime of 1.0
for each cluster when a single processor is used, all the
runtimes fall on a universal curve that shows how well

Fig. 10. Runtime of a typical FeffMPI XANES calculation with
cluster size. The calculation has been run on four different clusters.
The execution time on a single processor has been normalized to 1.0,
showing that the scaling on all clusters is very similar once the
variation in processor speed and compiler quality is eliminated. The
scaling indicates that about 3 % of the runtime is still from the sequen-
tially executing parts of the code, implying that a very large cluster
should run FeffMPI about 30 times faster than an equivalent single
processor.

885



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

FeffMPI scales with cluster size. As cluster size is
increased, the part of the code that runs in parallel
changes from the dominant part of the runtime to an
irrelevant fraction of the total. In the limit of large
cluster sizes, runtime is dominated by the 3 % of the
original code that still executes sequentially. In such
large clusters, we expect no further increase in speed
because the runtime is then totally dominated by
sequentially executing code. In fact, large clusters can
even increase runtime due to communications overhead.
However, on the largest clusters we had available, we
did not observe any saturation of the scaling due to
communication overhead.

6.1 Results on Parallel Processing Clusters

As one example of these calculations, we show how
XANES measurements are used in the study of barium-
strontium titanate (BST) films that are of interest as
high-k dielectrics in electronic devices [55, 56]. The
films are deposited by metal-organic chemical vapor
deposition (MOCVD) that must take place at low sub-
strate temperatures because of processing constraints in
device fabrication. Due to the low deposition tempera-
ture the structure of the films often departs from the
ideal crystalline BST state [57]. However, the actual
structure is unknown and the structural origin of the
variation in the dielectric constant is undetermined.
Because the films contain amorphous material that
gives no clear x-ray diffraction signal, we used XANES
measurements to help understand the structure of the
films and ab initio calculations using FeffMPI to
interpret the XANES spectra.

In Fig. 11 we show a series of XANES measurements
of several BST films. The most important feature is the
evolution of the peak near –2 eV to +2 eV (the origin of
the energy zero is arbitrary) as deposition conditions are
changed. In Fig. 12 we show theoretical calculations of
tetrahedral and octahedral oxygen coordination around
the Ti atoms; note the qualitative similarity to the trend
seen in the measured XANES data in Fig. 11.

The calculations suggest that the observed change in
the XANES implies a change from a non-inversion
symmetric Ti-O structure with tetrahedral oxygen coor-
dination to one that is a nearly inversion symmetric
octahedral Ti-O arrangement. The tetrahedral Ti-O
structures are not ferroelectric, so this structural varia-
tion accounts for the change of the dielectric constant
with film deposition temperature and titanium-oxygen
stoichiometry. In Figs. 13 and 14 we show the struc-
tures of BaTiO3 and Ba2TiO4 that were used as the

Fig. 11. Measured XANES data of 4 Barium-strontium titanate
(BST) films deposited by MOCVD. The variation in size and energy
position of the pre-edge peak near –2 eV to +2 eV is a signature of the
structural variation in these films.

Fig. 12. XANES calculation from the octahdral and tetrahedral Ti-O
structures shown in Figs. 13 and 14. The nearly perfect inversion
symmetry of the Ti-O octahedra leads to only a small low-energy
resonance in the XANES. The non-inversion symmetric tetrahedral
Ti-O environment gives a much larger low-energy resonance. The
qualitative similarity of these simulations with the XANES measure-
ments shown in Fig. 11 indicates that the BST films make a transition
from a non-ferroelectric phase with tetrahedral Ti-O oxygen coordi-
nation to the octahedral Ti-O structure that is characteristic of Ba-
TiO3.

886



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

inputs for the calculations in Fig. 12. The Ba2TiO4 struc-
ture has a slightly distorted Ti-O tetrahedral structure
with zig-zag chains of Ba atoms separating the Ti-O
tetrahedra. The BaTiO3 structure contains Ti-O octa-
hedra with nearly perfect inversion symmetry, and the
octahedra are surrounded by a cage of Ba atoms. The
BST films contain amorphous material which are

probably distortions of those shown in Figs. 13 and 14,
but we can say with certainty that the Ti-O environment
changes from one with inversion symmetry to one that
is strongly non-inversion symmetric. Chemical con-
straints and the FeffMPI calculations suggest that this is
because of a transition from octahedral to tetrahedral
oxygen coordination.

7. Dielectric Breakdown Modeling;
Growth of Streamers in Dielectric
Liquids

In high-voltage power transformers, catastrophic
breakdown in the dielectric oil is preceded by the rapid
growth of conducting plasma streamers. Branching
filamentary structures sometimes form in the streamers,
as documented through high-speed photographic exper-
iments conducted by Hebner, Kelley, and Stricklett at
NBS in the 1980s [58]. However, the photographs did
not record the very fast processes (on the order of tens
or hundreds of nanoseconds) that caused the filament to
develop. Our model describes the “shaping” effects of
the surrounding electric field on the rapidly-growing
plasma streamers.

We have applied stochastic Laplacian growth as a
model to filamentary dielectric breakdown as described
by Pietronero and Wiesmann [59] and others [60, 61,
62, 63]. Here we construct a simplified model of the
algorithm on a large Cartesian grid using boundary
conditions which confine the electric field. We exam-
ined the effect of parameters (threshold voltage, choice
of power law) on the fractal structure (which can be
dense or sparse) and the timing of the growth process.
The calculation of the voltage field throughout the full
volume, which is repeated after each iteration of break-
down growth, is the major computational burden.
The computational resources required for this problem
suggested the use of parallel methods.

7.1 Implementation

Our first parallel implementation of the algorithm
was developed in a machine-language which was
specific to the CM-2 Connection Machine. This version
of the code used a single instruction, multiple data
(SIMD) model which fits our problem closely. The
current parallel method was then developed in a portable
serial version using the array-oriented features of
Fortran 90. The Fortran 90 array operations and intrin-
sic functions enabled us to write the code in a very
compact form that closely corresponds to the mathemat-
ical description of the underlying algorithm. Further-
more, these features of Fortran 90 greatly simplified the
parallelization of the code.

Fig. 13. Rendering of the ideal rhombohedral structure of BaTiO3.
The structure is a repetition of nearly perfect Ti-O octahedra that are
separated by a nearly cubic cage of Ba atoms. The nearly perfect
inversion symmetry of the Ti-O octahedra leads to only a small
low-energy resonance in the XANES. Except for a mixture of both Ba
and Sr atoms on the same site, this is the expected structure for BST
films deposited with high substrate temperatures.

Fig. 14. Rendering of the structure of Ba2TiO4. The structure is a
repetition of nearly perfect Ti-O tetrahedra that are rotated with re-
spect to each other and are separated by zig-zag chains of Ba atoms.
The lack of inversion symmetry in the Ti-O tetrahedra leads to a very
large low-energy resonance in the XANES.

887



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

The serial code was converted to parallel by using our
F-DParLib subroutine library. F-DParLib is designed to
be used in a single-program-multiple-data (SPMD)
programming approach. In other words, multiple copies
of the same program are running simultaneously, and
each copy is processing a different portion of the data.
In particular, F-DParLib provides simple mechanisms
to divide very large arrays into blocks, each of which is
handled by a separate copy of the program. In practice,
this means that the researcher can write parallel code
that looks almost identical to serial code. In our case, the
code could be written as though addressed to a single
active grid-node and its immediate neighbors. Fortran
90, extended across block boundaries by F-DParLib,
executed each instruction on all sites of each array.

F-DParLib’s emphasis on array handling is designed
to mesh with Fortran 90’s array syntax and intrinsic
array-handling functions. Much of F-DParLib consists
of parallel versions of the intrinsic array functions such
as CSHIFT and MAXVAL.

In parallelizing this code, F-DParLib played the role
of a high-level language for block parallelism. Using
F-DParLib we converted the existing serial version of
the algorithm to a parallel version with very few
changes. The parallel version of the code can easily be
run, without modification, on many processors on a
large parallel system, or on a single processor on a
desktop workstation.

Multiple parallel algorithms were implemented to
speed the runs. Spatial decomposition through block
decomposition required each processor to track only its
part of the space. Parallel breakdown was also imple-
mented using a randomized red-black algorithm.
Laplace’s equation was solved in parallel using SOR
[64]. Finally, time compression was used to reduce
the empty (no breakdown) steps for periods of low
breakdown probability [65].

7.2 Results

The parallel computing model was validated by
comparison of model visualization to photographs taken
of streamers during physical experiments [66, 65, 67].
These images enable us to make a detailed, qualitative
comparison of features of the model versus those of the
actual phenomenon being modeled. We have also used
animation and color banding of the images to simulate
time progression.

Our algorithm has reached a new level of detail and
realism for this class of simulations. The trend from
sparse, forward-directed growth to volume-filling side-

branching has been illustrated for a range of power-law
response curves. Several parallel algorithms have been
included in the numerical modeling. We have simulated
a range of effects which occur in experiments as the
parameters of the model are changed. For example,
Figs. 15 and 16 demonstrate a narrowing of the conical
top envelope associated with increased cutoff voltage,
which has its experimental counterpart in experimental
behavior under increased pressure.

Fig. 15. Simulation of a dense streamer growth associated with a low
cutoff-voltage parameter.

Fig. 16. The conical top envelope of the streamer is narrowed by
increasing the cutoff-voltage parameter. The narrowing has a counter-
part in experimental behavior under increased pressure.

888



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

8. Dendritic Growth in Alloys
8.1 Background

When an alloy is cast, the liquid metal freezes into a
solid in much the same way that water freezes to form
ice. Just as water freezes forming intricate patterns
called snowflakes, cast alloys also form snowflake-like
patterns. These treelike structures are generically
known as dendrites, and are ubiquitous in microstruc-
tural casting patterns.

A better understanding of the process of dendritic
growth during the solidification of alloys is the goal of
this project. This knowledge will help guide the design
of new alloys and the casting process used to produce
them.

Early versions of computational models of solidifica-
tion, known as sharp interface models, treated the
liquid-solid interface as a mathematically two-dimen-
sional boundary. Tracking this complicated boundary
was a computationally challenging task [68, 69, 70].

In the phase field method, however, the liquid-solid
transition is described by an order parameter that
determines, at each location in the simulated alloy,
whether the alloy is in the liquid or solid phase. The
transition from liquid to solid is not abrupt, but follows
a smooth curve, thus allowing the interface to have
thickness and internal structure. The phase field method
can determine the exact location and movement of the
surface of the dendrite during the simulation by simply
updating each point in the phase-field on each time step
of the iteration according to the relevant governing
equations. This algorithm, in two-dimensions, is
described in detail by Warren and Boettinger [71].

Our collaboration on this project began when the
researchers wished to expand their two-dimensional
simulation to three dimensions. The new simulation
would better match the actual three-dimensional nature
of these dendrites, as well as verify physical properties
of dendrites that only appear when all three dimensions
are included. The amount of computing power as well as
the amount of memory needed to simulate this pro-
cess of dendrite growth in three dimensions required
more hardware than was available on the desktop.

8.2 Implementation

Our three-dimensional simulation of dendritic
growth is of a copper-nickel alloy. A pair of diffusion
equations, one describing the phase-field and one
describing the relative concentration of the two solutes,
is solved over a uniform three-dimensional grid using a
first-order finite difference approximation in time and
second-order finite difference approximation in space.
On each time-step of this algorithm, each point in the

grid is updated. At regular intervals, a snapshot of the
phase-field and concentration are saved to disk for later
processing into animations and still pictures of the
simulated dendrite.

A three-dimensional grid of size 1000�1000�1000
is required to obtain the detailed and highly resolved
images needed from this simulation. Eight three-dimen-
sional arrays of this size are required, each containing
double precision (8 byte) floating point elements. There-
fore, this program requires over 64 GB of memory for
the desired resolution. In order to handle such a large
amount of data, we have developed a parallel version of
this simulator.

We have used MPI [3, 4] to develop a data-parallel
style program that can be run efficiently on both dis-
tributed memory and shared memory machines. The
MPI-based communication library C-DParLib [8, 9] has
been used to simplify the coding of this simulator.
Sufficient parallelism is obtained by distributing the
three-dimensional arrays among the available processors
and exchanging data between adjacent processors at the
beginning of each time step. Currently, the arrays are
distributed along one axis but they could be distributed
along two or three axes if needed.

Parallel applications benefit when the computational
load on each processor is approximately the same. Given
a homogeneous set of processors, load-balancing some-
times can be accomplished simply by distributing the
elements of the arrays equally among the processors.
Unfortunately, this balancing is only effective if the
processors are identical and the computational load is
the same at all points throughout the finite-difference
grid. Nether of these assumptions are true for this
simulator. The update algorithm requires more compu-
tations at grid points near the surface and inside the
dendrite compared to the rest of the grid, so distributing
the arrays equally, even assuming perfectly equal proces-
sors, results in a load imbalance. In modern computing
facilities, such as at NIST, as parallel machines are
upgraded, an originally homogeneous set of processors
commonly becomes heterogeneous over time with the
introduction of higher speed processors and processing
nodes with local memories of varying sizes. This effect
has resulted in heterogeneous parallel machines at NIST.

At run time, our C-DParLib [72] can periodically
redistribute the arrays across the processors according to
simple performance parameters, such as execution time
per element, for each iteration. This can greatly improve
the execution time depending on the set of processors
that are assigned to the job. The impact of this dynamic
load-balancing on the source code for the simulator is
small with only a few C-DParLib function calls required
within the main iteration loop.

889



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

8.3 Visualization

The output from this simulator consists of pairs of
files (snapshots) containing the phase-field (� ) and the
relative concentration (C ) of the solutes at each grid
point at specific time steps. For each simulation, we
produce 40 snapshots at regular time intervals. TIFF
(Tagged Image File Format) images are made from the
snapshot data, then replayed sequentially to generate an
animation showing the dendrite as it grows. At the
smaller grid sizes, below 3003, we use commonly avail-
able visualization software to process these snapshot
files into color images with appropriate lighting and
shading added to enhance the images. In this process,
we interpret the value of 128 (mid-point of the byte-
scaled data) in the phase field to be the surface of the
dendrite and calculate an isosurface of the phase-field
data using this value. The surface is then colored using
the relative concentration of the alloys from the data in
the corresponding C snapshot file. An example of this
for a simulation on a grid of size 3003 is shown in
Fig. 17.

Two-dimensional slices through these snapshots are
also produced to investigate the details of the internal
structure. Three slices through the dendrite shown in
Fig. 17 are shown in Fig. 18. Animations of both the
dendrite and slices through the dendrite are generated.

A)

Simulations on grids of size 3003 and larger cannot
use this technique due to the increased memory require-
ments in calculating the isosurface. Although our ma-
chines have the available main memory to complete an
isosurface calculation on these larger grids, most soft-
ware is not capable of utilizing all of the available mem-
ory due to addressing limitations (32 bit limits). In addi-
tion to this addressing limitation, the commonly
available visualization systems do not provide interactive
viewing in a 3D movie loop of the dendrite growth. We
have therefore begun to investigate alternative methods
for visualizing these snapshots.

The SGI Onyx2 systems have high performance hard-
ware that can provide interactive viewing for large
amounts of polygonal data. We have developed a visual-
ization procedure that converts the 3D grid data into a
polygonal data set that can take advantage of this hard-
ware acceleration. Each data point within the dendrite,
i.e., with a phase of 128 or less, is represented by a

B) C)

Fig. 18. Three 2D slices through the 3D dendrite shown in Fig. 17.
The scale is the same in these three images but in order to save space
the area surrounding the dendrite has been clipped. The color coding
used in these images is identical to the color coding used in Fig. 17.
The blue background corresponds to the initial concentration of
approximately 40 %. Image A is a slice through the base of the
dendrite, image B is a slice taken halfway down toward the tip of
dendrite, and image C is a slice taken near the tip of the dendrite.

Fig. 17. A 3D dendrite from a simulation over a grid of 3003 points.
The color bar shows the coding of the relative concentration of the
metals in the dendrite. The color coding ranges from concentrations
of 20 % to 60 %.

890



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

glyph of three planar quadrilaterals oriented in each of
the three orthogonal planes (xy, xz, yz ). The size of these
glyphs correspond to the 3D grid voxel size. A semi-
transparent color value as a function of concentration is
assigned to the glyph. A full color scale ranging from
black to white represents low to high areas of concentra-
tion. The speed of the interactive display is determined
by the number of glyphs (polygons) used to form the
dendrite. As previously stated, phase values in the range
of 0 to 128 are inside the dendrite. Interactivity can be
increased by restricting the range of the values selected
for glyphs. For example, Fig. 19 uses glyphs for phase
values from 28 to 128. However, the trade off for
increasing interactivity is a more sparse representation
of the dendrite. Using standard SGI software, OpenGL
Performer, this polygonal representation is easily
displayed. The semi-transparent colors allow a certain
amount of internal structure to be revealed and the
additive effects of the semi-transparent colors produces
an isosurface approximation. A series of polygonal
representations from the simulator snapshots are cycled
producing a 3D animation of dendrite growth that can
be interactively viewed. Most of the currently available
immersive virtual reality (IVR) systems are based on
OpenGL Performer. Thus, utilizing this format immedi-
ately allows the dendrite growth animation to be placed
in an IVR environment for enhanced insight.

8.4 Status

Our largest three-dimensional dendritic growth
simulation to date has been on a grid of size 5003 using
32 processors of an IBM SP. This simulation took
approximately 70 h to complete. With the increase in the
number and speed of available processors on our
systems, and the associated additional memory, we will
be able to regularly run simulations on grids of size
10003.

Test runs on our current systems, which include an
IBM SP, a Linux based PC cluster, several SGI Origin
2000 machines, and other available SGI workstations,
indicate that we will soon be able to complete a 10003

simulation in 3 to 4 days. This assumes that we can run
on 70 to 80 of these compute nodes, and that each
includes 1 GB of main memory or more. At that point
we will begin production runs of this simulator. The use
of IMPI (Interoperable MPI) [6] is expected to assist us
in utilizing the compute nodes from these different
machines as a single large heterogeneous parallel ma-
chine.

The 3D phase-field simulator enabled by parallel
computing will provide a better understanding of the
solidification phenomena and increased understanding
of the parameter space as it pertains to melting.
Dendritic growth models are an important element of
macroscale commercial solidification packages, which
will be the the eventual users of our results.

9. Conclusion

To maintain our ability to provide world class
computational support for our scientific collaborations,
we expect that NIST will continue to upgrade its central
computing facility with current generation high-perfor-
mance parallel computation servers as well as clusters of
high performance PCs. Beyond this, SAVG will continue
to develop and apply advanced parallel scientific
computing and visualization techniques that enable us to
run the largest, most detailed, and most useful computa-
tional experiments possible.

The newly installed Reconfigurable Automatic
Virtual Environment (RAVE) is the next step for SAVG
to improve our acceleration of scientific discovery. This
system provides a large rear projection screen for
peripheral vision, stereoscopic display for increased
depth perception, and head tracking for more realistic
perspective. All of the features combine into an immer-
sive environment for greater insight into the collabora-
tive results.

Our collaborations free physical scientists to focus on
their science and the output of these computational
experiments while we focus on the raw computational

Fig. 19. A 3D dendrite visualized using glyphs and semi-transparent
colors. This image was generated from the same data as in Fig. 17. In
this image the output from the simulator has been mirrored along all
three axes giving a symmetric six-pointed star structure. The image in
Fig. 17, due to memory limitations in computing the isosurface, was
mirrored only along the x and y axes.

891



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

and visualization problems. The goal in these efforts
is always to advance the scientific research of our
collaborators.

Acknowledgments

Fontainebleau sandstone images were prepared by
John Dunsmuir of Exxon Research & Engineering Co.
in collaboration with Brent Lindquist and Teng-Fong
Wong (SUNYSB) at the National Synchrotron Light
Source, Brookhaven National Laboratory, which is
supported by the U.S. Department of Energy, Division
of Materials Sciences and Division of Chemical
Sc iences under cont rac t number DE-AC02-
98CH10886. We are indebted to Larry Davis and
Mitchell Murphy of the University of Maryland
Institute for Advanced Computing Systems for their
assistance and for access to the CM-2 Connection
Machine during our initial implementation of the
dielectric breakdown model. The authors would like to
thank Michael D. Indovina for the NT runs cited in the
FeffMPI section (Sec. 6, Kirk Kern of SGI for the 64
processor SGI runs cited in the QDPD section (Sec. 5),
and Robert R. Lipman for the first version of the
Data Explorer network that handles ellipsoids refer-
enced in the QDPD section (Sec. 5). Last, but certainly
not least, the generous assistance of numerous people
from the High Performance Systems Usage Group and
the Operating Systems Support Group is greatly
acknowledged.

10. References

[1] T. J. Griffin, NIST Scientific Applications and Visualization
Group (online), Available from: <http://math.nist.gov/mcsd/
savg>, Accessed 20 Nov. 2000.

[2] Andries van Dam, Andrew Forsberg, David Laidlaw, Joseph
LaViola, and Rosemary Simpson, Immersive VR for Scientific
Visualization: A progress report, IEEE Comput. Graph. Appl.,
2000, pp. 26-52.

[3] Message Passing Interface Forum, MPI: A message-passing
interface standard, Int. J. Supercomput. Appl. 8 (3/4), 159-416
(1994).

[4] Message Passing Interface Forum, MPI-2: A message-passing
interface standard, Int. J. Supercomput. Appl. High Perform.
Comput. 12 (1-2), 1-299 (1998).

[5] Message Passing Interface Forum, MPI -2 (online), Available
from: <http://www.mpi-forum.org/>, Accessed 20 Dec. 2000.

[6] William L. George, John G. Hagedorn, and Judith E. Devaney,
IMPI: Making MPI interoperable, J. Res. Natl. Inst. Stand.
Technol. 105 (3), 343-428 (2000).

[7] William L. George, IMPI: Interoperable MPI (online), Avail-
able from: <http://impi.nist.gov/>, Accessed 12 Oct. 2000.

[8] William L. George, C-DParLib User’s Guide, NIST, (2000),
Natl. Inst. Stand. Technol. Internal Report (NISTIR), to be
published.

[9] William L. George, C-DParLib Reference Manual, NIST,
(2000), Natl. Inst. Stand. Technol. Internal Report (NISTIR), to
be published.

[10] John Hagedorn and Alan Heckert, F-DParLib User’s Guide,
Draft of NIST software library documentation, Mar. 1997.

[11] T. J. Griffin, DparLib (online), Available from: <http://
math.nist.gov/mcsd/savg/dparlib/>, Accessed 16 Dec. 2000.

[12] Rohit Chandra, Leo Dagum, Dave Kohr, Dror Maydan, Jeff
McDonald, and Ramesh Menon, Parallel Programming in
OpenMP, Morgan Kauffman, Oct. 2000.

[13] OpenMP: Simple, portable, scalable SMP programming
(online), OpenMP Architecture Review Board, Available
from: <http://www.openmp.org>, Accessed 15 Nov. 2000.

[14] Martial Michel, MPI data-type tools (online), Scientific
Applications and Visualization Group, NIST, Available
from: <http://math.nist.gov/mcsd/savg/auto/>, Accessed 19
Nov. 2000.

[15] Delphine Goujon, Martial Michel, Jasper Peeters, and Judith E.
Devaney, AutoMap and AutoLink: Tools for communicating
complex and dynamic data-structures using MPI, in Lecture
Notes in Computer Science. Dhabaleswar Panda and Craig
Stunkel, eds., Vol. 1362, Springer-Verlag (1998) pp. 98-109.

[16] Martial Michel and Judith E. Devaney, A generalized approach
for transferring data-types with arbitrary communication
libraries, in Proc. of the Workshop on Multimedia Network
Systems (MMNS’2000) at the 7th Int. Conf. on Parallel and
Distrib. Systems (ICPADS ’2000) (2000).

[17] Martial Michel and Judith E. Devaney, Fine Packet Size Tuning
with AutoLink, in Proc. of the Int. Workshop on Parallel
Comput. (IWPP ’99) (1999).

[18] Martial Michel, Andre Schaff, and Judith E. Devaney, Managing
data-types: the CORBA approach and AutoLink, an MPI
solution, in Proc. Message Passing Interface Developer’s and
User’s Conf., Atlanta, GA, March 10-12, 1999.

[19] J. Koontz, WebSubmit: A Web-based interface to high-perfor-
mance computing resources, Scientific Applications and Visual-
ization Group, NIST, Available from: <http://math.nist.gov/
mcsd/savg/ websubmit/, Accessed 19 Nov. 2000.

[20] Ryan McCormack, John Koontz, and Judith Devaney, Seamless
Computing with WebSubmit, Special issue on Aspects of
Seamless computing, J. Concurrency Prac. Exper. 11 (15), 949-
963 (1999).

[21] Ryan McCormack, John Koontz, and Judith Devaney, Web-
Submit: Web Based Applications with Tcl , Natl. Inst. Stand.
Technol. Internal Report (NISTIR) 6165 (1998).

[22] IBM Research, Open visualization data explorer: OpenDX
(online), Available from: <http://www.research.ibm.com/dx/>,
Accessed 5 Dec. 2000.

[23] Research Systems Inc., IDL (online), Available from: <http://
www.rsinc/idl/>, Accessed 5 Dec. 2000.

[24] OpenGL-Performer, (online), Silicon Graphics, Inc., Available
from: <http://www.sgi.com/software/performer>, Accessed 14
Dec. 2000.

[25] DIVERSE: Device independent virtual environments—recon-
figurable, scalable, extensible (online), Univ. Visualization and
Animation Group of the Advanced Communications and Infor-
mation Technology Center, Virginia Tech. Univ., Available from:
<http://www.diverse.vt.edu/>, Accessed 14 Dec. 2000.

[26] Web 3D Consortium (online), Available from: <http://
www.vrml.org>, Accessed 27 Nov. 2000.

[27] Wolfgang Ketterle, Experimental Studies of Bose-Einsteinqf-
Condensation, Phys. Today 52, 30-35 (1999).

[28] David Feder and Peter Ketcham, Image of Vortices in a Rotating
Bose-Einstein Condensate, Cover of Phys. Today, Dec. 1999.

[29] David Feder and Peter Ketcham, Image of Soliton Produced by
Phase Imprinting of a Bose-Einstein Condensate, Cover of
Opt. and Photonics News, Dec. 2000.

892



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

[30] D. L. Feder, M. S. Pindzola, L. A. Collins, B. I. Schneider, and
C. W. Clark, Dark-soliton states of Bose-Einstein condensates in
anisotropic traps, Phys. Rev. A 62, 053606 (2000).

[31] N. S. Martys and J. F. Douglas, Critical properties and phase
separation in lattice Boltzmann fluid mixtures, Phys. Rev. E
(2000) to be published.

[32] X. Shan and H. Chen, A lattice Boltzmann model for simulating
flows with multiple phases and components, Phys. Rev. E 47,
1815-1819, (1993).

[33] N. S. Martys and H. Chen, Simulation of multicomponent
fluids in complex three-dimensional geometries by the lattice
Boltzmann method, Phys. Rev. E 53, 743-750, (1996).

[34] A. M. Chapman and J. J. L. Higdon, Oscillatory stokes flow in
periodic porous media, Phys. Fluids A 4, (10), 2099-2116,
(1992).

[35] T. Bourbie and B. Zinszner, Hydraulic and acoustic properties as
a function of porosity in Fontainebleau sandstone, J. Geophys.
Res. 90 (B13, 11524-11532 (1985).

[36] P. J. Hoogerbrugge and J. M. V. A. Koelman, Simulating micro-
scopic hydrodynamic phenomena with dissipative particle
dynamics, Europhys. Lett. 19, (1), 155-160 (1992).

[37] N. S. Martys and R. D. Mountain, Velocity Verlet algorithm for
dissipative-particle-based models of suspensions, Phys. Rev. E
59, (3) 3733-3736 (1999).

[38] L. Verlet, Computer ‘experiments’ on classical fluids. I . thermo-
dynamical properties of Lennard-Jones molecules, Phys. Rev.
165, 201-214 (1967).

[39] I. Omelyan, Comput. Phys. 12, 97 (1998).
[40] B. Quentrec and C. Brot, New methods for searching for neigh-

bours in molecular dynamics computations, J. Comput. Phys. 13,
430-432 (1973).

[41] M. P. Allen and D. J. Tildesley, Computer simulation of liquids,
Clarendon Press, Oxford (1987).

[42] W. Gropp, E. Lusk, and A. Skjellum, Using MPI (2nd edition),
The MIT Press, Cambridge, Mass. (1999).

[43] W. Smith, Molecular dynamics on hypercube parallel computers,
Comput. Phys. Commun. 62, 229-248 (1991).

[44] W. Smith, A replicated-data molecular dynamics strategy for
the parallel Ewald sum, Comput. Phys. Commun. 67, 392-406
(1992).

[45] K. Refson, Moldy User’s Manual (online), 1996, Available from:
<http://www.earth.ox.ac.uk/~keith/moldy-manual/>, Accessed
20 Dec. 2000.

[46] S. J. Plimpton, B. Hendrickson, and G. Hellelfinger, A new
decomposition strategy for parallel bonded molecular dynamics,
Proc. 6th SIAM Conf. on Parallel Processing for Sci. Comput.
(Norfolk, VA), Mar. 1993.

[47] S. J. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1-19 (1995).

[48] M. Pinces, D. Tildesley, and W. Smith, Large scale molecular
dynamics on parallel computers using the link-cell algorithm,
Mol. Simul.6, 51-87 (1991).

[49] S. Satterfield, Flow of Suspensions (online), Available from:
<http://www.itl.nist.gov/div895/savg/FlowOfSuspensions>,
Accessed 27 Nov. 2000.

[50] E. A. Stern, Theory of EXAFS, in X -Ray Absorption: Princi-
ples, Applications, Techniques of EXAFS, SEXAFS, and
XANES, D.C. Konigsberger and R Prins, eds., V. 92 of
Chemical Analysis, Chap. 1, John Wiley and Sons, New York
(1988).

[51] Gordon E. Moore, Electronics magazine, Apr, 1965.

[52] J. J. Rehr, R. C. Albers, and S. I. Zabinsky, High-order multiple-
scattering calculations of x-ray-absorption fine structure, Phys.
Rev. Lett. 69, (23), 3397-3400 (1992).

[53] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M.
J. Eller, Multiple-ccattering calculations of x-ray-absorption
spectra, Phys. Rev. B 52, (4), 2995-3009 (1995).

54] A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Real
space multiple scattering calculation of XANES, Phys. Rev. B
58 (12), 7565-7576 (1998).

[55] J. F. Scott, Ferroelectrics 183, 51 (1996).
[56] J. F. Scott, Ferroelectric Rev. 1, 1 (1998).
[57] Debra L. Kaiser et al., Effect of film composition on the orien-

tation of (Ba,Sr)TiO3 grains in (Ba,Sr)yTiO2+y thin films, J. of
Mater. Res. 14 (12), 4657 (1999).

[58] R. E. Hebner, E. F. Kelley, E. O. Forster, and J. J. Fitzpatrick,
Observation of prebreakdown and breakdown phenomena in liq-
uid hydrocarbons II, non-uniform field conditions, IEEE Trans.
Electr. Insul. 20, (2), 281-292 (1985).

[59] L. Pietronero and H. J. Wiesmann, From physical dielectric-
breakdown to the stochastic fractal model, Z. Phys. B 70, (1),
87-93 (1988).

[60] W. G. Chadband, The ubiquitous positive streamer, IEEE Trans.
Electr. Insul. 23 (4), 697-706 (1988).

[61] W. G. Chadband and T. M. Sufian, Experimental support for a
model of positive streamer propagation in liquid insulation, IEEE
Trans. Electr. Insul. 20 (2), 239-246 (1985).

[62] S. Satpathy, Dielectric breakdown in three dimensions, in
Fractals in Physics, L. Pietronero and E. Tossatti, eds., Elsevier
Science Publishers (1986) p. 173.

[63] T. J. Lewis, The liquid state and its electrical properties, in
Proceedings of the NATO Advanced Study Institute, E. E.
Kunhardt, L. G. Christophorou, and L. E. Luessen, eds., Plenum
(1989) pp. 431-453

[64] J. J. Modi, Parallel Algorithms and Matrix Computation, Claren-
don, Oxford (1988).

[65] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, Dielectric
breakdown in a simplified parallel model, Comput. Phys. 12 (5),
478-482 (1998).

[66] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, Growth model
for filamentary streamers in an ambient field, IEEE Trans.
Dielectr. Electr. Insul. (2000), to be published.

[67] H. A. Fowler, J. E. Devaney, and J. G. Hagedorn, Shaping of
filamentary streamers by the ambient field, in 1999 Annual
Report Conference on Electrical Insulation and Dielectric
Phenomena, IEEE Dielectrics and Electrical Insulation Society,
(1999) pp. 132-136.

[68] M. J. Bennett and R. A. Brown, Cellular dynamics during direc-
tional solidification: Interaction of multiple cells, Phys. Rev. B
39, 11705-11723 (1989).

[69] A. R. Roosen and J. Taylor, Modeling crystal growth in a diffu-
sion field using fully faceted interfaces, J. Comput. Phys. 114,
113-128 (1994).

[70] Y. Saito, G. Goldbeck-Wood, and H. Muller-Krumbhaar,
Numerical simulation of dendritic growth, Phys. Rev. A 38,
2148-2157 (1988).

[71] James A. Warren and William J. Boettinger, Prediction of
dendritic growth and microsegregation patterns in a binary alloy
using the phase-field method, Acta Metall. Mater. 43 (2), 689-
703 (1995).

[72] William L. George, Dynamic load balancing for data-parallel
MPI programs, in Proc. Message Passing Interface Developer’s
and User’s Conf., Mar. 1999, pp. 95-100.

893



Volume 105, Number 6, November–December 2000
Journal of Research of the National Institute of Standards and Technology

About the authors: James S. Sims, John G. Hagedorn,
Peter M. Ketcham, Steven G. Satterfield, Terence J.
Griffin, William L. George, Barbara A. am Ende,
Howard K. Hung, Robert B. Bohn, John E. Koontz, and
B. James Filla are computational scientists in the
Scientific Applications and Visualization Group,
Mathematical and Computational Sciences Division, of
the NIST Information Technology Laboratory. Howland
Fowler is a Guest Researcher in the Scientific Applica-
tions and Visualization Group. Judith E. Devaney
is Group Leader of the Scientific Applications and
Visualization Group. David Feder is a Physical Scien-
tist in the Electron and Optical Physics Division in the
Physics Laboratory and Charles Clark is Chief of the
Electron and Optical Physics Division in the Physics
Laboratory. Charles Bouldin and James Warren are
Physical Scientists in the Materials Science and
Engineering Laboratory. Nicos Martys is a Physical
Scientist in the Building and Fire Research Laboratory.
The National Institute of Standards and Technology
is an agency of the Technology Administration, U.S.
Department of Commerce.

894


