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Hylleraas-configuration-interaction study of the 1 S ground state of neutral beryllium
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Hylleraas-configuration-interaction (Hy-CI) method variational calculations are reported for the 1S ground state
of neutral beryllium. The best nonrelativistic energy obtained was −14.667 356 4 hartree, which is estimated to
be accurate to a tenth of a microhartree.

DOI: 10.1103/PhysRevA.83.032518 PACS number(s): 31.15.ve, 31.15.−p

I. INTRODUCTION

Beryllium, with its four electrons and strong mixing of the
1s2 2s2 and 1s2 2p2 configurations, has long been the subject
of investigation. The first reasonably accurate nonrelativistic
calculations on the ground state were the configuration-
interaction (CI) studies of Watson [1] and Weiss [2]. Szasz
and Byrne [3] were the first to explicitly correlate the wave
function by adding intrashell rij coordinates in a Hylleraas
(Hy)-type wave function. Gentner and Burke [4] improved on
Szasz and Byrne’s work by including intershell rij coordinates.
Sims and Hagstrom [5] combined the Hy and CI methods in a
Hylleraas-configuration-interaction (Hy-CI) [5] calculation in
1971 with a considerable improvement in the energy. Bunge
did his first Be calculation in 1968 [6] and his CI calculations
for Be improved steadily over the years, culminating in a
benchmark calculation of over 2.6 million terms in 2010 [7]. A
multiconfiguration Hartree-Fock (MCHF) correlation study of
Be was presented by Froese Fischer and Saxena in 1974 [8] and
then was further refined by Froese Fischer in 1993 [9], leading
finally to a calculation of over 650 000 terms in 2010 [10].
While significant progress was being made in Hy treatments
of three-electron systems, integral problems with the conven-
tional Hy expansions [11–13] brought calculations to a halt
as far as four-electron systems were concerned until finally, in
1998, Büsse et al. [14] overcame serious integral problems and
made major improvements through the use of Hy-type doubly
linked terms in the wave-function expansions. This was the
first major Hy-type calculation of near microhartree accuracy.
In 1995 the exponentially correlated Gaussian (ECG) method
was introduced by Komasa et al. [15]. The relative simplicity
of the resultant integrals led to a sequence of impressively
accurate calculations, culminating in the work of Adamowitz
and co-workers [16,17] which stands as the best work to date
(our work is second only to theirs). Table I summarizes Be
ground-state variational results listed in order of increasing
accuracy. In this paper, we present preliminary results from a
very large Hy-CI calculation (over 40 000 symmetry adapted
expansion functions) for the Be ground state.

II. METHOD OF CALCULATION

For four electrons, the Hy-CI wave function used is

�Be =
∑
K

CK�K, (1)

where
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denotes the Kth antisymmetrized spin and angular momentum
projected configuration state function (CSF). OL,ML

and
OS,MS

are idempotent orbital and spin angular momentum
projection operators of the Löwdin type [24] for a state of
total quantum numbers L,ML,S,MS [Russell-Saunders (LS)
coupling is assumed]. In practice it is sufficient to take
νK equal to 0 or 1, with νK = 0 the CI case. �K is a
primitive spin product function for the term K and φKs

(rs)
represents the sth basis orbital in the Kth term. The basis
orbitals are taken to be un-normalized Slater-type orbitals.
Oas is the idempotent antisymmetry projection operator. For
four-electron singlet states there exist two linearly independent
primitive spin functions �1 = αβαβ and �2 = ααββ. It is
possible to converge on the exact wave function using only
the �1 product. Similar observations have been made by
Larsson [25] and by Sims and Hagstrom [26] for Li, and by
Sims and Hagstrom [5] for Be. Cencek and Rychlewski [27]
have given the general proof that only one primitive spin
function is needed to ensure convergence of eigenvalues to
the exact root of the Hamiltonian. The Appendix contains
a discussion of how to handle the antisymmetrization, spin,
and angular momentum projections involved in computing the
Hamiltonian and overlap matrix elements.

The CK coefficients in Eq. (1) are found by solving the
generalized eigenvalue problem HC = λSC, where HKL =
〈�K |H|�L〉 and SKL = 〈�K |�L〉, using the familiar inverse
iteration method. Root λ will be an upper bound to the exact
energy. The nonrelativistic Hamiltonian H used in this work is

H =
4∑

i=1

Hi +
4∑

i<j

r−1
ij , (3)

where Hi = Ti + Vi is a one-electron operator (electron i)
consisting of a kinetic-energy part Ti = −1/2∇2

i and a nuclear
attraction part Vi = −Z/ri . Quadruple precision was used
throughout the calculations. As in our recent work [26,28–30],
MPI [31] was used to parallelize the code. The number of
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TABLE I. Comparison of theoretical Be ground-state nonrelativistic energies (in hartree). N is the number of terms in the expansion. All
energies are variational except those labeled “Estimated exact.”

Technique Author(s) N Energy E (hartree)

Hy Szasz and Byrne (1967) [3] 28 −14.6565
CI Watson (1960) [1] 37 −14.657 40
Hy Gentner and Burke (1968) [4] 25 −14.6579
CI Weiss (1961) [2] 55 −14.660 90
CI Bunge (1968) [6] 180 −14.664 19
MCHF Froese Fischer and Saxena (1974) [8] 52 −14.665 87
Hy-CI Sims and Hagstrom (1971) [5] 107 −14.666 547
CI Bunge (1976) [18] 650 −14.666 902
MCHF Froese Fischer (1993) [9] 3381 −14.667 113
MCHF Froese Fischer (2010) [10] 652 683 −14.667 114 52
CI Jitrik and Bunge (1997) [19] 212 710 −14.667 275 57
CI Bunge (2010) [7] 2 614 689 −14.667 347 30
Hy-CI this work, s, p rij basis 20 330 −14.667 350 33
Hy Büsse et al. (1998) [14] 5306 −14.667 354 7
ECG Komasa et al. (1995) [15] 1200 −14.667 355 021
ECG Komasa (2002) [20] 3700 −14.667 355 627
ECG Pachucki and Komasa (2006) [21] 4600 −14.667 355 748
Hy-CI this work, s, p, d rij basis 40 784 −14.667 356 359
Hy-CI this work, s, p, d , f rij basis 41 871 −14.667 356 411
ECG Stanke et al. (2007) [16] 4600 −14.667 356 458
ECG Stanke et al. (2009) [17] 10 000 −14.667 356 486
Estimated exact Bunge (2010) [7] −14.667 355(1)
Estimated exact Pachucki and Komasa (2004) [22] −14.667 355 7(1)
Estimated exact Davidson et al. (1991) [23] −14.667 36
Estimated exact Komasa et al. (1995) [15] −14.667 360(2)

processes used varied from 12 to 48 with 32 being typical.
This is not large by current standards and scaling to 128–256
processes with the existing code would be feasible on a routine
basis provided one can be assured of adequate resources
per process. The parallel environment for this work was the
National Institute of Standards and Technology (NIST)’s 394
processor Linux cluster.

For Be the generation of the matrices H and S takes much
longer than the solution of the secular equation due to the very
large number of four-electron integrals. For large expansion
lengths N the ratio of matrix element build to eigenvalue
solve phases of the calculation was typically about 20 to
1 using an efficient solver (inverse iteration) but relatively
inefficient integral and matrix element build packages. Inverse
iteration scales as expected but matrix element build scales
rather poorly (we do not really know why). Four-electron
integrals totally dominate the integral calculation, 98 percent
of the total integral time being typical. Improvements to the
code will come in this area. Details of how we distribute the
workload, allocate memory, manage mass storage, and deal
with serial aspects of the algorithm will be described in a
future publication.

III. RESULTS

The CSFs given by Eq. (2) can be written

�K = � [FK (r1,r2,r3,r4)�K ] (4)

in terms of spatial and spin functions FK (r1,r2,r3,r4) and �K .
Only one spin function �K = �1 = αβαβ is used in this work

and the spatial part of a CSF is given by a particular choice of
Hartree orbital product and rij factor:

FK (r1,r2,r3,r4) = r
νK

ij

4∏
s=1

{φKs(rs)}, (5)

where νK is either 0 or 1.
Table II lists our best energy results (column 4) for various

expansion lengths Ntot shown in column 3. Column 2 gives
the number of CSFs added for the block shown in column 1.
The energy improvements for each CSF block type are shown
in column 5. Column 1 lists the basis orbitals that are used
to generate the CSFs for each block type in the order electron
1 (α spin), electron 2 (β spin), electron 3 (α spin), electron 4
(β spin). For example, in the first line 1:8sK for the first electron
means the basis orbitals are 1sK through 8sK orbitals (where
K indicates an orbital exponent appropriate for a K-shell
electron). Products of four orbitals are built up by taking one
pair of orbitals from the K-shell set and the other pair from the
L-shell set. All the orbital promotions are within the shell, not
between shells. This leaves out a substantial number of CSFs
that turn out to be of no importance in this work. The choice of
terms is highly regular, there having been no serious attempt
to eliminate energetically unimportant terms. The number of
CSFs in a block can be computed from the listed basis orbitals
and the condition that Nrsum, the sum of the powers of r for
each Hartree product (HP), must be less than or equal to 16
(i.e., Nrsum � 16). For example, consider 2:8pKp 2:8pKp 1:8sL

1:8sL r12. There are (7 × 8)/2 = 28 unique pairs of orbitals
for electrons 1 and 2, and (8 × 9)/2 = 36 unique pairs of
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orbitals for electrons 3 and 4. Since the K and L shells have
no orbital in common, there will be 28 × 36 = 1008 different
CSF terms for this block. Applying the condition that the sum
of the powers of r for these orbitals has to be �16, the number
of terms is reduced to 630.

The leading CSF term types in Table II are what one
would expect from adding explicit correlation to a typical
Be CI expansion. For some of the remaining term types,
the Legendre expansion of typical Hy rij product terms
helped in determining possible Hy-CI term types to try [26].
For example, expansion of s1s2s3s4r

2
23r

2
34 (only even power

products need to be considered) gives rise to a spdp term,
in addition to ssss, spsp, sspp, and spps terms. Similarly,
r2

12r
2
23 gives rise to pdps and r2

13r
2
23 to ppds. These are not

exactly obvious important CI promotions. Of course, other
orbital products arise from the appropriate Hy terms, e.g., ppss

from r2
12, spsp from r2

24, and so on. From the possible r2
ij r

2
kl

products, there are six linearly independent orbital products
used in this work, namely, sppd, ppsd, sdpp, pspd, dpsp,
and pdsp.

Column 6 in Table II lists ω, the sum of the powers of the rij

products for the Hy equivalent of the Hy-CI term. Except for
the sK1 blocks toward the end of Table II, the blocks are ordered
by increasing ω. Except for ppdd, ddpp, and pppp, all CSF
types give rise to only one 1S state obtained from projecting
the orbital product (l10, l20, l30, l40). For ppdd, ddpp, and
pppp, three 1S states are obtained by projection of (0, 0, 0, 0),
(1, 1, −1, −1) and (1, −1, 1, −1), where only the m quantum
numbers are shown. For ddpp and pppp, all three projections
were used. For ppdd only the first two cases proved to be
energetically important. CSF blocks were tested individually
for importance essentially by trial and error, keeping in mind
that the contribution depends on the order in which blocks
are added. All blocks which lowered the energy by more than
5 nanohartree were kept.

Final orbital exponent optimization was done at the N =
19 076 expansion level for s and p orbitals and at the N =
27 468 level for d orbitals. f orbital exponents were taken
over from an earlier optimization. Due to limitations in the
integral codes, it was not possible to give every orbital type
its own orbital exponent. In a practical sense this was not a
problem, since the dependence of the final energy surface on
the orbital exponents turned out to be extremely flat for the
5-nanohartree cutoff used. Careful minimization of the ζ s was
not a particular problem for 0.1 microhartree accuracy.

IV. DISCUSSION

Table I summarizes earlier Be ground-state variational
results listed in order of increasing accuracy and includes
three important limiting energy values from the present work
inserted to facilitate comparison with the earlier work. Note
that 6-microhartree accuracy is obtained with just an s,p rij

basis, which is better than the best CI result of Bunge [7]
using over 2.6 million CSFs with l up to 30. A 40 784 term
s,p,d rij basis wave function (all the blocks in Table II
except for the three blocks containing f orbitals) results in
better than microhartree accuracy (0.2 microhartree). Finally
adding f orbitals gives an s,p,d,f rij energy of E(41 871) =
−14.667 356 411 hartree. Use of an s,p,d,f rij basis is

consistent with what we know from our earlier Li calculations
[26]. However, it should be noted that the ECG result of Stanke
et al. [17] is fully 75 nanohartree below our current best. From
the various different estimates of the exact energy it should
be clear that there is no doubt about the exact energy at the
microhartree level, but beyond that it gets problematic.

In Table II are listed results for the Be wave function
expansions at various levels of truncation. The most distinctive
feature of the table is the obvious importance of CSF blocks
with r12 and r34 reflecting the pronounced Be shell structure.
There are a few important blocks incorporating intershell
correlation (via r13- and r14-type terms), but there are also
intershell blocks with anomalously small contributions, for
which there is no ready explanation. There are 18 blocks
that contribute at the microhartree level out of a total of 71
given in the table. Many more block types (approximately 78)
were tested but not included in the final wave function due to
the 5-nanohartree cutoff. The spdf {1,r12,r34,r13,r14} blocks
are an example. Many blocks were not tried; many of the
ones tried and dropped because of the 5-nanohartree cutoff
could contribute at the 1-nanohartree level. Some blocks which
lowered the energy by less than 5 nanohartree were kept
because they function as “sanity” checks on the calculation.
One example is the 4:8fKf

4:8fKf
1:7sL1:7sLr34 block which

is involved in our attempt to include an r12r34-type correlation,
as discussed below. Another example is that the last two
blocks in the table are part of the sK1 set of expansion
terms, which introduces additional correlation into the K

shell. After we arrived at the 41 871 term wave function,
further tests were done to check the choice of blocks in the
wave function. For example, blocks containing terms in which
K- and L-shell orbitals are not both doubly occupied and
containing either r23 or r24 were added to the 41 871 term
wave function, but none of these blocks added more than 2
nanohartree. As another example, our algorithm for building
HPs omits HPs with {msK,m′sK}{nsL,n′sL} m � m′,n � n′.
These terms were also tested but not included in the final wave
function because they led to only very small improvements;
they were not important for Li [26] either.

The Hy calculation by Büsse et al. [14] in Table I is the cal-
culation closest in spirit and results to the current calculation. A
direct comparison is difficult, however, because of differences
in choice of spin function as well as, of course, the presence of
products of rij factors raised to odd powers (so-called odd-odd
terms, e.g., rij rik and rij rkl), which appear in Hy expansions
but are not explicitly represented in the corresponding Hy-CI
expansions. For Li [26] it has been shown that odd power
linked product terms (rij products with one index in common)
are unimportant at the nanohartree level, and by inference
probably not a problem at the four-electron level, although
there are more such terms in the Be case, and one might expect
their contribution to be somewhat greater. The unlinked rij rkl

(no indices in common) term types, which first occur in the
four-electron case, are expected to be of major importance,
however. Support for this can be inferred from Büsse et al.’s
[14] ω = 2 results. There is a big 2000-microhartree improve-
ment due to odd power term types of which r12r34 would
be expected to be the most important. In Hy-CI this effect
can hopefully be effectively represented using a superposition
of normal Hy-CI term types. In particular we suggest that

032518-3



JAMES S. SIMS AND STANLEY A. HAGSTROM PHYSICAL REVIEW A 83, 032518 (2011)

TABLE II. Hy-CI results for the Be ground-state energy (in hartree). In the table, N is the number of CSF terms added with each CSF
block, Ntot is the cumulative number of terms, and ω is the sum of the rij powers in an equivalent Hy expansion. All terms are r-sum filtered;
Nrsum = 16.

Terms addeda,b N N tot E(N tot) (hartree) −�E (microhartree) ω

1 : 8sK 1 : 8sK 1 : 8sL 1 : 8sL 896 896 −14.591 724 231 0
1 : 8sK 1 : 8sK 1 : 8sL 1 : 8sL r12 896 1792 −14.659 886 529 68 162.298 0 + 1
1 : 8sK 1 : 8sK 1 : 8sL 1 : 8sL r34 896 2688 −14.662 973 074 3040.778 0 + 1
1 : 8sK 1 : 8sK 1 : 8sL 1 : 8sL r13 896 3584 −14.662 930 798 3.491 0 + 1
1 : 8sK 1 : 8sK 1 : 8sL 1 : 8sL r14 896 4480 −14.662 934 922 4.124 0 + 1
2 : 8pKp 2 : 8pKp 1 : 8sL 1 : 8sL 630 5110 −14.664 420 851 1485.930 2
2 : 8pKp 2 : 8pKp 1 : 8sL 1 : 8sL r12 630 5740 −14.664 504 277 83.426 2 + 1
2 : 8pKp 2:8pKp 1 : 8sL 1 : 8sL r34 630 6370 −14.666 606 396 2102.119 2 + 1
2:8pKp 2 : 8pKp 1 : 8sL 1 : 8sL r13 630 7000 −14.666 816 908 210.512 2 + 1
2 : 8pKp 2 : 8pKp 1 : 8sL 1 : 8sL r14 630 7630 −14.666 947 723 130.816 2 + 1
1 : 8sK 1 : 8sK 2 : 8pLp 2 : 8pLp 630 8260 −14.667 138 747 191.023 2
1 : 8sK 1 : 8sK 2 : 8pLp 2 : 8pLp r12 630 8890 −14.667 289 253 150.506 2 + 1
1 : 8sK 1 : 8sK 2 : 8pLp 2 : 8pLp r34 630 9520 −14.667 289 795 0.543 2 + 1
1 : 8sK 1 : 8sK 2 : 8pLp 2 : 8pLp r13 630 10 150 −14.667 306 512 16.717 2 + 1
1 : 8sK 1 : 8sK 2 : 8pLp 2 : 8pLp r14 630 10 780 −14.667 314 875 8.363 2 + 1
1 : 6sK 2 : 6pKp 1 : 6sL 2 : 6pLp 865 11 645 −14.667 314 971 0.096 2
1 : 6sK 2:6pKp 1 : 6sL 2:6pLp r12 865 12 510 −14.667 316 045 1.074 2 + 1
1 : 6sK 2:6pKp 1 : 6sL 2:6pLp r34 865 13 375 −14.667 316 303 0.258 2 + 1
1 : 6sK 2:6pKp 1 : 6sL 2:6pLp r13 865 14 240 −14.667 316 355 0.051 2 + 1
1 : 6sK 2:6pKp 2:6pLp 1 : 6sL 865 15 105 −14.667 316 402 0.048 2
1 : 6sK 2:6pKp 2:6pLp 1 : 6sL r12 865 15 970 −14.667 316 503 0.100 2 + 1
1 : 6sK 2:6pKp 2:6pLp 1 : 6sL r14 865 16 835 −14.667 316 618 0.115 2 + 1
2:7pKp 2:7pKp 2:7pLp 2:7pLp 987 17 822 −14.667 348 007 31.389 4
2:6pKp 2:6pKp 2:6pLp 2:6pLp r12 627 18 449 −14.667 350 243 2.236 4 + 1
2:6pKp 2:6pKp 2:6pLp 2:6pLp r34 627 19 076 −14.667 350 287 0.044 4 + 1
2:6pKp 2:6pKp 2:6pLp 2:6pLp r13 627 19 703 −14.667 350 326 0.040 4 + 1
2:6pKp 2:6pKp 2:6pLp 2:6pLp r14 627 20 330 −14.667 350 336 0.010 4 + 1
1 : 6sK 2:5pKp 2:5pLp 3:6dLd 379 20 709 −14.667 352 968 2.632 4
1 : 6sK 2:6pKp 2:5pLp 3:6dLd r12 465 21 174 −14.667 353 413 0.444 4 + 1
1 : 6sK 2:5pKp 2:5pLp 3:6dLd r34 379 21 553 −14.667 353 496 0.084 4 + 1
1 : 6sK 2:5pKp 2:5pLp 3:6dLd r13 379 21 932 −14.667 353 568 0.071 4 + 1
1 : 6sK 2:5pKp 2:5pLp 3:6dLd r14 379 22 311 −14.667 353 644 0.076 4 + 1
2:6pKp 2:6pKp 1 : 7sL 3:6dLd 375 22 686 −14.667 353 689 0.045 4
2:6pKp 2:6pKp 1 : 7sL 3:6dLd r12 375 23 061 −14.667 353 803 0.114 4 + 1
2:6pKp 2:6pKp 1 : 7sL 3:6dLd r14 375 23 436 −14.667 353 822 0.019 4 + 1
2:6pKp 2:6pKp 1 : 7sL 3:6dLd r13 375 23 811 −14.667 353 832 0.010 4 + 1
2:6pKp 2:6pKp 1 : 7sL 3:6dLd r34 375 24 186 −14.667 353 837 0.005 4 + 1
1 : 6sK 3:7dKd 2:7pLp 2:7pLp 506 24 692 −14.667 353 992 0.155 4 + 1
1 : 6sK 3:7dKd 2:7pLp 2:7pLp r12 506 25 198 −14.667 353 999 0.007 4 + 1
1 : 6sK 3:7dKd 2:7pLp 2:7pLp r13 506 25 704 −14.667 354 005 0.006 4 + 1
1 : 6sK 3:7dKd 2:7pLp 2:7pLp r34 506 26210 −14.667 354 042 0.037 4 + 1
2:6pKp 1 : 6sK 2:7pLp 3:7dKd 776 26 986 −14.667 354 049 0.007 4 + 1
2:6pKp 1 : 6sK 2:7pLp 3:7dKd r14 776 27 762 −14.667 354 154 0.104 4 + 1
2:6pKp 1 : 6sK 2:7pLp 3:7dKd r13 776 28 538 −14.667 354 169 0.015 4 + 1
3:7dKd 2:6pkp 2:7sL 2:7pLp 702 29 240 −14.667 354 173 0.005 4 + 1
2:6pKp 3:7dKd 1 : 7sL 2:7pLp r12 851 30 091 −14.667 354 180 0.007 4 + 1
2:6pKp 3:7dKd 1 : 7sL 2:7pLp r14 851 30 942 −14.667 354 187 0.007 4 + 1
2:6pKp 3:7dKd 1 : 7sL 2:7pLp 851 31 793 −14.667 354 194 0.007 4 + 1
1 : 6sK 1 : 6sK 3:7dLd 3:7dLd 266 32 059 −14.667 354 437 0.243 4 + 1
1 : 6sK 1 : 6sK 3:7dLd 3:7dLd r12 266 32 325 −14.667 355 886 1.449 4 + 1
1 : 6sK 1 : 6sK 3:7dLd 3:7dLd r34 266 32 591 −14.667 355 913 0.027 4 + 1
1 : 6sK 1 : 6sK 3:7dLd 3:7dLd r13 266 32 857 −14.667 355 941 0.028 4 + 1
1 : 6sK 1 : 6sK 3:7dLd 3:7dLd r14 266 33 123 −14.667 355 956 0.015 4 + 1
3 : 8dKd 3 : 8dKd 1 : 7sL 1 : 7sL 378 33 501 −14.667 356 065 0.110 4 + 1
3 : 8dKd 3 : 8dKd 1 : 7sL 1 : 7sL r34 378 33 879 −14.667 356 107 0.042 4 + 1
3 : 8dKd 3 : 8dKd 1 : 7sL 1 : 7sL r12 378 34 257 −14.667 356 122 0.015 4 + 1
3 : 8dKd 3 : 8dKd 1 : 7sL 1 : 7sL r13 378 34 635 −14.667 356 130 0.008 4 + 1
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TABLE II. Continued.

Terms addeda,b N N tot E(N tot) (hartree) −�E (microhartree) ω

3 : 8dKd 3 : 8dKd 1 : 7sL 1 : 7sL r14 378 35 013 −14.667 356 135 0.005 4 + 1
1 : 6sK 3:7dKd 3:7dLd 1 : 7sL 851 35 864 −14.667 356 140 0.005 4
1 : 6sK 3:7dKd 3:7dLd 1 : 7sL r14 851 36 715 −14.667 356 146 0.006 4 + 1
3 : 8dKd 3 : 8dKd 2:7pLp 2:7pLp 732 37 447 −14.667 356 179 0.034 6
3 : 8dKd 3 : 8dKd 2:7pLp 2:7pLp r34 732 38 179 −14.667 356 302 0.123 6 + 1
3 : 8dKd 3 : 8dKd 2:7pLp 2:7pLp r12 732 38 911 −14.667 356 308 0.006 6 + 1
2:7pKp 2:7pKp 3 : 8dLd 3 : 8dLd 488 39 399 −14.667 356 320 0.012 6
2:7pKp 2:7pKp 3 : 8dLd 3 : 8dLd r12 488 39 887 −14.667 356 324 0.004 6 + 1
1 : 6sK 1 : 6sK 4 : 8fLf 4 : 8fLf r12 210 40 097 −14.667 356 371 0.047 6 + 1
4 : 8fKf 4 : 8fKf 1 : 6sL 1 : 6sL r34 232 40 329 −14.667 356 374 0.003 6 + 1
1 : 6sK 4 : 8fKf 4 : 8fLf 1 : 6sL r34 645 40 974 −14.667 356 378 0.004 6
1 : 6sK1 1 : 6sK1 2:6sL 2:6sL 299 41 273 −14.667 356 404 0.026 0
1 : 6sK1 1 : 6sK1 2:6sL 2:6sL r12 299 41 572 −14.667 356 407 0.003 0 + 1
1 : 6sK1 1 : 6sK1 2:6sL 2:6sL r34 299 41 871 −14.667 356 411 0.004 0 + 1

aK-shell orbital exponents are K = 3.3, K1 = 10.0, Kp = 4.65, Kd = 4.65. Kf = 4.5
bL-shell orbital exponents are L = 1.6, and Lp = 2.0, Ld = 2.6, Lf = 3.0.

the forms (ss + pp + dd + · · ·)K (ss + pp + dd + · · ·)L
r34 + (ss + pp + dd + · · ·)Kr12(ss + pp + dd + · · ·)L will
accomplish this. In this representation one electron pair is
being correlated primarily by the rij factor while the other
pair is correlated by a CI pair expansion of the sort used
for He [28], which is unfortunately slowly converging in the
CI case, but may be better behaved in Be. In Table III are
gathered together results from Table II, with additional test
results using (ss)Kr12(gg)L and (ff )K (pp)Lr34 term types
added specifically to explore this point, suggesting that this is
indeed the case. For example, the series (ss)Kr12(pp + dd +
ff )L converges nicely as does (pp + dd + ff )K (ss)Lr34.
(pp)Kr12(pp + dd + ff )L and (pp + dd + ff )K (pp)Lr34

contribute similarly. There is one anomalous case for which
we have no explanation. Note also that the numbers in Table III
depend on the block order used in Table II, an ordering that was
not explicitly designed to show the r12r34 convergence effect.
Compared to the slow, cusp-connected convergences in typical
CI calculations, this is unusually fast convergence, suggesting
that this correlation type can be accurately represented within
the Hy-CI model.

However, further research into this point is warranted. In
this connection, an Hy treatment of (hopefully) nanohartree

accuracy both with and without unlinked cluster terms, analo-
gous to the way the effect of linked cluster terms like r12r13 was
examined in Li [26], would be most useful, especially since the
issue of unlinked cluster terms is qualitatively different from
the issue of linked cluster terms. Generalization of Hy-CI to
include unlinked rij rkl terms would certainly settle the issue,
but at the cost of greatly complicating the calculation of matrix
elements.

A 5-nanohartree threshold was used to determine which
term types to include in the final wave function. Blocks
which contribute less than this threshold value were dropped.
Tests to date suggest that (20–25) nanohartree could probably
be picked up using a 1-nanohartree cutoff leaving about
50 nanohartree to reach or surpass the Stanke et al. [17] value,
but to do substantially better, assuming that r12r34 is not a
problem, will involve addressing issues of (i) greater flexibility
in the atomic orbital basis (the number and choice of nonlinear
parameters is very important at the nanohartree level for
Li [26], and there is no reason to believe this will not be the case
for Be as well); (ii) more careful optimization of the nonlinear
parameters; (iii) focusing on the most important (core) CSF
types involving s and p orbitals; and (iv) better CSF filtering
to reduce the expansion lengths. Extensive experimentation

TABLE III. Convergence of r12 r34 as represented by Hy-CI.

Block Energy E (nanohartree) Block Energy E (nanohartree)

(ss)Kr12(ss)L 68 162 298 (ss)K (ss)Lr34 3 040 778
(ss)Kr12(pp)L 151 506 (pp)K (ss)Lr34 2 102 114
(ss)Kr12(dd)L 1449 (dd)K (ss)Lr34 42
(ss)Kr12(ff )L 47 (ff )K (ss)Lr34 3
(ss)Kr12(gg)L 0
(pp)Kr12(ss)L 83 426 (ss)K (pp)Lr34 543
(pp)Kr12(pp)L 2236 (pp)K (pp)Lr34 44
(pp)Kr12(dd)L 4 (dd)K (pp)Lr34 123

(ff )K (pp)Lr34 3
(dd)Kr12(ss)L 15 (ss)K (dd)Lr34 27
(dd)Kr12(pp)L 6 (pp)K (dd)Lr34 4
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will be needed to find the best combination of CSFs and
orbital parameters upon which to base a much larger so-called
“full, complete expansion.” It should be noted that the present
calculations are very computationally expensive with the H

and S matrix element build step taking an order of magnitude
longer than the eigenvalue solve step. This is due to the
complete dominance of the four-electron integral computation
time (by a factor of 100 or more) over the time required for
all other integrals. Fortunately, substantial improvements are
possible in both the four-electron integral package and in
the eigenvalue routines currently being used. Ideally these
improved codes will lead to more efficient computational
access to not only the ground state of Be, but to excited states
(both S and non-S, singlet and triplet) as well as Be-like ions.

V. CONCLUSION

The ability of Hy-CI calculations to achieve 0.1-
microhartree accuracy for beryllium is shown in this work.
The convergence of r12r34 term types has been investigated,
and Hy-CI appears to accurately represent this term type,
although more research is needed on this point. Given the
close relationship between Hy-CI and Hy calculations when
the Hy expansion terms contain at most a single odd power
of rij , it should be possible using Hy expansions to achieve
comparable accuracy for beryllium without using the odd-odd
power products of rij , which leads to severe integral problems
in Hy calculations for four or more electrons. Thus even though
the present results are preliminary, they significantly advance
prospects for accurate Hy-CI calculations on four or more
electron atoms1.For Hy-CI calculations to go beyond the 0.1-
microhartree accuracy achieved in this work, further research
is needed on r12r34 representation, more flexible atomic orbital
basis sets, and better CSF filtering techniques to control
expansion lengths.
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APPENDIX: PROJECTION REDUCTION

In the generalized eigenvalue problem HC = λSC, matrix
element HKL is

HKL = 〈�K |H|�L〉 = 〈
��P

K

∣∣H∣∣��P
L

〉
, (A1)

1An extension of Hy-CI to the five-electron boron case is underway
[32].

where �P
K denotes the Kth primitive (unprojected) function

r
νK

ij

∏4
s=1{φKs

(rs)}�K . SKL is similar, with H replaced by the
unit operator 1.

Now notice that

N !Oas =
∑

p

(−1)pP

=
(∑

u

(−1)uP α
u

) (∑
ν

(−1)νP β
ν

)
+

∑
γ

(−1)γ P αβ
γ

= AαAβ + Aαβ, (A2)

where N is the number of electrons, P α refers to those
permutations which permute only α spins, P β refers to those
permutations which permute only β spins, and P αβ refers to
only those permutations which permute an α spin and a β spin.
If we rewrite the bra and ket functions in Eq. (A1) in terms
of a single spin function, the HKL matrix element will end
up involving only AαAβ since permutations between α and β

give zero results when integrating over spin.
In our case �K = �L = �1 = α(1)β(2)α(3)β(4) =

αβαβ, so we can write

��P
K = OL,ML

OasOS,MS
gKfK�1, (A3)

where gK = r
νK

ij and fK is the Hartree product �4
s=1φKs

(rs).
Using the quantum-mechanical “turnover rule” [33], the
commutativity of � and H, and the idempotency condition
�†� = �, HKL reduces to

HKL = 〈
�P

K

∣∣H∣∣��P
L

〉
. (A4)

Projecting on �1 with the Löwdin spin projection operator [24]
OS,MS

(S = 0,MS = 0), we get

OS,MS
�1 = OS,MS

αβαβ

= 1
3αβαβ − 1

6 (ααββ + αββα + βααβ + ββαα)

+ 1
3βαβα, (A5)

where the subscripts (not shown) on the α and β are always in
the order 1,2,3,4.

This can be written

OS,MS
�1 = (

1
3 − 1

6

(
P σ

23 + P σ
34 + P σ

12 + P σ
14

) + 1
3P σ

12P34
)σ

�1,

(A6)

where P σ is used to denote permutations over spin coordinates
(P r will be used later to denote permutations over spatial
coordinates). Using the identity

Oas = (−1)pOas(P
rP σ )−1, (A7)

HKL becomes

HKL = 〈
fKgK�1|H|OL,ML

Oas

× (
1
3 + 1

6

(
P r

23 + P r
34 + P r

12 + P r
14

) + 1
3P r

12P34
)r

× gLfL�1
〉
. (A8)
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Now we can integrate over spin, effectively removing spin
from the matrix element:

HKL = 〈gKfK |H|AαAβOL,ML
Br (gLfL)〉. (A9)

We have used the fact that OL,ML
commutes with Oas in the

above equation. Here the “reduced” antisymmetrizer AαAβ ,

AαAβ = (1 − P13)(1 − P24), (A10)

and

B = 1
3 + 1

6 (P23 + P34 + P12 + P14) + 1
3P12P34 (A11)

operate on the spatial coordinates. r has been dropped from
the terms in B since only spatial coordinates remain.

Using Eq. (A11), we obtain for our final expression for HKL

HKL = 〈gKfK |H|(1 − P13)(1 − P24)OL,ML
B(gLfL)〉. (A12)

In Eq. (A12) one can apply OL,ML
either before or after

applying B. We first apply the permutations B to gLfL,
then we project on the resulting terms with OL,ML

. The
OL,ML

projection is applied only on the orbital products since
gL = r

νL

ij commutes with OL,ML
[5,34].

Depending on the structure of gLfL, (1 − P13)(1 − P24)
B(gLfL) may further simplify, and this should be checked
before application of OL,ML

. In practice we routinely swap
the bras and kets if doing so will reduce the number of terms
on the right-hand side in Eq. (A12) or otherwise simplify the
process of assembling matrix elements.
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