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Introduction

Original problem: Broadbent and Hammers-

ley(1957)

Suppose a large porous rock is submerged un-

der water for a long time, will the water reach

the center of the stone?

Related problems:

How far from each other should trees in an or-

chard (forest) be planted in order to minimize

the spread of blight (fire)?

How infectious does a strain of flu have to be

to create a pandemic? What is the expected

size of an outbreak?
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Setup: 2D Bond Percolation

• Stone: a large two dimensional grid of chan-

nels (edges). Edges in the grid are open or

present with probability p (0 ≤ p ≤ 1) and

closed or absent with probability 1 − p.

• Pores: open edges and p determines the

porosity of the stone.

A contiguous component of the graph of open

edges is called an open cluster. The water will

reach the center of the stone if there is an open

cluster joining its center with the periphery.

Similarly, in the orchard example, p is the prob-

ability that blight will spread to an adjacent

tree and minimizing the spread corresponds to

minimizing the size of the largest open cluster.
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Setup: 2D Bond Percolation

p=0.25 p=0.48

p=0.52 p=0.75
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Setup: Bond Percolation

General Bond Percolation Model

• The space of the model is Zn or any infinite

graph.

• The edges are open or closed with probabil-

ity p, which may depend on the properties

of the edge (e.g. degree).

• Open cluster is a connected component of

the open edge graph.

• The network is said to percolate if there

is an infinite open cluster containing the

origin.

If the graph is translation invariant there is no

difference between the origin and any other

vertex.
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Setup: Site Percolation

Site Percolation Model

• The space of the model is Zn or any infinite

graph.

• The vertices are open or closed with prob-

ability p, which may depend on the proper-

ties of the vertex (e.g. degree).

• Open cluster is a connected component of

the open vertex graph.

• The network is said to percolate if there

is an infinite open cluster containing the

origin.

Every bond percolation problem can be real-

ized as a site percolation problem (on a differ-

ent graph). The converse is not true.
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Setup: Why Percolation?

• Percolation provides a very simple model

of random media that nevertheless retains

enough realism to make its predictions rel-

evant in applications.

• It is a test ground for studying more com-

plicated critical phenomena and a great source

of intuition.
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Basic Results: Quantities of Interest

• |C| — the size of the open cluster at 0,

where C stands for the open cluster itself;

• θ(p) — percolation probability, defined as

θ(p) = Pp(|C| = ∞);

•
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Basic Results: Percolation Probability

Exact shape of θ(p) is not known but it is be-

lieved to be a continuous function of p

pc (d)

θ(  )p

1

1 p

Percolation thus has three distinct phases

1) subcritical if p < pc

2) critical if p = pc

3) supercritical if p > pc
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Basic Results: Quantities of Interest

• |C| — the size of the open cluster at 0,

where C stands for the open cluster itself;

• θ(p) — percolation probability, defined as

θ(p) = Pp(|C| = ∞);

• pc(d) — critical probability, defined as

pc(d) = sup{p : θ(p) = 0};

•
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Basic Results: Critical Probability

Theorem. If d ≥ 2 then 0 < pc(d) < 1.

The exact value of pc(d) is known only for a

few special cases:

• pbond
c (1) = psite

c (1) = 1

• pbond
c (2) = 1/2, psite

c (2) ≈ .59

• pbond
c (triangular lattice) = 2 sin(π/18)

• pbond
c (hexagonal lattice) = 1 − 2 sin(π/18)

Theorem.Probability that an infinite open clus-

ter exists is 0 if p < pc(d) and 1 if p > pc(d).

It is known that no infinite open cluster exists

for p = pc(d) if d = 2 or d ≥ 19.
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Basic Results: Critical Probability

Some bounds on the critical probability are

known

Theorem. If G is an infinite connected graph

and maximum vertex degree ∆ < ∞. The crit-

ical probabilities of G satisfy

1

∆ − 1
≤ pbond

c ≤ psite
c ≤ 1 − (1 − pbond

c )∆.

In particular, pbond
c ≤ psite

c and strict inequality

holds for a broad family of graphs.
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Basic Results: Quantities of Interest

• |C| — the size of the open cluster at 0,

where C stands for the open cluster itself;

• θ(p) — percolation probability, defined as

θ(p) = Pp(|C| = ∞);

• pc(d) — critical probability, defined as

pc(d) = sup{p : θ(p) = 0};

• χ(p) — the mean size of the open cluster

at the origin, defined as

χ(p) = Ep[|C|];

• χf(p) — the mean size of the finite open

cluster at the origin, defined as

χf(p) = Ep[|C| : |C| < ∞];
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Basic Results: Subcritical Phase

If p < pc all open clusters are finite with prob-

ability 1.

Theorem.Probability of a cluster of size n at 0

decreases exponentially with n. More precisely,

there exists α(p) > 0, α(p) → ∞ as p → 0 and

α(pc) = 0 such that

Pp(|C| = n) ≈ e−nα(p) as n → ∞

This also implies that χ(p) is finite for all p in

the subcritical region.

Theorem. Probability distribution for cluster

radii decays exponentially with the radius, i.e.

Pp(0 ↔ ∂B(r)) ≈ e−r/ξ(p)

where ξ(p) — the characteristic length of ex-

ponential decay — is the mean cluster radius.
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Basic Results: Supercritical Phase

If p > pc, with probability 1 at least one infinite

open cluster exists.

Theorem. The infinite open cluster is unique

with probability 1.

Theorem. Probability of a finite open cluster

of size n at 0 decreases exponentially with n.

More precisely, there exist functions β1(p) and

β2(p), satisfying 0 < β2(p) ≤ β1(p) < ∞, such

that

exp(−β1(p)n
(d−1)/d) ≤ Pp(|C| = n)

≤ exp(−β2(p)n
(d−1)/d)

Because χ(p) is infinite for p > pc the truncated

mean — χf(p) — over finite clusters only is

considered.
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Basic Results: χ(p)

The general shape of χ(p) is believed to be as

follows

pc (d) p1

1

χ (  )ppχ(  )
f
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Application: Network Robustness and

Fragility

Problem: How many random nodes can be re-

moved before a network looses connectivity?

How many of the highly connected nodes can

be removed before the network looses connec-

tivity?

Use site percolation model on a random graph

with a given degree distribution pk and ver-

tex occupation probability qk depending on the

vertex degree.

Allowing qk to vary with k allows to study vari-

ous types of attacks: random if qk = q is inde-

pendent of k, targeted deletion of high degree

nodes if qk = H(kmax − k).
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Application: Network Robustness and

Fragility

Using formalism of generating functions it can

be shown that the generating function H0 of

cluster size |C| at a random vertex satisfies

H0(x) = 1 − F0(1) + xF0(H1(x))

H1(x) = 1 −
1

z
(F ′

0(1) + xF ′
0(H1(x)))

F0(x) =
∞
∑

k=0

pkqkxk

and z is the mean graph degree, and

χ(q) = H ′
0(1)
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Application: Network Robustness and

Fragility

Although closed form solutions to the above

equations do not exist in general, it is possible

to compute H0 to any degree of accuracy by it-

erating equations for H1 and then substituting

into the equation for H0.

In the case qk = q (uniform distribution) it can

be shown that χ(q) diverges at

qc =
1

G′′(1)

where G = 1
z

∑

k pkxk. This is the percolation

threshold probability.
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Application: Network Robustness and

Fragility

pk =

{

0 if k = 0

Ck−τe−k/κ if k ≥ 1
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Application: Network Robustness and

Fragility

If the highest degree vertices are removed first,

qk = H(kmax − k), the probability that a ran-

dom vertex does not belong to the giant open

cluster is

S = 1 − H0(1) = F0(1) − F0(u)

where u solves

u = 1 −
1

z
(F ′(1) + F ′(u))

These equations can be solved numerically.
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Application: Network Robustness and

Fragility
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