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ABSTRACT
We report our work on the development of analytical and
numerical methods that enable the detection of failure sce-
narios in distributed grid computing, cloud computing and
other large scale systems.The spectral (i.e. eigenvalue and
eigenvector) properties of the matrices associated with a
non-homogeneous absorbing Markov Chain are used to
quickly compute the long time proportion of tasks com-
pleted at a given setting of parameters. This enables the
discovery of critical ranges of parameter values where sys-
tem performance deteriorates and fails.
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1 Introduction

In recent years, the advent of large scale distributed systems
such as computing grids and commercial cloud systems has
made mass computing services available to populations of
users on demand. These systems are dynamic,potentially
heterogeneous and- due to the interactions of its many
components- subject to the emergence of unpredictable
system wide behaviors [1]. Their rapid growth and increas-
ing economic importance underline the need for tools and
methodologies that enable understanding and prediction of
complex system behavior in order to insure the availability
and reliability of these services. Key questions are the ef-
fect of changes in workload, system design and other oper-
ational parameters on overall system performance. For ex-
ample, studies of alternative economic strategies [2],[3],[4]
and system failure scenarios [1] have shown that small vari-
ations in key system parameters can lead to large differ-
ences in performance. By large scale simulation we mean
the discrete event simulations that simulate in detail the var-
ious stages encountered by each individual task over time.

While the large scale simulations used in these studies are
more practical than operational testbeds, computational ex-
pense rising dramatically with model size and number of
tasks is a critical roadblock to extensive investigation of
dynamical behavior in large scale systems.

To address this situation, we introduced in earlier
work, a succinct Markov chain representation of the
dynamics of a large-scale grid system over time. The chain
simulates the progress of a large number of computing
tasks from the time they are submitted by users to the
time they either complete or fail. The evolution of the
Markov chain itself occurs in discrete time through a set of
transition probability matrices (TPMs). Each TPM simu-
lates the grid system over a distinct time period and thus
the Markov chain is piece-wise homogeneous. Changes
in system parameters can be modeled by perturbing the
TPMs of the Markov chain. The corresponding sample
paths are altered and represent altered system execution
paths that arise as a result of perturbed system parameters
[8]. Through systematic perturbation of the TPM matrices
followed by simulation of the resulting perturbed Markov
chain we were able to identify scenarios that led to degra-
dations of system performance and system-wide failure.
Our results compared very favorably with large scale
simulation results and were obtained with a substantial
reduction in computational cost [8]. One reason for this is
that the statistics of the behavior of a population of tasks
are summarized by the Markov chain while individual
tasks must be tracked in the large scale simulation. Nev-
ertheless, as the number of states of the Markov chain
grows, the computational cost of this method significantly
increases.Thus it is very difficult to quickly identify the
set of perturbed TPMs that lead to system deterioration
or failure when the number of states is large. Prediction
and ultimately control of these systems will depend on
the ability to discover these scenarios quickly and perhaps
in real time. This is the motivation for the work that



is briefly reported here.Our results constitute a proof of
concept as the Markov model we discuss has just n = 7
states and we mainly discuss distributed task scheduling
systems like grids. However we are currently applying this
methodology to larger systems including cloud computing
systems.

In the context of grid computing what do we mean
by failure scenarios? All grid computing systems have ba-
sic requirements called service guarantees that must be ful-
filled. The failure to do so results in deterioration or out-
right failure in system performance. Service guarantees are
of three types. First, the service discovery gurarantee refers
to the ability of a grid system to provide necessary infor-
mation to users about available computing services includ-
ing relevant updates. The service engagement guarantee
insures that qualified users who have discovered a needed
and available service are allowed to engage that service.
Finally, the service fulfillment guarantee simply states that
once a service has been engaged, i.e. a service level agree-
ment (SLA) has been agreed to: both user and service
provider must adhere to its terms. In the large scale sim-
ulation and the Markov model, a failure scenario is a set-
ting of operational parameters modeling the non-fulfillment
of one or more guarantees, whose corresponding execution
paths lead to system failure. A major goal of perturba-
tion studies is to answer questions such as “at what point
of incremental increase of guarantee non-fulfillment does
system performance begin to degrade rapidly?” and “what
specific actions by providers or users affect non-fulfillment
of a particular guarantee?”. This brief paper and the work
in [5] argue that a Markov Chain approach can be used to
answer these questions by approximating the transient be-
havior of a real world grid system (using large-scale sim-
ulation as a proxy). It summarizes our work on the de-
velopment of analytical and numerical methods for discov-
ering variation or perturbations in operational parameters
that lead to decreases in system performance and system
failure. They are based on properties of absorbing Markov
chains and their associated matrices. We refer the reader
to [5] for more detailed discussion and derivation of our
method. Our contribution is twofold, first, a method for
quickly generating the time course of a key variable of the
system, the proportion of tasks completed for TPMs mod-
eling the normal operation of the system as well as for per-
turbed TPMs depicting the operating parameters that lead
to decreased performance or failure. When the eigenval-
ues of the transient submatrices associated with the TPMs
(see section 3) have well separated eigenvalues,the method
works particularly well. Secondly we developed a func-
tion that measures the effect of perturbations on the spec-
tral properties(i.e. the eigenvalues and eigenvectors) of the
matrices associated with the Markov chain. Depressed lev-
els of the function (large changes in the spectral properties)
correlate well with deterioration in performance. We were
able to identify all of the failure scenarios found by large
scale simulations, however the correlation is not perfect. In

Figure 1. State diagram of distributed grid system

a small number of cases, depressed values occurred without
any sign of a decrease in system performance. Neverthe-
less, we believe that this methodology offers a promising
approach to the development of a set of tools for the rapid,
high-level monitoring of large scale systems. The idea of
using the spectral properties of Markov chains to approx-
imate the dynamics of a perturbed Markov process is an
old one and there have many significant contributions to
the theory and its applications to networks since then (see
the references in [5]). The systems we consider here differ
from these applications in several important respects.The
dynamics of grid or cloud computing systems vary with
time and system behavior can be conveniently represented
in terms of distinct time periods. The resulting Markov
chain is piecewise homogeneous rather than homogeneous
and is thus time inhomogeneous. Moreover we are dealing
with tasks that eventually leave the system so the dynamics
are also absorbing rather than ergodic. Thus the assump-
tions commonly encountered in the literature on perturba-
tions of Markov Chains do not apply here. In the next sec-
tion we will present a very brief review of previous related
work. A more extensive discussion along with references
can be found in [5]. Following this in section (2.2), we will
present a Markov chain model and explain how it is derived
from the large scale simulation. This is followed in section
3 by a derivation of equation (8) on which our method is
based.

2 Previous Related Work and Description of
Markov Chain Model

2.1 Previous Related Work

In grid computing, Markov chains have been used to model
workload for schedule and load balancing [6], [7]. These
works emphasize quantitative estimates of performance or



reliability for a fixed set of operational parameters. Our
interest here is understanding what effect the perturbation
of these parameters have on overall system performance,
particularly those associated with the failure to meet funda-
mental service guarantees as discussed in the introduction.

2.2 Markov Chain Model of Grid System

The lifecycle of an individual task can be represented in
seven states, shown in Figure 1. This model is derived
from a large-scale simulation [4] that studies operation of
a grid over an arbitrary period in our case, an 8-hour day.
The Markov chain model is derived from a previous large-
scale grid computing system model [1], [4] that simulates
the progress of a large number of computing tasks from
the time they are submitted to the grid for execution by an
end user to the time they either complete or fail. The dy-
namics of the chain occurs at discrete time steps. Figure
1 shows this Markov model as a state diagram for a sin-
gle task. The state diagram has n = 7 states: an Initial
state, where the task remains prior to submission; a Dis-
covering state, during which service discovery middleware
locates candidate grid service providers to execute the task;
a Negotiating state during which a Service Level Agree-
ment (SLA) to execute the task is negotiated with one of the
discovered providers; a Waiting state for tasks that are tem-
porarily unsuccessful in discovery or negotiation; a Mon-
itoring phase in which a task is executed by a contracted
provider; and finally the Completed and Fail states. Tran-
sitions between states, illustrated by the arrows in Figure
1, represent actions taken by the grid system to process a
task as described in [8]. The Markov model is described
by a state at a given time and the transition to a successor
state occurs at the next discrete time step. It is considered
an absorbing chain because all tasks ultimately must enter
one of two absorbing states, Complete or Fail, from which
they cannot leave. The Markov model is random in the
sense that the successor state can only be identified by the
probability of its occurrence, given the history, i.e. the past
states of the chain. To understand how the transitions in
time occur, the Markov property must be defined. Given
a fixed time step m, let Xm be the state of the chain at
that time. Prob{Xm = sj | Xm−1 = si, · · ·X1} is the
probability that Xm = sj given the past states of the chain.
The Markov property states that the only relevant part of
the past that is needed to determine the probability of tran-
sition to sj is Xm−1. So that Prob{Xm = sj | Xm−1 =
si, · · · , X1} = Prob{Xm = sj | Xm−1 = si} = pij(m)
To convert the state model to a discrete time Markov chain
we observed that the large-scale simulation was time in-
homogeneous over the period of a day with 2 hour peri-
ods where the state transitions were homogeneous. Letting
d=7200s be the length of this homogeneous time period,
h=85s was defined to be the duration of a single Markov
chain step.Therefore the number of Markov chain time
steps in a single time period is S = d/h or 85. The val-
ues of the transition probabilities pij(m) were computed

counting the frequency of transitions between states i and
j over a simulated duration. Specifically, if fij was the
number of transitions si → sj that occurred during the ho-
mogeneous time period into which m fell, and

∑n
k=1 fik

was the number of transitions out state si during that pe-
riod, then

pij(m) =
fij∑n
k=1 fik

. (1)

Here n is the number of states. The computation was re-
peated for each pair of states and there resulted a matrix
that can be used to describe the probability of transition be-
tween states of the Markov Chain at time m. To see this let
a complete description of the state of the chain be given by
the row vector vm whose j th element is the probability that
Xm = sj . The vector vm is called the state vector at time
m. Denote the index of the homogeneous time period into
which m falls by the notation tp(m), the time period for m.
Equation (1) is a formula for calculating the elements of the
matrix Ptp(m) of transition probabilities. The matrix itself
is called the transition probability matrix or TPM. Using
properties of basic (conditional) probability we have,

vm = vm−1Ptp(m) (2)

Arguing inductively, it can be seen that the value of the
state vector at any time m subsequent to an initial time can
be found by multiplying the previous state vector on the
right by the appropriate matrix Ptp(m). If the initial state
vector is v0, the state vector at any time m can be expressed
in terms of the TPMs for the periods that occurred during
the m steps. Therefore if the number of these periods is k
we have m = kS + t, where t is the number of steps that
elapsed in the k + 1st period. The state vector at time is
then,

vm = v0P
S
1 · · ·PS

k P t
k+1 (3)

The elements of the state vector vm at each time step
are ordered so that the first element is the probability or pro-
portion of tasks in the Initial state at time step m, the 6th
element is the probability or proportion of tasks that are in
the Complete state, and the 7th element gives the proba-
bility or proportion of tasks in the Fail state.The states are
divided into absorbing states Complete and Fail and non-
absorbing states-the remaining states. The rows of the TPM
corresponding to the absorbing states have a single non-
zero element 1, non-absorbing states have non-negative el-
ements. In all the cases the sum of the elements in any row
is 1. Ordering the states as we have also means that all
the TPMs are in the canonical form for absorbing Markov
Chains. This form is illustrated in Figure 2. Here the TPM
is divided into 4 submatrices, Q the matrix of transition
probabilities of si → sj , where si and sj are non-absorbing
states; R is the submatrix of transition probabilities from
non-absorbing states to absorbing, 0 is a submatrix of ze-
roes because transition from an absorbing state to a non-
absorbing state is impossible. Finally, the identity matrix
I shows that once the chain reaches an absorbing state it



remains there. 1

For our application all tasks are initially in the Initial state
so that v0 is the vector with 1 in the first component and 0
elsewhere. The measure of system performance at time m
is given by the probability that a task starting in Initial
ends up in the Complete state by time m. Thus we are
interested in computing the 6th component of vm. In the
next section we will outline how the canonical form of the
absorbing Markov Chain and properties of the eigenvalues
and eigenvectors of Q can be used to obtain an analytical
approximation of the cumulative proportion of tasks com-
pleted. The resulting formula is then used to compute the
proportion of tasks completed as a function of time step,
under ”normal” conditions and ”abnormal” conditions aris-
ing from the failure of certain service guarantees that must
be met if the system is to operate properly. We call these
events failure scenarios. In the Markov Chain model these
failures are expressed as perturbations in the elements of
the TPM. The large scale simulation takes place at enough
specificity so that these failure scenarios can be portrayed
fairly accurately. However the connection with specific
perturbations of the TPMs is unfortunately far from obvi-
ous and a scheme of systematic perturbation must be fol-
lowed by calculation of vm. In previous work, we used
such a procedure to connect TPM perturbations to specific
service guarantee violations ([8]).

3 Derivation of formulas used for the Results

3.1 Approximating the proportion of tasks completed

The canonical form for absorbing Markov Chains and the
spectral representation theorem (see [5] for details and ref-
erences) are used to derive a convenient approximation for
the task completion probability as a function of time. If i
is the index for the ith time period, the corresponding TPM
in canonical form is

Pi =

(
Qi Ri

0 I

)
(4)

where I is the 2 x 2 is the identity matrix and 0 is the 4 x 2
matrix of zeroes depicted in Figure 2. The matrix product
in (2) can be rewritten in terms of the submatrices as

PS
1 · · ·PkP

t
k+1 =

(
QS

1 · · ·QS
kQ

t
k+1 Am

0 I

)
(5)

where the matrix Am is given by

Am =
(
I +

∑S−1
j=1 Qj

1

)
R1+

∑k
l=2 Q

S
1 · · ·QS

l−1

(
I +

∑S1

j=1 Q
j
l

)
Rl+

QS
1 · · ·QS

k

(
I +

∑t−1
j=1 Q

j
k+1

)
Rk+1.

(6)

and where k = tp(m) − 1. The dimensions of the subma-
trices in (5) are the same as those in Figure 2. Since v0 is a

1The TPMs are available online at

Figure 2. TPM in absorbing Markov Chain form

vector with a single non-zero element 1 in the first compo-
nent we can find the proportion of tasks that complete by
time m by computing the (1,6) of the matrix product on the
left hand side of (2), i.e. the (1,1) element of Am.

The formula we use is an approximation of Am based
on the eigenvalues and corresponding projections onto the
eigenspaces of the leading eigenvectors of the Qi. First we
note that for all the TPMs derived from the long term sim-
ulations and for all loads, the eigenvalues of the Qi were
distinct. We will therefore assume this condition although
it can be relaxed. Each Qi has 5 eigenvalues which will be
indexed by r = 1 · · · 5 where the ordering is by absolute
value( or modulus), so the first eigenvalue has the largest
absolute value (or modulus). We found and we assume that
the first eigenvalue of Qi is not close to the boundary of
the unit circle in the complex plane. The rth eigenvalue of
Qi is denoted by λ

(r)
i . The matrix Qi and its powers can

be written in terms of the eigenvalues and corresponding
projections as:

Qi =
∑5

r=1 λ
(r)
i Ψ

(r)
i

Qe
i =

∑5
r=1(λ

(r)
i )eΨ

(r)
i

(7)

where Ψ
(r)
i is the projection onto the eigenspace of the rth

eigenvector of Qi and e is a power of Qi. Here the facts that
the product Ψ(r)

i Ψ
(r′)
i = 0 if r 6= r′ and Ψ

(r)
i Ψ

(r)
i = Ψ

(r)
i

are used. Our approximation centers on the case in (7)
where e = S, the number of time steps in a period. Since
S = 85, it is clear that |(λ(r)

i )S | is very small for |λ(r)
i |

small enough. In fact any eigenvector with modulus less
than .88 will satisfy |(λ(r)

i )S | < 2 · 10−5 so that if equation
(7) is substituted in (6), the contribution from terms con-
taining those eigenvalues is quite small. The approxima-
tion is based on retaining just the terms in the spectral ex-
pansion of powers of QS

i that come from eigenvalues with
modulus more than .88. The choice of .88 is based on S
and the desired accuracy. The question of how many lead-
ing eigenvalues are needed depends on the value of S, the



number of Markov chain steps in a period, and ε, the or-
der of the approximation desired. In particular one would
accept only eigenvalues λ for which |λ| > (ε)

1
S . In our

applications, the matrices do have a well separated spec-
trum and for the choice of S and ε (see section 2), two
or three eigenvalues suffice. The argument we have pre-
sented here really only depends on a sufficient separation
between the leading eigenvalues and the remaining ones.
In all the TPMs derived from the 8-hour simulation,there
were 3 eigenvalues larger than .88. Thus the expansion in
(7) for e = S and be approximated by the first 3 terms.
In the 640-hour simulation there were 2 eigenvalues larger
than .88 so 2 terms were used. Finally we use a property
of absorbing Markov Chains permits the submatrix R of
any TPM P to be written in terms of the the eigenvalues
andprojections of Q and the matrix V whose columns are
the leading eigenvectors corresponding to the eigenvalue 1
of P with the rows corresponding to the absorbing states
removed. We omit some details because of space and refer
the reader to [9] where this is discussed and then applied in
[5]. For the 640 hour simulation where only terms contain-
ing the two leading eigenvalues are retained an approxima-
tion to QS

i results. Substituting these expressions into (6)
produces the following approximation for Am :

Am ≈
[
I − (λ1)

SΨ
(1)
i − (λ

(2)
1 )SΨ

(2)
1

]
V1

+
∑k

l=2

∏l−1
i=1

[
(λ

(1)
i )SΨ

(1)
i + (λ

(2)
i )SΨ

(2)
i

]
·[

I − (λ
(1)
l )SΨ

(1)
l − (λ

(2)
l )SΨ

(2)
l

]
Vl

+
∏k

i=1

[
(λ

(1)
i )SΨ

(1)
i + (λ

(2)
1 )SΨ

(2)
i

]
·[

I − (λ
(1)
k+1)

SΨ
(1)
k+1 − (λ

(2)
k+1)

SΨ
(2)
k+1

]
Vk+1

(8)

There is a corresponding formula for the 8-hour simulation
which we will also associate with (8). At each time step the
complexity of using (8) for computing the cumulative pro-
portion of tasks completed (including a count of the num-
ber of operations required to find the leading eigenvectors,
eigenvalues and to compute the projections) is O(n2) and
is no larger than ones step of the recursion in (2) [10]. Thus
(8) is faster than the large scale simulation when m is large,
the TPM matrices are sparse and the largest eigenvalues are
well separated from the rest of the spectrum. These condi-
tions are satisfied well enough in the present case and more
strongly so in the more realistic example discussed in [11]
Equation (8) gives an analytical expression for the cumula-
tive proportion of tasks completed as a function of time and
compares well with the exact calculation obtained using (2)
(see the Results section). Moreover, the formula links the
changes in system performance arising from parameter per-
turbations to changes in the spectra of the submatrices Qi.
A natural question then is “Can changes in the spectra due
to perturbations signal the potential for system failure?”.
We address this question in the next section.

3.2 A Spectral Based Signal for Deleterious Perturba-
tions

In addition to gaining some analytical insight into the
mechanism of system failure, (8) also shows that the quan-
tities {λ(p)

i }, {Ψ(p)
i }, and {Vi}, where p is the index of

eigenvalues that are retained and i = 1, · · ·N is the index
for completed time periods, determine (to a good approxi-
mation) the cumulative proportion of tasks that complete at
time step m. Thus changes in the TPMs due to parameter
changes will also change these spectral quantities. Starting
with a set of TPMs with transition values that produce a
normal set of execution paths and task completion profiles,
we introduce measures of the deviation in spectral quanti-
ties resulting from a perturbation. First Λ1, is the average
over all N time periods of the change (in percent) in the first
two eigenvalues,

Λ1 = 100 · 1

N

N∑

i=1

∣∣∣(λ(1)′

i + λ
(2)′

i )− (λ
(1)
i + λ

(2)
i )

∣∣∣
(λ

(1)
i + λ

(2)
i )

. (9)

The perturbed value of each variable in (9) and subsequent
equations is distinguished by a prime symbol ′.

Λ2 measures the average percentage change in the
projections onto the eigenspace for the first two eigenvec-
tors. Here norm(A) is the square root of the sum of squares
of the entries of the matrix A.

Λ2 = 100· 1
N

N∑

i=1

norm
(
(Ψ

(1)′

i +Ψ
(2)′

i )− (Ψ
(1)
i +Ψ

(2)
i )

)

norm
(
Ψ

(1)
i +Ψ

(2)
i

)

(10)

The percentage change in the leading eigenvectors (corre-
sponding to the eigenvalue 1) of the TPM Pi is given by,

Λ3 = 100 · 1

N

N∑

i=1

norm (V ′
i − Vi)

norm (Vi)
(11)

The next two quantities involve the percentage change
in bilinear functions of the eigenvalues, eigenvectors and
projections we discussed.

Λ4 = Λ1 · Λ2 (12)

Λ5 = 100 · 1
N ·

∑N
i=1

norm
(
(λ

(1)′
i

Ψ
(1)′
i

+λ
(2)′
i

Ψ
(2)′
i

)V ′
i −(λ

(1)
i

Ψ
(1)
i

+λ
(2)
i

Ψ
(2)
i

)Vi

)

norm
(
(λ

(1)
i

Ψ
(1)
i

+λ
(2)
i

Ψ
(2)
i

)Vi

) .

(13)

To determine a function for detecting deleterious perturba-
tions we treated Λr, r = 1, · · · 5, as independent variables
and performed a fit to the percentage change in the pro-
portion of tasks completed. Specifically, elements of the
TPMs were systematically perturbed. Each perturbation



corresponded to a change in the transition probability be-
tween two non-absorbing states. The spectral quantities Λr

were computed for each such perturbation and the corre-
sponding percentage change in the cumulative proportion
of tasks completed was also computed. A multilinear re-
gression fit of these values resulted in a fitted expression
for the percentage change in the proportion of completed
tasks as a function of the spectral quantities:

Fspec =

5∑
r=1

crΛr (14)

4 Results

Large scale simulations depicting the operation of a grid
computing system over a day lasting 8 hours and another
depicting 80 8-hour days (640 hours) with loads varying
between 50 and 100% were compared with the Markov
model and the theoretical approximations discussed in sec-
tion 3.1. The cumulative proportion of tasks completed
was plotted as a function of time for the large scale sim-
ulation. The corresponding quantity for the Markov model,
the tasks completed or 6th component of the state vector
was also plotted as a function of time, along with the the-
oretical approximation of this same quantity, based on the
formula (8) for a variety of loads. In Figure 3, the 8 hour
large scale simulation is in black while the Markov model
and theoretical approximation are plotted in red and blue
dashes respectively. Figure 4 shows the results of the 640
hour simulation. Both systems are at a 75% load. The re-
sults of (2) and (8) closely agree.

In the light of our discussion in the introduction we
examine failure scenarios in terms of a critical level of
non-fulfillment of a service guarantee. The degree of non-
fulfillment can be quantified in both the large scale simula-
tion and the Markov model by its effect on the frequency of
transition between relevant states. For example the failure
to fulfill the task service guarantee can increase the prob-
ability of transition from Monitoring to Negotiation while
simultaneously and proportionately lowering the probabil-
ity of transition from Monitoring to Completion. Methods
for modeling these events in a Markov chain involve per-
turbation of individual elements of the TPMs. Choosing
which elements to perturb and at what level is a difficult
and computationally expensive task. In [8], we discussed
a systematic method for doing this based on the Markov
chain that resulted in a two orders of magnitude reduction
in time to identify all failure scenarios including the ser-
vice guarantee and the associated transition we mentioned.
For lack of space we cannot describe the procedure here
but refer to the references for a discussion. Figure 5 shows
the change in the final cumulative proportion of tasks com-
pleted, as a function of the transition probability of Moni-
toring to Negotiation for the large scale simulation and the

Markov model. The computation for the large scale simu-
lation was done by direct simulation for each level of per-
turbation. Equation (2) was used to compute vm for the
final time step m at each level of perturbation. Using the
approximation in (8) instead, we see that the cumulative
tasks completed curve is in very close agreement to the ex-
act Markov model .All of the curves show the deterioration
and eventual failure of the system after a critical transition
probability is reached. Figure 6 is the result of computing
the (cumulative) proportion of tasks completed as a result
of a violation of the discovery guarantee. Here this event
is measured in terms of the probability of transition from
Discovery to itself. The Markov model and the approxi-
mate computation through (8) agree very well and are good
enough for the approximation to identify the critical transi-
tion probability that leads to a significant decrease in tasks
completed and then system failure.

We explored the question of how well changes in the
spectral properties of the submatrices Qi predict decreases
in the cumulative proportion of tasks completed, by fitting
the {Λr : r = 1 · · · 5} , a measure of these changes to
changes in the tasks completed (see section 3.2). In the 640
hour simulation the changes were produced by systematic
and exhaustive perturbations of the TPMs at 75% load. We
used perturbation cases where an entry that is decreased is
decreased to zero while the remaining entries are increased.
This was done to maximize the chances of identifying dele-
terious perturbations. Using multilinear regression analysis
a fitted function Fspec was produced with {cr : r = 1 · · · 5}
as the regression coefficients. Two perturbation methods
were employed. Under the primary decrease perturbation
method we obtained

c1 = −6.6057, c2 = 0.8297 , c3 = −1.0580
c4 = −.0102 , c5 = −0.0287

The quality of the fit was determined by the coefficient of
determination r2 = 0.9373 and the residuals shown in Fig-
ure 7. The horizontal axis indexes the perturbation cases
while the vertical axis shows the residuals (dots) and verti-
cal bars that delineate the confidence interval for the resid-
uals. There are 2 outliers at cases 5 and 34. Thus, Fspec

defined in (14) is a good fit. From the magnitude of the
cr it can be seen that changes in the leading eigenvalues of
Qi and the Vi, i.e. the leading eigenvectors of the TPM Pi

are the most influential in determining changes in the pro-
portion of tasks completed. The same analysis was carried
out for the same simulation using a different perturbation
method and similar results were obtained. Elevated values
of Λr (see 9-13)were associated with all of the deleterious
perturbations found using graph theory methods. However
in a small number of cases, values were elevated but there
was no drop in the proportion of tasks completed.The pre-
dictive power is not absolute but it is substantial. Thus
Fspec is a valuable signal that can be used e.g. in ex-
ploratory efforts to identify deleterious perturbations and
in showing where additional analysis is needed.
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Figure 3. Cumulative proportion of tasks completed vs.
time in 8hr simulation
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Figure 4. Cumulative proportion of tasks completed vs.
Time in 640 hr. simulation

5 Conclusion and Future Work

We reported on the development of analytical and numer-
ical methods that enable the detection of failure scenar-
ios in large scale systems. The properties of an absorbing
non-homogeneous Markov chain model of the system are
used to quickly compute the tasks completed under vary-
ing system conditions. Our method is particularly effective
when the submatrices Qi associated with the homogeneous
time periods have well separated eigenvalues (i.e. there is
a large spectral gap). In the model the operating parame-
ters of the system are values of the transition probabilities
(elements of the TPMs) controlling the rate of transition
between states in the system (see Figure 1). Changes in
these values depict perturbations in real system parameters
that occur because of violations of service guarantees.A
systematic search for such deleterious perturbations is fa-
cilitated by measuring their effect on the spectral proper-
ties of the Qi. In section 3.2, we introduced a function
Fspec that measures the deviation of spectrum correspond-
ing to perturbed TPMs from the spectrum corresponding
to unperturbed TPMs of a system under ”normal” operat-
ing conditions. The multilinear regression analysis we per-
formed indicates that low values of Fspec are a good indi-
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Figure 5. Final cumulative proportion of tasks completed
vs. transition probability Monitoring to Negotiation

Probability of Self−Transition for DIscovering

Figure 6. Final cumulative proportion of tasks completed
vs. transition probability Discovery to Discovery

cator of potential performance loss due to deleterious per-
turbations. The regression analysis shows that changes in
the leading eigenvalues of Qi and the eigenvectors Vi (see
section 3.1) are most influential in affecting system perfor-
mance. Although the correlation is not perfect, we demon-
strate that Fspec can be used as an effective warning signal
indicating that further analysis of the large scale system is
needed. Alternatively, it can be used in conjunction with
other methodologies such as the minimal cut set analysis
discussed in [5].

To be able to predict threshold effects, where large
changes in dynamics occur with relatively small parame-
ter changes, we introduce an analytical formula which like
(2) quickly generates the system dynamics over time. The
agreement between the predicted transient behavior of the
system under arbitrary conditions, calculated according to
a straightforward computation of the cumulative proportion
of tasks completed (2) and the approximation using (8) is
very good. Both calculations agreed well with the large
scale simulation. Tracking the long term cumulative pro-
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Figure 7. Plot of residuals (dots) and confidence intervals
(vertical bars) for multilinear regression of change in cumu-
lative proportion of tasks completed on measures of spec-
tral change in equations(9-(13)

portion of tasks completed as a function of transition prob-
ability revealed the existence of a critical range of values
(and therefore perturbations) that produce system deterio-
ration due to service guarantee violations. Increasing the
transition from Monitoring to Negotiation models a sce-
nario where the level of task service guarantee violation
increases. The computations based on the Markov model
and the approximation (8) are in good enough agreement
to conclude that this critical range and its threshold are cor-
rectly identified (see Figure 5). Figure 6 shows the anal-
ogous computation for the self transition of Discovery to
itself, modeling the violation of the discovery guarantee.
As in the previous case the threshold for performance de-
terioration is identified. Finally these figures also show
that the Markov approach has uncovered the unintuitive
fact that the system is very robust to violations of the dis-
covery guarantee;in contrast, under increasing violations of
the task service guarantee, system performance deteriorates
rapidly. Our future work will center on the application of
the methods discussed here to large scale systems where
the state space of the absorbing Markov chain is quite large.
Research has already begun on a cloud computing system.
The spectral properties discussed here depend subtly on the
underlying topology of the network and it would be inter-
esting to explore the connections between the spectral ap-
proach and minimal cut set analysis. The latter discussed
in [5] is based on the underlying graph topology of the
Markov chain.
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