
1

VM Leakage and Orphan Control in Open-Source Clouds

C. Dabrowski and K. Mills
Information Technology Laboratory

NIST
Gaithersburg, MD USA

{cdabrowski, kmills}@nist.gov

Abstract—Computer systems often exhibit degraded
performance due to resource leakage caused by erroneous
programming or malicious attacks, and computers can even
crash in extreme cases of resource exhaustion. The advent of
cloud computing provides increased opportunities to amplify
such vulnerabilities, thus affecting a significant number of
computer users. Using simulation, we demonstrate that cloud
computing systems based on open-source code could be
subjected to a simple malicious attack capable of degrading
availability of virtual machines (VMs). We describe how the
attack leads to VM leakage, causing orphaned VMs to
accumulate over time, reducing the pool of resources available
to users. We identify a set of orphan control processes needed
in multiple cloud components, and we illustrate how such
processes detect and eliminate orphaned VMs. We show that
adding orphan control allows an open-source cloud to sustain a
higher level of VM availability during malicious attacks. We
also report how the overhead of implementing orphan control
scales with attack intensity.

Keywords- availability; cloud computing; modeling;
reliability; scalable fault resilience techniques

I. INTRODUCTION
The impact of resource leakage on computer performance

is a well-known problem [1-9]. A number of studies have
shown how poor design and coding errors [1-3, 7], data
corruption [5], and events such as external malicious attacks
[6, 10] can cause resource losses, which degrade system
performance. Ultimately, if needed resources are depleted,
or exhausted, a system can fail [4, 6, 9]. We extend the
general concept of resource leakage to encompass virtual
machine (VM) leakage in clouds.

The advent of cloud computing has resulted in many
innovative applications, which promise to transform the
practice of information technology. Much of this innovative
work has centered on open-source cloud software [11-15],
which has gained widespread distribution. Such open-source
software may be used to establish cloud systems for
experimentation, for private use and for public use.
Unfortunately, development and distribution sites are
susceptible to attacks that can place Trojan code into
software packages [16]. Such attacks have occurred on both
proprietary software [17] and open-source software [18-22].
This paper considers a scenario where Trojan code is
inserted into an open-source Web server, used as one

component in an open-source cloud software distribution.
The Trojan code randomly discards Web messages, a simple
malicious attack requiring no knowledge of the internal
operation of the cloud software.

Using simulation, we demonstrate how a cloud system,
based on the infected software, can exhibit degraded
availability of computing resources in the form of virtual
machines (VMs). We describe how the simple message-
discard attack leads to VM leakage, causing orphaned VMs
to accumulate over time, exhausting the pool of resources
available to users and leading to a collapse in system
performance. We identify several kinds of VM orphans that
could exist in clouds and the circumstances under which
they are created. We then suggest a set of orphan control
processes and provide examples of their use to detect and
eliminate orphaned VMs. We show that adding orphan
control allows an open-source cloud to sustain a higher level
of VM availability during message-discard attacks. In
addition, we demonstrate that more than one orphan control
method is necessary to prevent wholesale performance
collapse. We also report how the overhead of implementing
orphan control scales with attack intensity. In doing this, we
hope to provide awareness of the potential for resource
leakage in open-source clouds, and to stimulate research on
techniques to improve cloud reliability.

The paper is organized into six main sections. Section II
describes previous work on resource leakage in computer
systems. Section III provides details of the cloud model
used in our study. Section IV defines the concept of VM
leakage in cloud systems, identifies potential causes of this
leakage, and proposes some VM orphan control methods.
Section V describes an experiment scenario, which we
simulated with our cloud model, where a malicious attack
upon an open-source cloud leads to significant VM leakage.
Section VI gives results from this experiment, and details
both the potential impacts of VM leakage, and the remedial
effects of orphan control. Section VII concludes.

II. PREVIOUS WORK
The problem of resource leakage in computer systems has

received significant attention, most particularly with respect
to memory leaks in executing programs coded in languages
such as C [1] and Java [2], or in garbage collectors [3]. The
effect of memory leaks has also been considered in the

2

study of software aging in Web servers [4]. Other studies
use the more general term resource leakage [5-9], and some
[10] use the term resource exhaustion to denote total
depletion of needed resources. There have been studies on
leakage of database records [5], DNS server resources [6],
software objects in the Standard Widget Toolkit (SWT) [7],
software handle resources [23], and other types of software
components [8-9]. The term orphan has been used [5] to
refer to leaked database records. Hence, the general
concepts associated with resource leakage in computer
systems are established. However, to date, the leakage
problem has not been studied for VMs as resources in
computational clouds. This paper provides an initial view of
the large-scale effects of VM leakage on resource allocation
in cloud systems, and introduces concepts and terms specific
to the context of cloud computing.

III. MODEL OF AN OPEN-SOURCE CLOUD
We based our study on Koala [24], a discrete-event

simulator inspired by the Amazon Elastic Compute Cloud
(EC2) 1 [25] and by the Eucalyptus open-source software
[11]. Using published information describing the EC2
application programming interface (API) [26] and available
virtual machine (VM) types [27], Koala models essential
features of the interface between users and EC2. Intended to
study resource allocation algorithms, Koala models only four
EC2 commands: RunInstances, DescribeInstances, Reboot
Instances and TerminateInstances. The internal structure of
Koala is based on the Eucalyptus (v1.6) open-source cloud
software. Specifically, Koala models three Eucalyptus
components: cloud controller, cluster controller and node
controller. As in Eucalyptus, Koala’s simulated cloud,
cluster and node controllers communicate using Web
Services [28], which Koala also simulates.

Koala modifies the design of Eucalyptus in three ways.
First, Koala extends the Eucalyptus RunInstances command
to allow multiple VM types within a single request, which
appears possible in EC2. Second, Koala avoids centralization
of node information at the cloud controller, permitting
simulation of clouds up to O(105) nodes. Third, Koala allows
resource allocation to proceed partially in parallel
(serializing only the commitment phase), which prevents
long queuing delays during periods of intense user requests.
In lieu of simulating details of a hypervisor and guest VMs,
Koala includes an optional sub-model based on analytical
equations representing VM behavior with or without tasks.

Koala is organized as five layers (see Fig. 1): (1) demand
layer, (2) supply layer, (3) resource allocation layer, (4)
Internet/Intranet layer and (5) VM behavior layer. We
describe each layer in turn, omitting the VM behavior layer,
which is not used in the experiment discussed here.

1 Any mention of commercial products within this paper is for information
only; it does not imply recommendation or endorsement by NIST.

Figure 1. Schematic of Koala organization

A. Demand Layer
The demand layer consists of a variable number (500

here) of users who, after a random startup delay, each
perform cyclically over a simulation run. During each cycle a
user requests a minimum and maximum number of instances
of one or more of the VM types shown in Table I. The VM
types and quantities a user selects depend upon the user’s
type (see Table II), which is selected on each cycle with the
probabilities shown. After selecting a type, a user randomly
chooses a minimum (uniform 1 to max-min in Table II) and
maximum (uniform max-min to max-max in Table II)
number of instances to request for each associated VM type.
The user then issues a corresponding RunInstances request to
the cloud controller, which may respond with an allocation
of instances between the minimum and maximum for each
requested VM type or with a NERA (not enough resources
available) fault. A full grant denotes that a user was allocated
the maximum requested instances of each VM type. A
partial grant denotes that allocated VMs were below the
maximum requested.

TABLE I. Description of VM types simulated in Koala

If VM instances are allocated, the user selects a holding

time, Pareto distributed with a mean (4 hours here) and shape
(1.2 here). During the holding period, the user will first issue
DescribeInstances requests to determine when all instances
are running, and will subsequently randomly describe,
reboot, and terminate running instances. (We use the term
intermediate termination to refer to subsets of instances
terminated randomly by the user.) Upon failure of any of a
user’s random requests, the user may retry some number of

VM Type

Virtual
Cores

Virtual Block
Devices # Virtual

Network
Interfaces

Memory
(GB)

Instruct.
Arch.# Speed

(GHz) # Size (GB)
of Each

M1 small 1 1.7 1 160 1 2 32-bit
M1 large 2 2 2 420 2 8 64-bit
M1 xlarge 4 2 4 420 2 16 64-bit
C1 medium 2 2.4 1 340 1 2 32-bit
C1 xlarge 8 2.4 4 420 2 8 64-bit
M2 xlarge 8 3 1 840 2 32 64-bit
M4 xlarge 8 3 2 850 2 64 64-bit

 INTERNET

DEMAND LAYER

SUPPLY
LAYER

VM
BEHAVIOR

 LAYER

RESOURCE
ALLOCATION

 LAYER

User
#1

User
#2

User
#n

User
#3

User
#4

User
#5

User
#6

User
#n-3

User
#n-2

User
#n-1

CLOUD CONTROLLER

Cluster
Controller #1

Cluster
Controller #c

NODE CONTROLLER #k

NODE RESOURCESNODE CONTROLLER #k-1

NODE RESOURCES
NODE CONTROLLER #k-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCESNODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #p

NODE RESOURCESNODE CONTROLLER #p-1

NODE RESOURCES
NODE CONTROLLER #p-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCESNODE CONTROLLER #1

NODE RESOURCES

NODE CONTROLLER #q

NODE RESOURCESNODE CONTROLLER #q-1

NODE RESOURCES
NODE CONTROLLER #q-2

NODE RESOURCES
NODE CONTROLLER #3

NODE RESOURCESNODE CONTROLLER #2

NODE RESOURCESNODE CONTROLLER #1

NODE RESOURCES

IN
TR

A
N

ET

IN
TR

A
N

ET

IN
TR

A
N

ET

VMs
Shown for
One Node Only

VMs
Shown for
One Node Only

VMs
Shown for
One Node Only

VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

VM1VM1VM1VM1 VM1

Cluster
Controller #c-

m

(1)

(4)

(4) (3)

(2)

(4) (4)

(5)

3

Platform
Type Prob.

Physical
Cores Memory

(GB)

Physical Disks by Size #
Network

Interfaces

Instruct.
Arch. # Speed

(GHz)
250
GB

500
GB

750
GB

1000
GB

C8 0.25 2 2.4 32 0 3 0 0 1 64-bit
C14 0.25 4 3 64 0 4 0 3 2 64-bit
C18 0.25 8 3 128 0 0 4 3 4 64-bit
C22 0.25 16 3 256 0 0 0 7 4 64-bit

times (0 to 3 uniformly distributed here) for individual
instances.

At the end of the holding period, the user will issue a
TerminateInstances request to stop any remaining running
instances. We use the term final termination to refer to this
request. If all instances cannot be terminated, the user may
retry some number of times (0 to 3 uniformly distributed
here) before giving up. When all instances are terminated, or
retries exhausted, the user will wait an exponentially
distributed time (mean 7.5 minutes here) and then start a new
request cycle.

TABLE II. Description of selected simulated user types: processing users
(PU), distributed modeling and simulation (MS) users, peer-to-peer (PS)
users, Web service (WS) users, and data search (DS) users

If the cloud controller responds to a RunInstances request
with a NERA, then the user waits an exponentially
distributed time (mean 7.5 minutes here) before retrying the
request. A user will retry a failed request over a random
period (mean 2 hours here) before resting for a random
period (mean 8 hours here). If a user request cannot be
honored within a random number of rest periods (mean 4
here), then the user abandons the request and starts a new
cycle.

To represent user errors in formulating RunInstances
requests, we elected to have Koala simulate some probability
(5x10-3 here) that the user generates a request that is
unrecognizable to the cloud controller. In such cases, the
cloud controller returns a fault to the user, who must then
retry the request using procedures already explained above.

B. Supply Layer
The supply layer consists of a number (20 here) of

clusters that each manages a number (200 here) of nodes.
Koala defines a fixed set of 22 possible platform
configurations for nodes. Here we used only the four
platform types shown in Table III. Upon creation each node
manifests, with equal probability here, one of these four
configurations. Nodes retain their established configurations
for the duration of a simulation run. For an instance to be
allocated to a node, available resources on the node must be
sufficient for the requirements specified by the instance’s
VM type.

C. Resource Allocation Layer
Koala patterns resource allocation after Eucalyptus

procedures, which involve two decisions: (1) on which
cluster should the requested VMs be allocated and (2) on
which nodes within the cluster should VMs be allocated.
Allocating all VMs in a single request to the same cluster

makes good sense because inter-VM communications would
be local to a single cluster. While Koala can simulate various
resource allocation algorithms, here we elected to have
Koala simulate algorithms implemented by Eucalyptus.

TABLE III. Description of selected platform types simulated in Koala

 At the cluster level, we elected to have Koala simulate the
Eucalyptus first-fit algorithm to choose nodes for VMs. First-
fit simply searches the nodes by identifier from first to last
until a node is found that can accommodate a given VM
type. In making an accommodation decision, Eucalyptus
compares resources required by a VM type against a node’s
availability of: (1) virtual cores, (2) disk space and (2)
memory. We elected to have Koala simulate some
probability (10-3 here) that a selected node develops a failure
preventing it from accepting a VM that had appeared to fit.
In such cases, the cluster controller reallocates the VM to the
next node on the list. This process continues until the VM is
created or until all nodes have been exhausted. If no nodes
can create the VM, then the cloud controller receives a
NERA fault.

At the cloud level, Eucalyptus can accommodate a choice
of algorithms to select a cluster to which to assign all VMs in
a request, but we elected to have Koala simulate the only
algorithm that Eucalyptus actually implements. The
implemented algorithm, called least-full-first, carries out an
initial estimation in which it polls the clusters to find out
which can accommodate the VMs requested and then orders
the list from the least to most full (we ordered ties by
increasing time at which clusters responded). Then the cloud
controller selects the first cluster from the list and asks that
the VMs be created. If the VMs are created successfully,
then the cloud controller returns the positive result to the
appropriate user; otherwise, the cloud controller reassigns
the VMs to the next cluster on the list. This process
continues until VMs are created or until all clusters have
been exhausted. If no clusters can create the VMs, then the
user receives a NERA fault.

D. Internet/Intranet Layer
Koala assigns the cloud controller, cluster controllers and

users to sites (1000 here) randomly located at x,y coordinates
on a grid (8000×8000 miles here). Before a simulation
commences, cloud and cluster controllers are randomly
placed on some number (4 here) of sites. Node controllers
are placed on the same site as the related cluster controller.
At the beginning of each user cycle, a user is assigned
randomly to one of the (996 here) sites not occupied by
cloud components. This arrangement divides message
communications into two categories: (1) inter-site (Internet)
and (2) intra-site (Intranet).

Koala components communicate through simulated Web
Services (WS) messages, which each comprise a uniformly

User
Type Prob.

VM
Type(s)

Max-
Min
VMs

Max-
Max
VMs

User
Type Prob. VM Type(s)

Max-
Min
VMs

Max-
Max
VMs

PU1 0.20

M1 small

10 100 PS1 0.10 C1 medium 3 10
PS2 0.01 10 50

PU3 0.01 100 500 WS1 0.15
M1 large
M2 xlarge
C1 xlarge

1 3

PU2 0.20

M1 large

10 100 WS2 0.07
M1 large
M2 xlarge
C1 xlarge

3 9

PU4 0.01 100 500 WS3 0.03
M1 large
M2 xlarge
C1 xlarge

9 12

MS1 0.10 M1 xlarge 10 100 DS1 0.10 M4 xlarge 10 100
MS3 0.01 100 500 DS2 0.01 100 500

4

distributed number (1 to 10 here) of 1500-byte packets.
Individual packets are subjected to transmission delay (1
Gigabits per second rate here) and propagation delay. For
inter-site messages, propagation delay depends on distance
and simulated router hops, while propagation delay within
sites varies randomly (mean 250 nanoseconds here).
Individual packets are also subjected to a loss rate (10-6 here
for intra-site packets). To simulate Internet congestion, the
loss rate for inter-site packets varies uniformly within a
range (10-1 to 10-6 here). Lost packets are retransmitted, but
only for a maximum number (3 here) of attempts, after
which the related WS message is declared undeliverable.

Eucalyptus relies on an open-source Web server. As
explained in Sec. I, software distribution sites can be
subjected to insertion of Trojan code. Koala simulates a
Trojan procedure that randomly discards arriving and
departing WS messages. Below, in Sec. VI, we vary this
discard probability over a wide range to gauge the effects of
lost messages on an infrastructure cloud.

IV. VM LEAKAGE AND ORPHAN CONTROL
We use the term VM leakage to refer to VMs that exist on

node controllers but that are unknown to any user and that
are not in the process of being terminated by a cloud or
cluster controller. Such VMs are considered orphans
because they can persist indefinitely. Orphaned VMs
constitute a type of resource leakage, because they retain
assigned computing resources, including virtual cores,
memory, disk space, and network channels. These resources
cannot then be allocated for any other purpose, and so are
effectively lost (or leaked).

A. Causes of VM Leakage and Orphan Creation
Orphaned VMs are created under two circumstances. In

the first, which gives rise to what we will call creation
orphans, VMs are successfully created in response to a user
request, but confirmation messages, reporting VM creation,
are lost when transiting among elements within the demand
and supply layers. In our model, there are three such
opportunities: (1) a lost message from node to cluster
controller that indicated successful creation of a VM; (2) a
lost message from cluster to cloud controller that indicated
successful (full or partial) allocation; or (3) a lost message
from cloud controller to user that indicated a successful
result. In (1), the result is a single orphaned VM. However,
in (2) and (3), all VMs allocated for a request become
orphans, and the amount of leakage can thus be quite large.
In all three cases, the user will resubmit the request
according to the retry regimen described in Sec. III.A. Each
re-request is treated as a new request by the cloud.

The second circumstance, leading to what we will call
termination orphans, occurs after VMs are created by the
cloud and the user is notified successfully. Subsequently,
the user issues a TerminateInstances request for one or more
VMs. If the user receives confirmation of successful
termination, the user considers the operation to be finished.
However, if the user receives no reply, the user retries the

terminate operation as described above, until either success
is obtained or the number of retries is exhausted. Within the
cloud, terminate operations may fail due to lost messages
when relaying the request from cloud to cluster controller,
or from cluster to node controller, or because the terminate
operation fails on the node. Eucalyptus makes no provision
for retrying failed termination requests by either the cloud or
cluster controllers; instead such failures are merely logged.
Thus, the related VMs will remain un-terminated unless a
user termination request eventually reaches the related node
controllers. If a user abandons termination retries, the
affected VMs will persist on nodes until an administrator
scans the log and manually terminates the VMs.

If termination orphans arise due to lost termination
requests sent from user to cloud controller or from cloud to
cluster controller, then all VMs in the request may become
termination orphans. In this case the number of orphans and
the resulting resource leakage can be quite large. This is
particularly true for final terminations, which encompass all
VMs held by a user. When termination-related messages are
lost between cluster and node controller, only individual
VMs become termination orphans.

B. Orphan Control Methods
Neither creation orphans nor termination orphans can be

detected and removed automatically by the Eucalyptus
protocol. We therefore devised two orphan control methods
for this purpose. First, to eliminate creation orphans, we
instituted a node controller process, which monitors receipt
of DescribeInstances requests for VMs. VM requesters use
replies to DescribeInstances requests to determine when
allocated VMs are ready for logon. Since these requests
originate from users, they indicate a user’s awareness of the
VM. In the node controller, a creation orphan monitor
relates arriving DescribeInstances requests to recently
created VMs. If a DescribeInstances request is not received
for a VM by a specified time (2 h here) after boot up, the
monitor declares the VM to be an orphan, terminates it, and
releases the VM’s resources for future use by the
supervising cluster controller.

Second, to mitigate termination orphans, we extended the
Eucalyptus protocol to provide a persistent termination
capability to both the cloud and cluster controllers.
Persistent termination simply means resending termination
requests until the receiver responds that either (1) the
termination request has been received and normal
termination commences, or (2) the termination operation
was completed earlier and no further action is needed. A
persistent terminator is activated by the cloud or cluster
controller when no response is received to a normal
termination request within a timeout (90 s here). Once
activated, the cloud persistent terminator resends
termination requests to a cluster controller at specified
intervals (90 s here) until one of the desired responses is
received, or until a maximum termination period (2 h here)
expires. After the first three retries, the cloud persistent

5

terminator lengthens the retry period (to 150 s here) and
then doubles it on each retry. If the maximum termination
period expires, the cloud persistent terminator ceases and
notifies an administrator that manual intervention is needed
to terminate the orphaned VMs, and free related resources.

When activated, the cluster persistent terminator also
attempts three retries to the node controller (every 90 s here)
before increasing the retry interval in the manner described
for the cloud persistent terminator. This process continues
for a shorter maximum termination period (900 s here),
since the retry encompasses only a single orphaned VM.

Since persistent termination adds complexity and
overhead to the cloud and cluster controllers, we elected to
limit persistent terminators to TerminateInstances requests
associated with final terminations, issued by users to
liquidate all allocated VMs, rather than to intermediate
termination requests directed at a subset of allocated VMs.
This decision limits proliferation of termination processes,
which might otherwise require substantial additional
computation and communication. However, this decision
also means that lost messages related to intermediate
terminations can allow affected VMs to persist until a final
termination request succeeds. We refer to such affected
VMs as temporary orphans.

V. EXPERIMENT DESIGN
In designing our experiment, we sought to address the

following questions. How does VM leakage affect system
performance when lost messages interfere with resource
allocation (runInstances) and termination operations? Can
orphan control methods mitigate performance degradation
caused by VM leakage? What are the costs associated with
orphan control and how might they affect performance as
the rate of orphan creation increases?

We modeled an attack scenario in which Trojan code is
introduced into an open-source distribution for Web server
software. The Trojan code modifies the Web server so that
arriving and departing messages are discarded randomly
with some probability. We assume that the maliciously
modified Web server is deployed by all users, cloud
controllers, cluster controllers, and node controllers.

To understand effects from increasingly frequent message
discards, we simulated our model under six, order-of-
magnitude, increases in message discard probability from a
lowest probability (10-6) in which one in 106 messages is
lost to a highest probability (10-1) in which one in 10
messages is lost. All messages, regardless of type or
component of origin, are subject to possible loss.

To assess the benefits of orphan control, we modeled the
operation of the system at each of the six message loss rates
(10-6 to 10-1), both with and without each of the two orphan
control methods, creation orphan control and persistent
termination, identified in Sec. IV.C. Holding the
configuration parameters described in Sec. III constant, we
executed Koala during 1000 simulated hours for each of 24
combinations: on/off for two orphan control processes × six

message loss rates. During simulation execution, we
measured system performance at intervals of 1 h using
metrics discussed below.

VI. RESULTS AND DISCUSSION
In each of the 24 cloud simulations, we counted the number
of VMs held by both users and node controllers at the end of
the 1000–hour simulated period and the number of orphans
created.

A. The Effects of VM Leakage and Orphan Control
With no orphan control, Fig. 2 shows that as message

loss rate increases, a large gap opens between the number of
VMs held by node controllers (over 11,000 at the highest
loss rate) and the number held by users. When the message
loss rate reaches 10-2, the number held by users falls to
nearly zero. In contrast, with creation orphan control and
persistent termination operating, the gap stays relatively
small until the highest message loss rate, where node
controllers hold about 8000 more VMs than known to users,
which know of just over 6000 VMs.

Figure 2. Number of VMs held by users and node controllers with (blue)
and without (red) creation orphan control and persistent termination at the
end of the1000-hour simulated period as the message loss rate increases.

Figure 3. Number of VMs held by node controllers and number of orphans
at the end of the 1000-hour simulated interval as the rate of message loss
increases. Counts are plotted for the case without persistent termination and
creation orphan control.

Figure 3 shows that without orphan control nearly all
VMs held by node controllers become orphans at the two

0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r o

f V
M
s

Probability of Message Loss

Node controller VMs
Orphaned VMs
Creation Orphans

0

2000

4000

6000

8000

10000

12000

14000

16000
N
um

be
r o

fV
M
s

Probability of Message Loss

User VMs (with)
Node controller VMs (with)
User VMs (without)
Node controllers VMs (without)

6

highest message loss rates. This means that the Trojan
attack has led to creation of orphans that consume most of
the simulated cloud’s computing resources, leaving none to
allocate to incoming requests. Hence, due to leaked VMs,
nearly total resource exhaustion occurs. Fig. 3 also shows
that almost all of the leaked VMs arise from creation
orphans. We say more about this below.

To measure the influence of VM leakage on cloud
performance, we tracked the number of user requests
submitted to the cloud and recorded the total proportion of
users granted some VMs, along with the proportion that
were full grants and partial grants. We also recorded the
proportion of users not granted VMs, users who
subsequently abandoned the request process.

Figure 4(a) shows that without orphan control, the
number of total grants (full and partial) drops sharply as the
message loss rate passes 10-3. At the same time, the number
of un-served users increases. At the highest message loss
rate, 94.4 % of users are not served, while only 1.5 % of
users receive grants. For the remaining 4.1 % of requests
(not graphed), users are still engaged in the request cycle.
On the other hand, with both orphan control processes
operating, Fig. 4(b) shows the rate of total grants decreases
only slightly until the highest message loss rate is reached,
at which point a noticeable drop appears, as 5.7 % of users
are not served, while 0.4 % are still actively requesting
VMs. We conclude that, without orphan control, the
collapse of system performance at higher message loss rates,
as illustrated in Fig. 4(a), is attributable to resource
exhaustion due to orphan VMs. This conclusion is
supported by more detailed analysis below.

(a)

(b)

Figure 4. Disposition of user requests (a) without orphan control and (b)
with creation orphan control and persistent termination.

The results described so far do not mean that the orphan
control procedures we designed will free a cloud of all
effects from VM leakage. Figure 4(b) also shows that even
with orphan control operating, the proportion of full grants
decreases and the proportion of partial grants increases at
the highest message loss rate, to the point that partial grants
become more likely. This change can be related to Fig. 2,
which shows that node controllers hold more VMs than
users at the highest loss rate, even with orphan control. This
gap occurs because we chose to limit persistent termination
to cover only final termination requests. Thus, when earlier
intermediate termination requests from users fail, the related
VMs continue to occupy cloud resources as temporary
orphans until a final termination is issued and succeeds.
Though these temporary orphans do not exhaust resources,
Fig. 2 shows that, at the highest loss rate, temporary orphans
still occupy a significant portion of VM resources. Thus, the
cloud is less able to fully satisfy requests and must issue
more partial grants.

Recall that in Fig. 3 nearly all VM leakage is due to
creation orphans (only four are termination orphans).
Without orphan control, the dominance of creation orphans
occurs for two reasons. First, RunInstances requests occur
before TerminateInstances requests. Second, Eucalyptus
treats each RunInstances request (including each retry) as a
new and separate allocation request rather than as a retry of
a previous request. Hence each user re-request is an added
opportunity for creation orphans. Thus, at high loss rates,
creation orphans quickly (within the first 100 hours) exhaust
nearly all of the cloud’s resources, leaving few opportunities
for termination orphans to occur.

To design appropriate orphan control strategies, it is
important to determine the extent to which both creation
orphan control and persistent termination are needed. To
answer this question, we conducted trials in which only one
of the two orphan control methods was active (graphs
omitted). With only persistent termination active, a total
system performance collapse occurs that is similar to what
appears in Fig. 4(a). When only creation orphan control is
active, the performance decline is partial, but still crippling
(48.1 % of all users are not served at the highest loss rate).
In this latter case, over time, accumulation of termination
orphans leads to significant VM leakage.

Hence, we conclude that both creation orphan control and
persistent termination are needed. Otherwise, unless an
administrator finds and removes orphans, the cloud moves
toward a frozen state, where all VMs are orphans, and so
incoming user requests cannot be satisfied. We leave it to
the reader to speculate the difficulties involved in perusing
system logs throughout thousands of nodes in a cloud and
manually finding and removing termination orphans.
Further, in the absence of usage billing, there appears to be
no obvious manual process to discover creation orphans.
Even with usage billing, creation orphans cannot be
identified until users raise objections after receiving their
bill for VMs of which they were unaware.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
of
 R
eq

ue
st
s

Probability of Message Loss

Total Grants
Full Grants
Partial Grants
Requests Abandoned

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n
of
 R
eq

ue
st
s

Probability of Message Loss

Total Grants
Full Grants
Partial Grants
Requests Abandoned

7

B. Analysis at the Resource Allocation and Supply Layers
To assess the internal operation of the cloud in our

experiment, we observed processes in the resource
allocation and supply layers. Our analysis of these processes
supports the conclusions reached in Sec. VI.A. Figure 5
shows, both with and without orphan control, the number of
user RunInstances requests received by the cloud and the
number of NERA responses as the message loss rate
increases. Without orphan control, at the highest loss rate, a
threefold increase occurs in the number of requests, nearly
all of which result in NERAs. This reflects the cloud
controller’s inability to find a cluster to accommodate
incoming requests, as cluster resources are almost fully
exhausted by orphans. The rise in the number of requests
reflects the resultant thrashing caused by user retries. With
creation orphan control and persistent termination active,
Fig. 5 shows increasing loss rate leads to only a modest rise
in requests, most of which are granted.

Figure 5. User requests received by cloud controller and NERA responses
as the message loss rate increases, with (blue) and without (red) creation
orphan control and persistent termination.

Figure 6. Allocation requests received by cluster controllers, along with
node controller failures to allocate individual VMs, as the message loss rate
increases, with (blue) and without (red) creation orphan control and
persistent terminations.

 Delving more deeply, Fig. 6 shows that cloud controller
requests to clusters to create VMs remain roughly constant,
until the probability of message loss exceeds 10-4, whether
or not orphan control is in force. Above this rate and
without orphan control, the number of requests to clusters

for VMs falls to nearly zero, which again reflects the
inability of the cloud to find clusters that can satisfy
incoming requests, due to the fact that resources are now
almost completely exhausted by VM leakage. On the other
hand, with orphan control, Fig. 6 shows that cloud controller
requests to clusters to create VMs rises with increasing
message loss. Since orphan control recovers computing
resources held by orphans, cloud controller requests to
clusters can now succeed. However as the message loss rate
rises, failed intermediate terminations result in temporary
orphans, which occupy significant resources, and so, as Fig.
6 shows, at the highest loss rate node controllers reject most
VM allocation requests. As a result, clusters then reject the
related requests from cloud controllers to create VMs,
forcing the cloud controller to search for another cluster.
Though the actions of both orphan control processes mean
that the cloud controller is likely to find a cluster that will
accept a request, Fig. 4(b) shows there is a greater
likelihood of a partial rather than full grant, because
temporary orphans have reduced resource availability.
 Finally, Fig. 7 shows the total number of messages sent
across all layers in the cloud system as message loss rate
increases. Without orphan control, the overall number of
messages increases with loss rate. This reflects increased
effort expended as users retry requests, causing the cloud to
make failed allocation attempts, as VM leakage drains
needed resources. Fig. 7 also shows a slight dip in messages
sent at the highest loss rate. This is likely due to the
increasing frequency with which users enter resting phases
of their request cycle (as explained in Sec. III.A). This effect
is also present in Fig. 2 and in Fig. 3. With orphan control,
the smaller rise in message traffic reflects a greater effort
needed to make successful allocations, as discussed
previously. The inset shows that the increase in message
traffic is only marginally due to messages (about 0.44 %)
related to persistent termination (creation orphan control
requires no messages).

Figure 7. Total messages with (blue) and without (red) creation orphan
control and persistent termination; compared with messages attributable to
persistent termination (inset).

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

Nu
m
be

r o
f M

es
sa
ge
s

Probability of Message Loss

Total Messages (without)

Total Messages (with)

0.0E+00

1.0E+05

2.0E+05

Probability of Message Loss

Total Persistent Termination Messages

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

Nu
m
be

r o
f R

eq
ue

st
s

Probability of Message Loss

Requests to create VMs received by Clusters (without)

Node Controller VM Allocation Failures (without)

Requests to create VMs received by Clusters (with)

Node Controller VM Allocation Failures (with)

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

Nu
m
be

r o
f R

eq
ue

st
s

Probability of Message Loss

Requests Received by Cloud (without)
Cloud NERA Responses (without)
Requests Received by Cloud (with)
Cloud NERA Responses (with)

8

VII. CONCLUSIONS
This paper has addressed the potential problem of

resource leakage in cloud systems and introduced the
concepts of VM leakage and orphan VMs. The paper has
demonstrated that VM leakage is a potentially serious
vulnerability that can lead to resource exhaustion in open-
source clouds. Using a scenario, in which a Trojan attack
introduces malicious code modifications into one part of an
open-source cloud implementation, we have shown how this
vulnerability can be exploited to cause serious performance
degradations in a simulated cloud system. To remedy this
problem, we also provided examples of orphan control
processes that could be used to detect and eliminate
orphaned VMs. Our experiment results show that adding
orphan control methods allows an open-source cloud to
sustain a higher level of resource availability during
malicious attacks. Our work has illustrated that VM leakage
is a potential problem that must be considered in the design
of cloud systems, if these systems are intended to be
reliable. The results of our experiments indicate that the
scale of the problem precludes manual discovery and
removal of VM orphans by system administrators—and that
automated means are needed. In the future, it will be
necessary to design methods that more completely address
the orphan control problem, such as, for instance, methods
that extend persistent termination to temporary orphans and
methods that curtail the onset of creation orphans. We
believe that the work presented in this paper will aid
designers and implementers in improving the reliability of
open-source cloud systems.

REFERENCES
[1] D. L. Heine and M. S. Lam, “A practical flow-sensitive and

context-sensitive C and C++ memory leak detector”,
SIGPLAN Not., Vol. 38, No. 5, May 2003, pp. 168-181.

[2] G. Xu, and A. Rountev, “Precise memory leak detection for
java software using container profiling,” Proceedings of the
30th international conference on Software engineering
(ICSE '08). New York, NY, USA, 2008, pp. 151-160.

[3] M Jump, and K. S. McKinley, “Cork: dynamic memory leak
detection for garbage-collected languages,” Proceedings of
the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL '07), 2007,
New York, NY, USA, pp. 31-38.

[4] K. Vaidyanathan, and K. S. Trivedi, “An Approach for
Estimation of Software Aging in a Web Server”,
Proceedings of the 2002 International Symposium on
Empirical Software Engineering (ISESE’02), 2002.

[5] S. Bagchi, Y. Liu, K. Whisnant, Z. Kalbarczyk, R. Iyer, Y.
Levendel, and L. Votta, A Framework for database audit
and control flow checking for a wireless telephone network
controller. International Conference on Dependable Systems
and Networks, Goteborg Sweden, July 2001, pp. 225 – 234.

[6] J. A. Nuno, F. Neves, and P.Verissimo, “Detection and
Prediction of Resource-Exhaustion Vulnerabilities”,
Proceedings of the 19th International Symposium on
Software Reliability Engineering, 2008, pp. 87-96.

[7] M. Arnold, M. Vechev, and E. Yahav, “QVM: an efficient
runtime for detecting defects in deployed systems”,
SIGPLAN Not. Vol. 43, No. 10, October 2008, pp. 143-162.

[8] S. Weber, P. A. Karger, and A. Paradkar, “A software flaw
taxonomy: aiming tools at security”, Proceedings of the
2005 workshop on Software engineering for secure
systems\—building trustworthy applications (SESS '05).
New York, NY, USA, 2005, pp. 1-7.

[9] S. Pertet and P. Narasimhan Causes of Failure in Web
Applications, CMU-PDL-05-109, Carnegie-Mellon
University, December 2005.

[10] J. Lemon, “Resisting SYN flood DoS attacks with a SYN
cache”, Proceedings of the BSDCon '02 Conference on File
and Storage Technologies, February 11-14, 2002, San
Francisco, California, USA.

[11] D. Nurmi, et al., “The Eucalyptus Open-Source Cloud-
Computing System”, Proceedings of the 9th IEEE/ACM
International Symposium on Cluster Computing and the
Grid, May 18-21, 2009, pp. 124-131.

[12] Rupley, S, “11 Top Resources for Open-source Cloud
Computing”, GIGACOM, November 6, 2009,
http://gigaom.com/2009/11/06/10-top-open-source-
resources-for-cloud-computing/

[13] Hinkle, M., “Eleven Open-Source Cloud Computing
Projects to Watch”, SocializedSoftare.com, January 10,
2010, http://socializedsoftware.com/2010/01/20/eleven-
open-source-cloud-computing-projects-to-watch/

[14] OpenStack Cloud Software, http://www.openstack.org/,
Accessed August 1, 2011.

[15] Higgenbotham, S, “VMware Launches Open-Source Cloud”,
GIGACOM, April 12, 2011,
http://gigaom.com/cloud/vmware-open-source-cloud/

[16] E. Levy, “Poisoning the software supply chain”, IEEE
Security & Privacy, 1(3), 2003, 70-73.

[17] D. A. Wheeler, Secure Programming for Linux and Unix
HOWTO, http://www.dwheeler.com/secure-
programs/Secure-Programs-HOWTO/open-source-security,
accessed on Aug. 18, 2011.

[18] IT World Canada Staff, Trojan Horse Attacks GNU Project,
PC World, Aug. 18, 2003.

[19] Staff, Attacker attempts to plant Trojan in Linux, ZDNet
UK, Nov. 7, 2003.

[20] R. Singel, Firefox Infects Vietnamese Users With Trojan
Code, WIRED, May 7, 2008.

[21] T. Forenski, Open-source hacks - sneaky Skype Trojan code
released, ZDNet, August 27, 2009.

[22] K. J. Higgins, Open-Source Project Server Hacked, Software
Rigged With Backdoor Trojan, Dark Reading, Dec. 2, 2010.

[23] “Handle leak”, Wikipedia, September 10, 2010.
http://en.wikipedia.org/wiki/Handle_leak, accessed August
1, 2011.

[24] K. Mills, J. Filliben and C. Dabrowski, "An Efficient
Sensitivity Analysis Method for Large Cloud Simulations",
Proceedings of the 4th International Cloud Computing
Conference, IEEE, Washington, D.C., July 5-9, 2011.

[25] Amazon Elastic Compute Cloud (Amazon EC2)
http://aws.amazon.com/ec2/, 2010.

[26] Amazon Elastic Compute Cloud API Reference API Version
2009-08-15.

[27] Amazon EC2 Instance Types
http://aws.amazon.com/ec2/instance-types/, 2010.

[28] F. Curbera, et al. “Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI”, Internet
Computing, IEEE, March/April, 2002, pp. 86-93.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

