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Assessing Effects of Asymmetries, Dynamics, and Failures on a Cloud Simulator 

 

K. Mills, J. Filliben and C. Dabrowski  

{kmills, jfilliben, cdabrowski}@nist.gov 

 

Abstract. We characterize the effects of asymmetries, dynamics, and failures when 

introduced into a cloud computing simulator, which had previously been characterized 

under static, homogeneous configurations with various patterns of demand and supply. 

We aim to determine whether injecting these new factors into the cloud simulator causes 

fundamental shifts in macroscopic behavior and user experience. We find that 

introducing asymmetries, dynamics, and failures into the cloud simulator does not induce 

fundamental shifts in the factors driving simulator behavior, but these new parameters do 

exhibit interactions with the main driving factors, and with each other. Our findings 

suggest that a previous study, using the cloud simulator to compare virtual-machine 

placement algorithms, need not be extended to consider the effects of asymmetries, 

dynamics, and failures. These findings also increase our confidence in results from the 

previous study. 
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1. Introduction 

 

In previous work [1], we compared various algorithms for placing virtual 

machines (VMs) on physical machines in Infrastructure-as-a-Service (IaaS) cloud 

computing systems. The comparison was based on Koala, an IaaS cloud simulator 

developed at NIST. Prior to conducting the comparison, we determined [2] the relative 

influence of Koala input factors on model behavior. Subsequently, we compared 18 VM-

placement algorithms under carefully chosen combinations of the six input factors that 

most influenced Koala behavior. Three of the six input factors defined system loads, 

including: the number of users, the number and type of VMs desired by each user and the 

duration for which users held VMs. The remaining input factors defined system 

capacities, including: the number of clusters in the cloud and the number and type of 

physical nodes in each cluster. Each VM placement algorithm was evaluated under an 

identical set of 32 parameter combinations, chosen using a 2
6-1 

orthogonal fractional 

factorial experiment design. The chosen parameter combinations represented various 

relationships between demand and supply within a cloud. Further, clouds were 

constructed using homogeneous cluster sizes. Naturally, we later wondered whether our 

comparison of VM-placement algorithms would prove valid in more complex situations, 

where demand and supply relationships changed with time, where system components 

could fail, and where clouds could be composed from clusters of varying sizes? To 

answer this question, we conducted a follow-on study, documented in this Technical 

Note. 

 In outline, the plan for our follow-on study required a maximum of three steps. 

First, we extended Koala to permit various asymmetries, dynamics, and failures that were 

not included in the original simulator. We also devised input factors to control these 

extensions. Second, we conducted a sensitivity analysis to determine if the new input 

factors exhibited significant influence on Koala behavior, when compared to the six most 

influential input factors we found for the original model. If additional input factors were 

found to influence Koala behavior, then the third step would require us to repeat our 

initial comparison of VM-placement algorithms, but with an expanded set of input factors 

and derived parameter combinations. On the other hand, if our sensitivity analysis found 

that the same input factors proved most influential in driving Koala behavior, then we 

could omit the third step, because the VM-placement algorithm comparison would be 

invariant to the addition of asymmetries, dynamics, and failures. This Technical Note 

describes the Koala simulator extensions we devised, and also explains the design and 

results from a sensitivity analysis of the extended simulator. We do not describe the third 

step in our follow-on study because we found that step was unnecessary, since our 

sensitivity analysis revealed that Koala continues to be influenced mainly by demand-

supply relationships, even when a simulated cloud exhibits asymmetries, dynamics, and 

failures. 

The remainder of this Technical Note is organized into four main sections. 

Section 2 describes the basic Koala simulator and also the extensions we made to add 

asymmetries, dynamics, and failures. Section 3 identifies the 20 input factors we varied in 

our sensitivity analysis–along with the 2
20-12 

orthogonal fraction factorial (OFF) design 

we used to select 256 parameter combinations to simulate. Section 3 also defines the 45 

responses we analyzed to understand how the 20 input factors influenced the behavior of 
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Koala. Section 4 reports our results, which include: identification of the behavioral 

dimensions exhibited by Koala, quantification of the influence that each factor had on 

Koala behavior, and a ranking of factor influence, from most to least influential. We also 

analyze two-term interactions among pairs of the 20 factors, in order to determine 

whether Koala is influenced more by interactions or main effects. While discussing our 

results, we compare them to results from our previous sensitivity analysis [2] of Koala. In 

a few cases, to aid our comparison, we introduce results from that previous study. Section 

4 ends with a discussion of our findings. The Technical Note closes, in Sec. 5, with our 

conclusions. 
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2. Koala Cloud Simulator 

Koala is a discrete-event simulator inspired by the Amazon Elastic Compute 

Cloud (EC2) [3]. Using published information describing the EC2 application 

programming interface (API) [4] and available virtual machine (VM) types [5], Koala 

models essential features of the interface between users and EC2. Since we intended to 

study resource-allocation algorithms, Koala needed to model only four EC2 commands: 

Run Instances, Describe Instances, Reboot Instances and Terminate Instances. On the 

other hand, no public information was available about the internal structure and operation 

of EC2. Lacking such details, the internal structure of Koala is based instead on the 

Eucalyptus (v1.6) open-source Cloud software [6]. Specifically, Koala models three 

Eucalyptus components: cloud controller, cluster controller, and node controller. As in 

Eucalyptus, Koala’s simulated cloud, cluster, and node controllers communicate using 

Web Services [7], which are also simulated. In constructing Koala, we modified the 

design of Eucalyptus in three ways. First, we extended the Eucalyptus Run Instances 

command to allow multiple VM types within a single request, which we inferred is 

possible in EC2. Second, we avoided centralization of node information at the cloud 

controller, permitting Koala to simulate clouds up to O(10
5
) nodes. Third, we allowed 

resource allocation to proceed partially in parallel (serializing only the commitment 

phase), which prevents long queuing delays during periods of intense user requests. In 

lieu of simulating details of a hypervisor and guest VMs, we added an optional sub-

model based on analytical equations representing VM behavior with or without tasks. 

Below, we first describe (in Sec. 2.1) the basic Koala simulator, and then we discuss (in 

Sec. 2.2) the extensions we made to add dynamics, failures, and asymmetries. 

 

2.1 Basic Model 

 

Koala is organized as five layers (see Fig. 1): (1) demand layer, (2) supply layer, 

(3) resource-allocation layer, (4) Internet/Intranet layer, and (5) VM behavior layer. We 

describe each layer in turn, omitting the VM behavior layer, which is not used in the 

experiments discussed here. 

 

2.1.1 Demand Layer 

 

The demand layer consists of a variable number of users who, after a random 

startup delay, each perform cyclically over a simulation run. During each cycle a user 

requests a minimum and maximum number of instances of one or more of the VM types 

shown in Table 1. The VM types and quantities a user selects depend upon the user’s 

type (see Table 2), which is selected on each cycle based on a probability distribution. 

After selecting a type, a user randomly chooses a minimum (uniformly distributed from 1 

to a max-min) and maximum (uniformly distributed from max-min to a max-max) 

number of instances to request for each associated VM type. The user then issues a 

corresponding Run Instances request to the cloud controller, which may respond with an 

allocation of instances between the minimum and maximum for each requested VM type 

or with a NERA (not enough resources available) fault. A full grant denotes that a user 

was allocated the maximum requested instances of each VM type. A partial grant 

denotes that allocated VMs were below the maximum requested. If given VM instances, 
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the user selects a holding time (Pareto distributed with a designated mean and shape). 

During the holding period, the user will first issue Describe Instances requests to 

determine when all instances are running, and will subsequently randomly reboot, 

terminate, and describe running instances. At the end of the holding period, the user will 

issue a Terminate Instances request to stop any running instances. After terminating all 

instances, the user will wait an exponentially distributed time (mean 30 min) and then 

start a new cycle. 

 

 

 
 

Figure 1. Schematic of Koala Organization into Five Layers 

 

Since we believed differences in user persistence were not germane directly to the 

study of resource-allocation algorithms, we assigned fixed means for each stochastic 

distribution controlling related behaviors. If a user receives a NERA instead of being 

allocated instances, then the user waits an exponentially distributed time (mean 15 min) 

before retrying the request. A user will retry a failed request over a random period (mean 

4 h) before resting for a random period (mean 16 h). If a user request cannot be honored 

within a random number of rest periods (mean 4), then the user abandons the request and 

starts a new cycle. 
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Table 1. Descriptions of Virtual Machine Types Simulated in Koala 

 

 
 

 

Table 2. Descriptions of selected simulated user types: processing users (PU), distributed 

modeling and simulation (MS) users, peer-to-peer (PS) users, Web service (WS) users, 

and data search (DS) users 

 

 
 

VM Type

Virtual 

Cores

Virtual Block 

Devices # Virtual 

Network 

Interfaces

Memory 

(GB) Arch.

Price in

$/Hour
#

Speed 

(GHz)
#

Size (GB) 

of Each

M1 small 1 1.7 1 160 1 2 32-bit 0.12

M1 large 2 2 2 420 2 8 64-bit 0.34

M1 xlarge 4 2 4 420 2 16 64-bit 0.96

C1 medium 2 2.4 1 340 1 2 32-bit 0.17

C1 xlarge 8 2.4 4 420 2 8 64-bit 0.68

M2 xlarge 8 3 1 840 2 32 64-bit 1.00

M4 xlarge 8 3 2 850 2 64 64-bit 2.00

User

Type VM Type(s)

Max-Min

VMs

Max-Max 

VMs

User

Type VM Type(s)

Max-Min

VMs

Max-Max 

VMs

PU1

M1 small

10 100
PS1

C1 medium

3 10

PS2 10 50

PU3 100 500 PS3 50 100

PU5 500 1000 WS1

M1 large

M2 xlarge

C1 xlarge

1 3

PU2

M1 large

10 100 WS2

M1 large

M2 xlarge

C1 xlarge

3 9

PU4 100 500 WS3

M1 large

M2 xlarge

C1 xlarge

9 12

MS1 M1 xlarge 10 100 DS1

M4 xlarge

10 100

MS2 M2 xlarge 10 100 DS2 100 500

MS3 M1 xlarge 100 500
DS3 500 1000

MS4 M2 xlarge 100 500
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2.1.2 Supply Layer 

 

The supply layer consists of a variable number of clusters that each manages a 

variable number of nodes. When visiting an Amazon EC2 data center, we noticed the 

supply of nodes was composed of a limited number of platform configurations. This 

observation motivated us to define a fixed set of possible platform configurations for 

nodes. Upon creation, each node manifests, with some probability, one of the 

configurations shown in Table 3. Nodes retain their established configurations for the 

duration of a simulation run. For an instance to be allocated to a node, available resources 

on the node must be sufficient for the requirements specified by the instance’s VM type. 

 

Table 3. Descriptions of Selected Platform Types Simulated in Koala 

 

 
 

2.1.3 Resource-Allocation Layer 

 

Koala patterns resource allocation after Eucalyptus procedures, which involve two 

decisions: (1) on which cluster to allocate the requested VMs and (2) on which nodes 

within the cluster to allocate the VMs. Allocating all VMs in a single request to the same 

cluster makes good sense because inter-VM communications would be local to a single 

cluster. Koala simulates three alternative criteria that the cloud controller may use to 

choose a cluster and six alternative heuristics that cluster controllers may use to choose 

nodes. Combining these criteria and heuristics (see Table 4) creates (3 x 6 =) 18 possible 

resource-allocation algorithms that Koala may use to place VMs onto nodes in a cloud. 

 For the current experiment, we allowed Koala to use either of two criteria 

(percent-allocated or least-full first) to select a cluster, while we fixed the algorithm 

(first-fit) that clusters used to select nodes. We made these decisions for two reasons. 

First, our previous experiment [1] found that varying a cloud controller’s criterion for 

choosing a cluster stimulated different Koala behaviors. Second, that same experiment 

also found that varying the heuristic cluster controllers used to choose specific nodes 

made little difference in Koala behavior. In the current report, we explain only two cloud-

controller criteria for choosing a cluster and two cluster-controller heuristics for choosing 

nodes. Interested readers may consult our previous study [1] for an explanation of all 18 

resource-allocation algorithms simulated by Koala. 

 

 

 

Platform

Type

Physical Cores

Memory

(GB)

# Physical Disks by Size

# Network

Interfaces Arch.#

Speed

(GHz)

250 

GB

500 

GB

750 

GB

1000 

GB

C8 2 2.4 32 0 3 0 0 1 64-bit

C14 4 3 64 0 4 0 3 2 64-bit

C18 8 3 128 0 0 4 3 4 64-bit

C22 16 3 256 0 0 0 7 4 64-bit
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Table 4. Alternative Criteria for Choosing Clusters and Alternative Heuristics for  

                 Choosing Nodes 

 
 

At the cluster level, Eucalyptus allocates VMs to nodes using one of two 

heuristics, while Koala simulates six, as listed in the right-hand side of Table 4. Here, we 

explain only the two (first-fit and next-fit) that are implemented by Eucalyptus. First-fit 

simply searches the nodes by identifier from first to last until a node is found that can 

accommodate a given VM type. Next-fit remembers which node last received a VM and 

begins its search from the next node identifier. Under either first-fit or next-fit, if the 

selected node cannot accommodate the VM, then the node controller reallocates the VM 

to the next node on the list. This process continues until the VM is created or until all 

nodes have been exhausted. If no nodes can create the VM, then the cloud controller 

receives a NERA. 

At the cloud level, Eucalyptus can accommodate a choice of algorithms to select a 

cluster to which to assign all VMs in a request, but only one algorithm is implemented. 

The implemented algorithm, called least-full-first, polls the clusters to find out which can 

accommodate the VMs requested and then orders the list from the least to most full 

(Koala resolves ties in order of increasing cluster identifier). Then the cloud controller 

selects the first cluster from the list and asks that the VMs be created. If the VMs are 

created successfully, then the cloud controller returns the positive result to the 

appropriate user; otherwise, the cloud controller reallocates the VMs to the next cluster 

on the list. This process continues until VMs are created or until all clusters have been 

exhausted. If no clusters can create the VMs, then the user receives a NERA. Our 

previous study [1] also simulated a second cloud-level criterion, which orders clusters 

based on percent allocated, i.e., the cloud orders clusters by decreasing proportion of the 

requested VMs that can be allocated (Koala still resolves ties in order of increasing 

cluster identifier). For a given simulation, one parameter specifies a cloud-level criterion 

to use and another parameter specifies a cluster-level heuristic. 
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2.1.4 Internet/Intranet Layer 

 

Koala assigns the cloud controller, cluster controllers, and users to sites (1000 

here) randomly located at x,y coordinates on a grid (12875 km × 12875 km here, which 

spans a distance consistent with the globe). While somewhat unrealistic, random 

geographic layout makes a reasonable starting point for simulating inter-site distances. 

Before a simulation commences, cloud and cluster controllers are randomly placed on 

some number of sites. Node controllers are placed on the same site as the related cluster 

controller. At the beginning of each user cycle, a user is assigned randomly to one of the 

sites not occupied by cloud components. This arrangement divides message 

communications into two categories: (1) inter-site (Internet) and (2) intra-site (Intranet). 

Koala components communicate through simulated Web Services (WS) messages, which 

each comprise a uniformly distributed number (1 to 10 here) of packets. Individual 

packets are subjected to transmission delays (1 Gigabits per second rate here, which is 

reasonable for intra-site communications and is somewhat optimistic for inter-site 

communications) and propagation delay. For inter-site messages, propagation delay 

depends on distance and simulated router hops, while propagation delay within sites 

varies randomly (mean 250 ns here; reasonable within a site). Individual packets are also 

subjected to a loss rate (10
-12

 here for intra-site packets, which are rarely lost in practice). 

To simulate Internet congestion, the loss rate for inter-site packets varies uniformly 

within a range (10
-3

 to 10
-8

 here). Lost packets are retransmitted, but only for a maximum 

number (3 here) of attempts, after which the related WS message is declared 

undeliverable. 

 

2.2 Model Extensions 

 

As described above, the basic Koala model simulates a population of users 

seeking and holding VMs of varying size and quantity from a cloud composed from 

physical nodes of varying size and quantity. Basic Koala also simulates cyclic behavior 

among users and various (more or less) realistic aspects of network characteristics, such 

as transmission and propagation delays, and packet losses and retransmissions. Koala 

also simulates network paths with characteristics that differ for communications within 

and between sites. 

The basic model of Koala lacks several properties that might appear in particular 

real clouds. For example, Koala simulates clusters of homogeneous size. While this 

might be a realistic characteristic for large industrial clouds, ad hoc clouds could be 

cobbled together from available clusters of differing sizes. As another example, Koala 

simulates a cloud where all components stay operational during a simulation, whereas, 

operational clouds may change in size, as clusters and nodes are added or subtracted and 

as nodes and communication paths fail or degrade. As a third example, Koala simulates a 

probabilistic user demand profile that does not change for the duration of a simulation, 

whereas, operational clouds might see user demands changing over time. These three 

examples cover a space of possibilities that can be labeled as dynamics, failures, and 

asymmetries. The basic Koala model did not allow for such possibilities; possibilities 

that, intuitively, could introduce stress into a cloud infrastructure. This raised questions 

about the robustness of our previous study [1]. Would our findings hold for a cloud 
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attempting to allocate resources under the stresses induced by dynamics, failures, and 

asymmetries? To investigate this question, we extended the Koala simulator, as described 

below. 

 

2.2.1 Dynamics 

 

We extended Koala with increased dynamics in three areas: (1) user behavior, (2) 

cloud reconfiguration, and (3) cluster reconfiguration. We discuss each area in turn. 

 

2.2.1.1 User Behavior 

 

We included three extensions into Koala so that users could change demands 

dynamically. The first user extension addressed behavior while holding VMs. We 

introduced a rule that required each user to attempt to maintain the count of VMs held to 

match some target number, representing the number of VMs obtained, but not voluntarily 

terminated by the user. We added this behavior to ensure users would attempt to obtain 

additional VMs when the cloud controller indicated VMs were dropped involuntarily in 

the cloud. Without this user behavior, the number of VMs held could fall due to failures 

(as explained below in Sec. 2.2.2), which would suggest that the user would be unable to 

complete intended tasks. 

The second user extension added behavior that enabled each user to voluntarily 

increase or decrease demand while holding VMs. Four parameters control this extension. 

One parameter defines the probability that a user changes demand. Each user can change 

demand at most once during its holding period. A second parameter specifies the 

probability that a user will increase its demand for VMs. Subtracting this probability from 

one yields the probability a user will shrink demand. The remaining two parameters 

define the minimum and maximum extent of a user’s demand change. These parameters 

are expressed as a percentage of the number of VMs obtained during a user’s initial 

reservation. Whenever a user obtains additional VMs, the user’s holding target is 

increased accordingly. Similarly, when a user reduces VMs held, the holding target is 

also reduced. 

The third user extension enables an experimenter to induce temporal changes in 

the entire demand pattern of arriving users. Whereas basic Koala defines only a single 

distribution for user type probabilities, the extension allows user type probabilities to 

alternate between two distributions at designated points during a simulation. Demand-

pattern alternation is controlled through three parameters: (1) the user types in one 

distribution, (2) the user types in a second distribution, and (3) the proportion of 

simulation time that elapses between alternations. At simulation startup, Koala then 

computes two user type distributions, and schedules times at which the pattern of user 

demands is switched between them. The probabilities for each user type in each 

distribution are chosen randomly. Selection of the first distribution to use is chosen by a 

simulated coin toss. 
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2.2.1.2 Cloud Reconfiguration 

 

We extended the Koala cloud controller to simulate cloud reconfiguration, that is, 

the ability to add and remove clusters. Cloud reconfiguration is controlled by three 

parameters: (1) average time between reconfiguration events, (2) probability a cloud will 

add clusters (one minus this value is the probability a cloud will remove clusters), and (3) 

proportion of existing clusters to be added or removed. As a simulation run progresses, 

the cloud controller may repeatedly add and remove clusters, as determined by the 

parameter values. The number of clusters in a cloud is bounded within a range 

determined by Koala parameters. Adding clusters (which increases cloud supply) is 

relatively straightforward, but removing clusters requires substantially more behavior. 

When a cluster is added, the number of nodes in the new cluster is chosen based 

on parameters defining relative cluster sizes, which could be uniform or which could 

include large and small clusters (see Sec. 2.2.3 below). When a cloud adds clusters, the 

supply of physical nodes increases and additional user demand can be absorbed.  

When a cluster is removed, existing VMs assigned to the cluster must be relocated 

to another available cluster, or else terminated. To relocate VMs, the cloud controller 

employs the same logic defined for initially placing requested VMs on a cluster, except 

that care is taken to ensure VMs are not relocated onto other clusters that are also being 

deactivated during the same reconfiguration event. Each VM that cannot be relocated is 

terminated and the appropriate user is notified. For each notification of a terminated VM, 

a user may attempt to obtain a replacement VM in order to maintain the user’s holding 

target. 

 

2.2.1.3 Cluster Reconfiguration 

 

We extended the Koala cluster controller to simulate cluster reconfiguration, that 

is, the ability to add and remove nodes. Cluster reconfiguration is controlled by three 

parameters: (1) average time between reconfiguration events, (2) probability a cluster will 

add nodes, and (3) proportion of existing nodes to be added or removed. As a simulation 

run unfolds, each cluster controller may repeatedly add and remove nodes, as determined 

by the parameter values. The number of nodes in a cluster is bounded within a range 

determined by Koala parameters. Adding nodes (which increases cluster size, and thus 

also somewhat increases cloud size) is relatively straightforward, but removing nodes 

requires more behavior.  

When nodes are added, the number of nodes is chosen as a fraction of the existing 

cluster size. Adding nodes may allow accommodation of additional user requests for 

VMs and may also permit a cluster to accept VMs relocated when another cluster is 

deactivated. 

When a node is removed, existing VMs assigned to the node must be relocated to 

another node within the same cluster, or else terminated. To relocate VMs, the cluster 

controller employs the same logic defined for initially placing requested VMs onto 

cluster nodes, except that care is taken to ensure VMs are not relocated onto other nodes 

also chosen for deactivation during the same reconfiguration event. Further, care is 

exercised to ensure that VMs that are undergoing termination are not relocated. Each VM 
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that cannot be relocated is terminated and the appropriate user is notified. For each 

notification, a user attempts to obtain a replacement VM, if required to maintain the 

user’s holding target. 

 

2.2.2 Failures 

 

We extended Koala to simulate failures, primarily in nodes and the network, as 

described below. We also allowed Koala users to randomly formulate incorrectly 

formatted requests, which can be considered a user-level failure. 

 

2.2.2.1 Node-Related Failures 

 

We added four types of node-related failures to Koala. One failure type simulates 

a node returning, probabilistically, a NERA response when a cloud controller attempts to 

place a VM on the node. This can be considered a failure because the node had 

previously indicated, in response to a Describe Resources request from the cluster 

controller, that the VM could be accommodated. Subsequent to this failure, the cluster 

controller will need to select another available node for the VM. 

A second failure type encompasses node crashes, after which the node must be 

repaired and restored to service before it can host VMs. We extended Koala to simulate 

such crashes. One parameter (pair) expresses the average time between node failures, 

modulated by a shape parameter for a Weibull distribution. A shape parameter below one 

simulates early failures, while a shape parameter set to one simulates a constant, 

exponentially distributed failure rate. A shape parameter set above one simulates a failure 

rate increasing with time. For the experiments reported here, we set the shape parameter 

to 3. A second set of parameters specifies restoration latency, represented by a triangular 

distribution defining the minimum, typical, and maximum latencies. When a node fails, 

all VMs assigned to the node also fail. Since the failure is abrupt, no notifications are 

sent. Eventually, the cluster will notice that a node has failed and then attempt to restart 

the assigned VMs on another node, using the same method devised to relocate VMs prior 

to a graceful node shutdown. Of course, a user may also notice VM failures and then 

attempt to obtain replacements.           

A third failure type encompasses individual component failures within nodes. We 

extended Koala to simulate failures for physical processors, disks, and memory. A 

parameter defines the average time between component failures, based on a Weibull 

distribution with the same shape parameter discussed above. When a failure occurs, 

Koala randomly chooses (equal probability) one of the three component types. 

Subsequently, some number of the chosen component type is randomly selected (uniform 

distribution) to fail. As with node failure, a set of parameters specifies the repair latency, 

represented by a triangular distribution. The minimum, typical, and maximum 

component-repair times are independent of restoration times for nodes. After an instance 

of component failure, a node may be unable to support all assigned VMs. Unsupportable 

VMs are terminated. The choice of VMs to terminate is made randomly (uniform 

distribution). The node’s cluster controller is notified of VMs terminated due to 

component failure. The cluster controller then attempts to restart the VMs on another 

node, using the relocation procedures described earlier.    
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A fourth failure type encompasses VM crashes within nodes, as may occur when 

VMs contain bugs. Two cases arise: boot failures and crashes during execution. Koala 

provides separate probabilities for each type of VM failure. If either event occurs for a 

given VM, then the appropriate user is notified. The user may attempt to acquire a 

replacement VM from the cloud. 

 

2.2.2.2 Network-Related Failures 

 

We extended Koala to simulate two categories of network failure: lost messages 

and cluster communication cuts. We provided two message loss parameters, one 

specifying the probability of message loss for communications within sites and one for 

communications between sites. We took this step based on the assumption that loss 

characteristics could differ between intra-site and inter-site communications. 

Previous work with Koala discovered that high-message loss rates could lead to 

orphaned VMs in two categories: creation (and relocation) orphans and termination 

orphans. These orphans arose when users, cloud controllers, and cluster controllers were 

unaware of successfully allocated VMs; thus, VM leakage could consume significant 

cloud resources, limiting the ability of users to obtain VMs. Subsequently, Koala was 

extended with orphan-control procedures in order to contain VM leakage. The details of 

these procedures, along with the controlling parameters, can be found elsewhere [8]. 

Here, we give only a short summary. 

Koala controls creation orphans by deleting VMs that have not been contacted by 

a user within a specified period of time (usually two hours) after creation. These 

procedures hold for newly allocated VMs. When reallocated through relocation, Koala 

provides a surrogate to generate artificial VM contacts, because a user is unaware of any 

VM relocation. Koala controls termination orphans by repeatedly issuing (with an 

increasing back-off interval) termination requests for a specified period of time or until 

receiving a reply stating that a VM has been terminated. 

While simulated message losses are sporadic, we also extended Koala to simulate 

communication cuts on cluster interfaces. When a communication cut occurs, all affected 

messages flowing between a cluster and the cloud controller are discarded. This may 

include messages flowing into the cluster, messages flowing out, or messages flowing in 

both directions, depending on the specific nature of the cut. A parameter, mean time 

between failure (with Weibull shape), determines when a cluster suffers communication 

cuts. When a cut occurs, a direction is chosen (in, out, or both are equally probable). The 

cut continues until repairs are made. Repair latency is chosen randomly from a triangular 

distribution, specified with minimum, typical, and maximum latencies.      

We extended Koala to simulate a (human) administrator to serve as the last line of 

defense against message losses and communication failures, which may leave the cloud 

and cluster controllers uncertain about whether specific VMs and nodes have actually 

been shut down. When such issues arise, the relevant nodes and VMs are assigned to the 

simulated administrator, who can take steps necessary to ensure that nodes and VMs are 

stopped. In the case of VM termination, if a cloud or cluster controller cannot establish 

for sure whether a VM has been terminated, then an assignment is generated for the 

administrator to manually terminate the VM, should it still be executing. In the case of 

node termination, a cloud or cluster controller can assign specific nodes to the simulated 
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administrator, who then manually shuts down the nodes. The simulated administrator is 

controlled by two parameters: (1) average attention latency and (2) average shutdown 

delay. Both parameters are exponentially distributed. Attention latency determines how 

often an administrator consults the queue of assigned tasks. Shutdown delay determines 

how much time it takes an administrator to complete one assigned task. 

 

2.2.3 Asymmetries 

 

We extended Koala to simulate a few asymmetries in two subsystems: the cloud 

and the network. We discuss each subsystem in turn. 

 

2.2.3.1 Cloud-based Asymmetries 

 

One asymmetry concerns whether the cloud resides on a single site or spans 

multiple sites. (Recall that site placement establishes relative geographic location.) As 

discussed earlier, a parameter specifies the number of sites reserved for the cloud. When 

only one site is reserved, then the cloud and cluster controllers share that site. When more 

than one site is reserved, then the cloud and cluster controllers are each assigned 

randomly (using a uniform distribution) to one of those sites. (Recall that all cluster 

nodes are placed automatically on the same site as the cluster controller.)  

When distributed among multiple sites, Koala was extended with the option to 

assign each cluster to its own site.  Under that option, when the number of sites reserved 

for the cloud is sufficient for all clusters (plus one site for the cloud controller), then each 

cluster will be placed on a unique site, and distinct from the site where the cloud 

controller resides. Such placement ensures that all communications between the cloud 

and cluster controllers transit the simulated Internet. If insufficient cloud sites have been 

specified, then some clusters will be placed together on a shared site. The assignment of a 

cluster to a shared site is made randomly, using a uniform distribution, and no cluster 

shares a site with the cloud controller. 

Another asymmetry concerns whether all clusters have identical sizes, or whether 

cluster sizes may vary. We extended Koala with a parameter that specifies a rule for 

determining the relative size of clusters. The Koala version used for the current study 

implements two rules: uniform and 80/20. The uniform rule specifies that all clusters are 

the same size, as determined by another parameter: number of nodes per cluster. The 

80/20 rules specifies that 20 % of the clusters will be large (containing four times the 

specified number of nodes per cluster), while 80 % of the clusters will be small 

(containing ¼ the specified number of nodes per cluster). This means the cloud contains 

the same number of nodes regardless of whether the rule is uniform or 80/20, but that the 

distribution of nodes to clusters is asymmetric under the 80/20 rule. 

 

2.2.3.2 Network-based Asymmetries 

 

For the network, we extended Koala to include two asymmetries: one affecting 

inter-site communication and one affecting intra-site communication. In the inter-site 

case, we added a parameter that allows distances between sites to be multiplied. 

Increasing inter-site distances induces additional communication delays, as packets must 
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transit more routers and links, and so suffer increased queuing and propagation delays. In 

the intra-site case, we added a parameter that allows delays on intra-site messages to be 

multiplied. We included a second parameter to specify the probability that any given 

intra-site message suffers delay multiplication. 
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3. Experiment Design 

 

A typical problem arising with experiment designs for large models, which could 

have many parameters that can each take on very many values, is the number of 

experiments that must be run to explore every possible parameter combination at every 

possible of value. For example, a model with 20 parameters that can each take on 2
32

 

values would require more than 10
192

 simulation runs, an infeasible number, requiring 

over 10
187

 years to execute, assuming each simulation could finish within 10 min. 

Exploiting the power of a 10,000-node computational cloud would reduce the required 

run time only to 10
183

 years. To overcome such problems, experimenters often adopt two-

level designs, which examine each parameter at only two values, reducing the number of 

simulation runs required in the above example to just over 1 million. Adopting a two-

level design for our example would reduce the required run time to below 20 years–still a 

long time. Renting 10,000 nodes from a computational cloud could finish such an 

experiment in as little as two weeks, but with a cost of around $500K. 

To reduce the time (or expense) arising from a full-factorial design, experimenters 

can adopt an orthogonal fractional factorial (OFF) design, as we did for our previous 

sensitivity analysis of the Koala simulator [2]. A fractional-factorial design samples only 

an affordable portion of the entire (full-factorial) space of parameter combinations. An 

OFF design selects the sampled combinations so that each parameter value occurs an 

equal number of times (balance) and each pair of parameter values also occurs equally 

often (orthogonality). By ensuring balance and orthogonality among the parameter 

combinations sampled from a full-factorial design space, OFF designs achieve two 

desirable properties, given the limits of the selected sample size. First, main effects 

estimates are representative of the main effects that would be found if a full-factorial 

experiment were conducted. This means that a list of experiment parameters, ranked by 

main effects, tends to be close to the true ordering that would result from a full-factorial 

experiment. Second, main-effects estimates will exhibit an uncertainty as small as 

possible, given the sample size. Elsewhere [13], we demonstrate these properties. 

In our previous study [2], we investigated 11 parameters using only 64 

simulations. We did this by adopting a 2
11-5 

OFF design, which sampled the two-level, 

full-factorial design space of (2
11

 =) 2048 parameter combinations at only (2
11-5 

=) 64 

points. In the current experiment, we examine 20 parameters (or input factors), which for 

a full-factorial, two-level experiment would require over a million simulation runs. To 

reduce the number of runs, we adopt a 2
20-12 

OFF experiment design, requiring only 256 

simulation runs. In our experiments, each Koala simulation run required different 

processing times, varying from a few hours to a few days, depending upon the parameter 

combinations simulated. We deployed the simulations in parallel on a local cluster of 200 

cores, which allowed us to complete all 256 simulations in less than two weeks. 

Below, we identify and define the 20 input factors (i.e., parameters) we examined. 

These factors include the six parameters found, in our previous sensitivity analysis, to 

most influence behavior for the basic Koala model, as well as 14 factors controlling the 

dynamics, failures, and asymmetries included in the extended Koala model. After 

describing the input factors for our experiment, we then identify and define 45 system 

responses we analyzed to understand the behavior of the extended Koala model. While 

many of these responses were included in our previous studies [1-2], we added some 
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responses to reflect user behaviors that appeared only in the extended Koala model. 

 

3.1 Variable Input Factors 

 

We organize our discussion of variable input factors into four parts: (1) user 

factors, (2) cloud and cluster factors, (3) node factors, and (4) network factors. In the 

discussion, we distinguish factors that drive behavior in the basic Koala model from 

factors introduced to inject the dynamics, failures, and asymmetries included in the 

extended Koala model. After introducing the twenty input factors used for our 

experiments, we define the two-level values chosen for each factor included in our 2
20-12 

OFF experiment design. 

 

3.1.1 Variable User Factors 

 

Table 5 lists the five variable user factors (x1 to x5) included in our experiment. 

Three of these factors are holdovers from our previous experiments [1-2]. The holdovers 

include: the number of users (x1), the distribution of user type probabilities (x2), and the 

mean user holding time (x3). In our previous experiments, these three input factors 

combined to determine demand for cloud resources. We must note, though, that in our 

previous experiments we assigned x2 to be either of two, different, fixed distributions of 

user type probabilities, while here we assign x2 values differently. As explained in detail 

below (Sec. 3.1.5), one assigned value for x2 does define a fixed distribution of user type 

probabilities, while the other assigned value defines oscillating periods with differing 

distributions of user type probabilities. For this reason, we categorize input factor x2 as 

both a holdover and a dynamics factor. Factor x4 encompasses variables that control the 

ability of users to increase or decrease dynamically the number of VMs required during 

the holding period. Factor x5 determines the likelihood that a user will generate ill-

formed Run Instances requests, which the cloud cannot interpret, and thus must reject. 

 

Table 5. Variable User Input Factors 

 
 

3.1.2 Variable Cloud and Cluster Factors 

 

Table 6 lists six variable cloud and cluster factors (x6 to x11) included in our 

experiment. Three of these factors are holdovers from our previous experiments. The 

holdovers include: the algorithm (x6) that the cloud controller uses to select a cluster on 

Factor Factor Name Factor Category

x1 Number of Users Holdover

x2 User Type Probability Dynamics/Holdover

x3 Holding Time Holdover

x4 Changes in User Demand While Holding Dynamics

x5 Probability of Bogus User Request Failures
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which to allocate a set of VMs requested by a user; the absolute size (x8) of each cluster 

(i.e., number of nodes per cluster); and the distribution of platform type probabilities 

(x10) for cluster nodes. In our previous experiments, these three input factors combined 

to determine the supply of cloud resources. In the current experiment, we introduce a new 

input factor (x9) that allows us to skew, asymmetrically, the distribution of cluster sizes, 

so that a few are relatively large, while most are relatively small. When skewing cluster 

sizes, we maintain the overall mean cluster size defined by input factor x8. The remaining 

cloud and cluster input factors control injection of cloud and cluster reconfigurations, 

which entail adding and removing clusters (x7) and nodes (x11). 

 

Table 6. Variable Cloud and Cluster Input Factors 

 

 
 

3.1.3 Variable Node Factors 

 

Table 7 lists the three variable node factors (x12 to x14) included in our 

experiment. All three factors relate to failures. One factor (x12) defines the probability a 

node will refuse to accept a VM after having previously indicated sufficient resources 

existed to support the VM. A second factor (x13) specifies the probability that a node will 

fail, and then need to be repaired or replaced. The third factor (x14) describes the chances 

that specific cores, disks, or memory banks within a node will fail, reducing the node’s 

capacity and requiring remedy before the node returns to full operation.  

 

Table 7. Variable Node Input Factors 

 

 

Factor Factor Name Factor Category

x6 Algorithm for Choosing Cluster Holdover

x7 Cloud Reconfiguration Dynamics

x8 Absolute Cluster Size Variation Holdover

x9 Relative Cluster Size Variation Asymmetries

x10 Cluster Platform Type Probability Holdover

x11 Custer Reconfiguration Dynamics

Factor Factor Name Factor Category

x12 Probability of Node NERA Failures

x13 Probability of Node Failure Failures

x14 Probability of Node Component Failure Failures
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3.1.4 Variable Network Factors 

 

Table 8 lists the remaining six variable input factors (x15-x20), which all relate to 

network characteristics. The first three of these factors relate to asymmetries, while the 

second three relate to failures. One factor (x15) determines how clusters that compose a 

cloud will be distributed over the geographical extent available in the experiment. 

Clusters can be physically concentrated with the cloud controller, or can be disbursed 

across the globe. Two factors specify how propagation delays will be assigned to 

messages. Factor x16 defines a multiplier that can scale latencies on messages transiting 

between simulated geographical sites, while factor x17 defines a multiplier that can scale 

latencies on messages traveling within sites. 

 

Table 8. Variable Network Input Factors 

 

 
 

Among the three factors relating to network failures, two factors specify the 

probability of loss for messages sent either between (x18) or within (x19) geographical 

sites. The final factor (x20) characterizes cuts in communications between clusters and 

the cloud controller. Such cuts must be diagnosed and repaired before fully functional 

communications can be restored between the cloud controller and affected clusters. 

 

3.1.5 Two-Level Values Chosen for Each Variable Input Factor 

 

For each of the 20 variable input factors, we chose two values to assign for use in 

our experiment design. We label one value as the “Plus Level” and one as the “Minus 

Level”. We chose these designators to match the +1 and -1 labels typically used when 

formulating two-level experiment designs [9]. In our discussion, we refer to the “Plus 

Level” as (+) and the “Minus Level” as (-). We will discuss our chosen values in four 

categories, where each category is displayed in a separate table (Tables 9 through 12). 

We begin, in Table 9, with values for variable user factors. 

We parameterized Koala (x1) with either 1250 (-) or 2500 (+) users, which means 

that demand can increase due to the number of users by a factor of two. Similarly, we 

selected mean holding times (x3) of either 8 (-) or 32 (+) hours, which means that 

demand can increase due to user holding times by a factor of four. This implies that the 

Factor Factor Name Factor Category

x15 Cloud Distribution Asymmetries

x16 Variability in Inter-Site Latency Asymmetries

x17 Variability in Intra-Site Latency Asymmetries

x18 Probability of Inter-Site Message Loss Failures

x19 Probability Intra-site Message Loss Failures

x20 Probability of Cluster Communication Cut Failures
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highest level (+, +) combination of these factors (2500 users each holding VMs for a 

mean of 32 hours) increases demand eight times over the lowest level (-, -) combination 

(1250 users each holding VMs for a mean of 4 hours). The other two possible 

combinations simulate intermediate demands. 

 

Table 9. Values Chosen for Variable User Input Factors 

 

 
 

The distribution of user types (x2) also affects user demands. At the (-) level, we 

chose a uniform distribution of probabilities among six user types (from among those 

defined in Table 2). This means that, under the (-) level, each arriving user has a 1/6 

probability of being any of the six types shown in Table 9. The situation is more 

complicated under the (+) level, which specifies that the probability of user types 

switches (eight times during a simulation run) between two different distributions. The 

starting distribution is determined by tossing a fair coin. The switching occurs at fixed 

intervals, i.e., after completing each 12.5 % of a simulation run. With each interval, the 

user probability distribution alternates between one consisting of only three user types 

and one with up to 18 user types. The possible user types include those shown in Table 2.  

To assign a probability to each of the user types in a distribution, Koala first 

randomly orders the types in the distribution. For each type, Koala randomly (uniform) 

selects a value between 0 and 1. The selected probability is assigned and the number 

space is reduced by the value, forming a new cap that is below 1. The next probability is 

selected randomly (uniform) between 0 and the new cap, and assigned to the second user 

type. This process continues until all user types have been assigned a probability, or the 

new cap reaches 0. 

At the (+) level, variable input factor x4 also affects user demands, but in an 

incremental manner. Specifically, each user has a 50 % chance of changing the number of 

VMs first acquired from the cloud through a Run Instances request. When a user does 

change demand for VMs, there is a 50 % chance the user adds VMs and a 50 % chance 

the user removes VMs. The number of VMs added or removed is randomly (uniform) 

selected between 20 % and 50 % of the number obtained initially. A user changes 

demand for VMs at most once; the change is attempted at a random time during the 

user’s holding period. If the user cannot obtain the required additional VMs, then retries 
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will commence, using the same logic implemented for retrying initial requests. On 

average, since half of the incremental requests are increases and half decreases, these 

incremental dynamic changes do not increase overall user demand. On the other hand, the 

incremental changes cause some users to exhibit larger demands than usual, and some 

users to exhibit smaller demands. At the (-) level, no users express incremental changes 

in demand. 

Factor x5 spans two probabilities of users issuing ill-formed Run Instances 

requests. At the (-) level, one in 1000 requests are ill-formed. At the (+) level, one in 50 

requests are ill-formed. 

Table 10 lists the two values we chose for each of the six variable input factors 

related to the cloud and clusters. To select a cluster on which to place the VMs in each 

Run Instances request, the cloud controller uses either of two algorithms (x6): percent-

allocated (+) or least-full-first (-). A cloud consists of 10,000 nodes. When clusters are 

deployed in a uniform manner (x9+), the cloud is composed of either 10 clusters with 

1000 nodes each (x8+) or 100 clusters each with 100 nodes (x8-). When clusters are 

deployed according to an 80/20 rule (x9-), the cloud is composed of either 8 clusters of 

250 nodes and 2 clusters of 4000 nodes (x8+) or 80 clusters of 25 nodes and 20 clusters 

of 400 nodes (x8-).  The platform types (x10) of nodes are either: (-) all of the largest type 

(C22) or (+) randomly (uniform) selected from among four types (C8, C14, C18 and 

C22). 

 

Table 10. Values Chosen for Variable Cloud and Cluster Input Factors 

 

 
 

No cloud reconfiguration occurs at the x7 (-) level and no cluster reconfigurations 

occur at the x11 (-) level. Reconfigurations do occur at the (+) levels of these variables. 

The mean time between cloud reconfigurations is 720 h (one month). Half of the cloud 

reconfigurations add 20 % more clusters and half remove 20 % of existing clusters. The 

number of clusters is bounded within a range of either 5 to 15 (x8+) or 50 to 100 (x8–). 
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The mean time between cluster reconfigurations is 168 h (one week). Half of the cluster 

reconfigurations add 20 % more nodes and half remove 20 % of existing nodes. Cluster 

sizes are bounded within a range of 10 to 10,000 nodes. 

Table 11 lists the value pairs chosen for the three node-related failure parameters. 

A node rejects (x12) either one in 1000 (-) or one in 50 (+) Run Instance requests that the 

cluster controller allocates to the node. Nodes have a mean time between failure (x13) of 

either 8000 h (-) or 400 h (+). Failed nodes recover after some randomly (triangular) 

selected time between 30 min and 24 h, with 4 h being typical. Node components exhibit 

the same mean time between failures (x14) as the nodes themselves. The recovery profile 

for node components is similar to that of nodes, except that the minimum repair time is 1 

h instead of ½ h and the typical repair time is 8 h instead of 4 h. 

 

Table 11. Values Chosen for Variable Node Input Factors 

 

 
 

Table 12 lists the value pairs chosen for the variable network input factors. We 

chose to have cloud elements geographically arranged on either a single site (x15-) or 

spread out (x15+) so that the cloud controller and each cluster are located on different 

sites. Site coordinates are chosen randomly from the available 8000-x-8000-mile grid, 

and distances between sites are computed based on their relative locations (x16-). Inter-

site distances may be multiplied by a factor of 10 (x16+). Distances between sites 

determine the propagation delay of inter-site messages. Messages sent within sites 

experience a much shorter, random (triangular) propagation delay (x17-) that ranges 

between 100 ns and 500 ns, with a typical value of 250 ns. Intra-site delays may be 

multiplied by a factor of 10 with a 50 % probability (x17 + level). 

The three remaining variable input factors define network-related failures. Inter-

site messages are lost with a probability (x18) of either 1 in 1000 (-) or 1 in 50 (+). The 

same loss probabilities are also assigned (x19) to intra-site messages. The final variable 

input factor (x20) assigns a mean time between cuts in communication between clusters 

and the cloud controller. Such cuts occur on average every 1140 hours (+) or every 22800 

hours (-). These values mean that communication cuts can occur about every month and a 

half (+) or every two and a half years (-) or so. Communication cuts are repaired and 

restored after a randomly (triangular) selected time that varies between 2 h and 24 h, with 

a typical repair time of 8 h. 
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Table 12. Values Chosen for Variable Network Input Factors 

 

 
 

3.2 Fixed Parameters 

 

Koala can be parameterized through many input factors, with only a subset varied 

in the current experiment. We selected variable input factors using two criteria: (1) those 

(six) previously shown to significantly influence Koala behavior and (2) those that inject 

dynamics, failures, and asymmetries into a simulated cloud. We judged other Koala 

parameters to be unrelated to these two criteria. These parameters include: timeout values 

and other configuration settings, physical assumptions, assumptions about user behavior, 

and small failures shown not to significantly influence Koala behavior. We assigned 

fixed values to these parameters. For example, we chose to fix the length of each run to 

one simulated year. We chose this value to ensure a sufficient period of observation, 

while bounding the required wall-clock time to be within reason. 

Most of the fixed input factors, such as those related to orphan control procedures 

[8], were simply left at the Koala default values. Below, we identify and discuss some of 

the more interesting fixed input factors, so the reader has an idea of their nature, and the 

values we used. This brief discussion should help the reader judge the reasonableness of 

our choices. The presentation follows the same categories we used to discuss the variable 

input factors. 

 

3.2.1 Fixed User Parameters 

 

As shown in Fig. 2, individual Koala users exhibit cyclic behavior controlled by 

numerous parameter settings, which we fixed in our experiments. The key fixed user 

parameters and associated values are given in Table 13. Users arrive at randomly 

(exponential) determined times with a mean inter-arrival time (15 min here). After 

arriving, a user thinks (REFLECTING in Fig. 2) for a random (exponential) time (mean 

15 min here) prior to submitting a Run Instances request (REQUESTING in Fig. 2). The 

user waits, for a random (log normal) finite time (mean 120 s and standard deviation 100 

s here), for a response from the cloud controller. If no response arrives before that time, 

or if the cloud sends a NERA response, then (after another think period) the user retries 

(RETRYING in Fig. 2). The user selects randomly (triangular) a maximum number 
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retries between four and 24, with a typical value of 16. If the user exhausts those retries 

without obtaining VMs, then the user rests (RESTING in Fig. 2) for a random 

(exponential) period of time (mean 16 h) before entering another round of retries. A user 

will persist for a randomly (triangular) selected number of rest periods between 1 d and 7 

d, with a typical value of 4 d. If the user cannot obtain VMs before exhausting all rest 

periods and related retry cycles, then the user leaves the system, only to be arrive as a 

new user.  

 

 

 

Figure 2. Finite-State Machine Representation of Koala User Behavior 

 

If a user obtains at least the minimum requested number of VMs at any time 

during the request-retry-rest cycle, then the user randomly describes, reboots, and 

terminates obtained VM instances (HOLDING in Fig. 2) until a randomly selected 

holding period ends. Subsequently, the user terminates (TERMINATING in Fig. 2) the 

held VMs and then arrives as a new user. 

 

3.2.2 Fixed Cloud and Cluster Parameters 

 

The cloud control and cluster controllers have numerous configuration parameters 

that have default values, which we use in our experiment. Some of these parameters (see 

Table 14) are worth discussing here. The first concerns the maximum number of clusters 

that a cloud-controller will consider when attempting to allocate VMs. Some clouds may 

be composed of many clusters (up to 100 in our experiments). Prior to selecting a cluster 

for placement, the cloud controller creates an ordered list and then proceeds to make 

placement attempts from the top. Sometimes placements succeed and sometimes they 
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fail, causing the cloud controller to try the next cluster on the list. In order to limit the 

cloud-controller decision time, the maximum number of clusters to consider (15 here) can 

be restricted. In addition, the cloud controller can limit the time given for clusters to 

evaluate requests and respond. Here, we fixed the cloud evaluation response timeout to 

90 s. 

 

Table 13. Values for Fixed User Parameters 

 

 
 

Table 14. Values for Fixed Cloud and Cluster Parameters 

 

 
 

When cloud or cluster controllers are unable to complete assigned actions 

associated with terminating VMs or with shutting down nodes or clusters, then the 

uncompleted tasks are assigned to an administrator, who periodically examines the work 

queue, and carries out any task backlog at some rate. Here, the administrator examines 

the task queue at randomly (exponential) selected intervals with a mean of 24 h. When 
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performing tasks, the administrator completes each task after a randomly (exponential) 

selected delay with a mean of 2 min. 

In selecting nodes on which to place VMs the cluster controller uses the first-fit 

heuristic [1]. Periodically (every 30 min here), cluster controllers query the subordinate 

nodes to assess the status of resource availability in the cluster. Further, cluster 

controllers wait a limited time (30 s here) for nodes to respond to queries and requests. 

 

3.2.3 Fixed Node Parameters 

 

While most node parameters are set to Koala defaults, a few parameters (see 

Table 15) related to individual VMs are worth mentioning. First, VMs take random 

(triangular) periods to complete booting. Here, VMs boot no faster than 60 s and take no 

longer than 15 m; 165 s is the typical boot time. Second, a VM might be unable to boot 

because the boot image specified in the Run Instance request is not found in a cloud’s 

image repository. Similarly, a VM image might be defective, causing the VM to crash 

while booting, and to be unable to run. Here, we fix the probability of each of these 

failures to one in a million. Finally, VMs linger on nodes for some time after being 

terminated. Here, we fix the VM lingering time to five minutes. 

 

Table 15. Values for Fixed Node Parameters 

 

 
 

3.2.4 Fixed Network Parameters 

 

Network models can be quite complicated, requiring many parameters. Table 16 

identifies some key network parameters and the fixed values assigned for our experiment. 

Recall that Koala elements are assigned to sites, representing locations on a geographic 

grid. For that reason, messages communicated between sites must transit significant 

distances. Every mile separating a pair of sites entails a propagation delay, which we fix 

at 8.2 μs per 1.6093 km, which equates roughly to the time taken by a signal traveling at 

65 % the speed of light. Prior to propagating, a message (composed of one or more 

packets of data) must be transmitted onto a medium. Here, we randomly (uniform) select 

the number of packets to be one to 10 per message. We fix the per-packet transmission 

delay to 12 μs, which equates to a rate of one billion bits per second, assuming 1500-byte 

packets. In addition, messages transiting very long distances typically experience 

multiple router hops, where each hop can incur some queuing delay. We insert a router at 

every 1609.3 km between sites, and packets transiting each hop experience randomly 
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(triangular) selected queuing delays between 1 ms and 25 ms, with 10 ms being a typical 

value. Packets transiting between sites may also be lost, due primarily to congestion, and 

need to be retransmitted. Here, we randomly (uniform) select the loss probability 

(between 10
-8

 and 10
-3

) for each packet. Since losses within sites are less likely, we fix 

intra-site packet loss probability to 10
-12

. We limit retransmissions to at most three per 

packet, after which an exception is raised, which must be resolved by the message sender.  

 

Table 16. Values for Fixed Network Parameters 

 

 
 

3.3 Responses 

 

The Koala model is capable of producing many measurements. In our previous 

experiments [1-2], we evaluated up to 40 Koala responses. Here, we included 45 

responses (designated y1 through y45). The number of responses increased because the 

extended version of Koala included several additional responses not found in basic 

Koala. Below, we discuss responses in four categories: (1) user, (2) cloud, (3) cluster, and 

(4) VM. 

 

3.3.1 User-Level Responses 

 

Table 17 identifies and defines the 12 responses (y1-y6 and y40-y45) that 

characterize user experience in our experiment. These responses include average user 

arrival rate (y4) and the average number of requests (y1) users submitted to obtain VMs, 

along with the proportion of users who gave up (y5) without obtaining VMs. Supporting 

responses include the proportion of requests that received NERA responses (y2) from the 

cloud, the proportion of arriving users who were granted some VMs (y40), and the 

proportion of grants that provided the maximum requested number of VMs (y3). We also 

measured the average grant latency (y6) for users that obtained VMs. As overall figures 
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of merit, we included responses measuring the ratio (y41) of granted to requested VMs, 

and the average cloud response time (y42) for Run Instance requests. 

 

Table 17. Identity and Definition of User-Level Responses 

 

 
 

Three responses (y43-y45) measure user success at maintaining the minimum 

needed number of VMs and at extending the size of VM holdings. Users terminate early 

if they cannot retain the minimum number of VMs needed. Response y43 reports the ratio 

of such users to the total number of arriving users. Users may attempt to acquire 

additional VMs while holding an initially granted set. The extension give-up rate (y44) 

reports the ratio of users who successfully acquire more VMs to the attempts made by 

those users. For those users who did acquire additional VMs, response y45 reports the 

average time delay incurred before the additional VMs were obtained. 

 

3.3.2 Cloud-Level Responses 

 

Table 18 identifies and defines the 12 responses that measure cloud-level 

performance in our experiment. The responses cover five categories: (1) cluster-related 

allocation performance (y7-y9), (2) resource utilization (y10-y12), (3) resource loading 

(y13-y15), (4) message traffic (y37-y38), and (5) revenue (y39). We cover each category 

in turn. 

Prior to allocating VMs in a Run Instances request to a cluster, the cloud 

controller must poll clusters for availability information. Response y8 measures the 

average fraction of clusters offering full grants and response y9 measures the average 

fraction of clusters reporting NERA. The average fraction of clusters offering partial 

grants can be deduced from these two responses. Sometimes an allocation request fails, 

ID Response Name: Definition

y1 User Request Rate: Requests by All Users / # User Cycles

y2 NERA Rate: NERAs / Requests by All Users

y3 Full Grant Rate: Full Grants / (Full Grants + Partial Grants)

y4 User Arrival Rate: # User Cycles / Simulated Hours

y5 User Give-up Rate: # Users that Gave Up / # User Cycles

y6 Grant Latency: Weighted Avg. Delay in Granting VMs to Users that Got VMs

y40 User Success Rate: (Partial Grants + Full Grants)/Arrivals
y41 Proportion of Requested VMs Obtained: # VMs Granted / # VMs Requested

y42
Run Instance Response Time: Weighted Avg. of Run Instance Responses 

(for successful grants and NERAs)

y43
Early Termination Rate: # Users Who Terminated Early/

Total # Users who arrived 

y44
Extension Giveup Rate: # Users Who Gave up on Requesting More VMs/(Total # 

extension requests - Total # extension request retries)

y45
Extension Grant Latency: Weighted Avg. of Acquisition Delay across all users 

who got additional VMs
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and the cloud controller must choose another cluster. Response y7 measures the ratio of 

such reallocations to the number of full and partial grants given by the cloud. 

 

Table 18. Identity and Definition of Cloud-Level Responses 

 

 
The cloud offers users virtual cores (vCores), memory, and disk space onto which 

VMs may be assigned. Aggregate utilization (over the entire cloud) for each of these 

resources is measured by responses y10-y12, respectively. Similarly, the cloud consists of 

physical cores, physical disks, and physical network interface controllers (NICs). As 

VMs are allocated to physical machines, the associated virtual cores, virtual disks, and 

virtual NICs are mapped to physical cores, physical disks, and physical NICs. The 

average number of virtual resources mapped to each of these physical resources (over the 

entire cloud) is measured by responses y13-y15, respectively. 

Cloud operations, including interactions with users, require the exchange of Web 

Services (WS) messages. Response y37 reports the average number of WS messages sent 

per hour. Response y38 reports the proportion of WS messages exchanged within sites. 

The proportion exchanged between sites can be deduced from these two responses. 

In Koala, the simulated cloud accrues revenue for every operating VM. Since VM 

costs are charged per hour, each VM operating at each hour is charged, with charges 

varying based on VM type (recall Table 1). Response y39 reports the average aggregate 

revenue (over all VMs) accumulated per hour by the cloud. 

 

3.3.3 Cluster-Level Responses 

 

Table 19 identifies and defines 13 responses that characterize cluster-level 

performance in our experiment. The responses cover three categories: (1) variance in 

resource utilization among clusters (y16-y18), (2) variance in resource loading among 

clusters (y19-y21), and (3) allocation-related performance (y22-y25), including variance 

among clusters (y26-y28). We cover each category in turn. 

ID Response Name: Definition

y7 Reallocation Rate: # Times Alternate Cluster Chosen / Requests Granted

y8 Full Grant Proportion: Avg. Fraction Clusters Offering Full Grants

y9 NERA Proportion: Avg. Fraction Clusters Reporting NERA

y10 vCore Utilization: Avg. Fraction of Virtual Cores Use in Cloud

y11 Memory Utilization: Avg. Fraction of Memory in Use in Cloud

y12 Disk Space Utilization: Avg. Fraction of Disk Space in Use in Cloud

y13 pCore Load: Avg. Virtual Cores Allocated / Physical Cores in Cloud

y14 Disk Count Load: Avg. Virtual Disks Allocated / Physical Disks in Cloud

y15 NIC Count Load: Avg. Virtual NICs Allocated / Physical NICs in Cloud

y37 WS Message Rate: Avg. # WS Messages Sent Per Simulated Hour

y38 Intra-Site Messages: # WS Messages Sent within Sites / # WS Messages Sent

y39 Aggregate Revenue Per Hour: Based on 2011 EC2 prices for Windows

instances in Northern Virginia
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Table 19. Identity and Definition of Cluster-Level Responses 

 

 
 

Three responses (y16-y18) report variance in virtual resource (virtual cores, 

memory, and disk space) utilization among the clusters within the cloud. Similarly, three 

responses (y19-y21) report variance in physical resource (cores, disk devices, and NICs) 

loading among clusters. Measuring these variances provides insight into differences 

among the clusters. 

As mentioned earlier, prior to allocating VMs to a cluster, the cloud controller 

polls the clusters to assess available resources, and then subsequently chooses one cluster 

on which to assign the VMs. Clusters may respond to such queries by saying the can 

accommodate all (full-grant response), some (partial-grant response) or none (NERA 

response) of the VMs. Response y23, cluster NERA rate, measures the ratio of NERA 

responses given by clusters to all responses. Similarly, response y24, cluster full-grant 

rate, reports the ratio of full-grant responses to all responses. The ratio of partial-grant 

responses can be deduced. 

After receiving availability reports from all subordinate clusters, the cloud 

controller allocates a user Run Instances request to one cluster, which then maps the 

needed VMs to individual cluster nodes. Response y25, cluster allocation rate, reports the 

ratio of the number of times a cluster was selected to the number of times the cluster 

offered to accept a Run Instances request. The response is averaged across all clusters. 

Three responses (y26-y28) report the standard deviation across clusters for the 

cluster NERA rate (y23), the cluster full-grant rate (y24), and the cluster allocation rate 

(y25), respectively. Measuring these standard deviations provides insight into differences 

among the clusters. 

After being chosen by the cloud controller, a cluster controller chooses an 

available cluster node on which to assign each VM in a Run Instances request. 

Occasionally, a chosen node will be unable to accept a VM, which the cluster controller 

ID Response Name: Definition

y16 vCore Util. Var: Avg. Variance in vCore Utilization across Clusters

y17 Memory Util. Var: Avg. Variance in Memory Utilization across Clusters

y18 Disk Space Util. Var: Avg. Variance in Disk Space Utilization across Clusters

y19 pCore Load Var: Avg. Variance in pCore Load across Clusters

y20 Disk Count Var: Avg. Variance in Disk Count Load across Clusters

y21 NIC Count Var: Avg. Variance in NIC Count Load across Clusters

y22 Node Reallocation Rate: # Times Alternate Node Chosen / VMs Allocated

y23 Cluster NERA Rate: # NERAs / # Responses Avg. across Clusters

y24 Cluster Full-Grant Rate: # Full Grants / # Responses Avg. across Clusters

y25 Allocation Rate: Times Cluster chosen / Cluster offered Avg. across Clusters

y26 SD-NERA: Stand. Dev. in Avg. NERA Rate across Clusters

y27 SD-Full-Grant: Stand. Dev. in Avg. Full-Grant Rate across Clusters

y28 SD-Allocation-Rate: Stand. Dev. in Allocation Rate across Clusters
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must then reallocate to an alternate node. Response y22 measures the ratio of instances 

when an alternate node was chosen to the number of VMs allocated. This ratio is taken 

across all cluster controllers in the cloud. 

 

3.3.4 Virtual-Machine-Level Responses 

 

Table 20 identifies and defines eight responses that characterize the VMs 

deployed within the cloud. Response y29 reports the average number of VMs in the 

cloud, and the remaining seven responses (y30-y36) the average fraction of deployed 

VMs that are of each of the seven types available in the cloud (recall Table 1). 

 

Table 20. Identity and Distribution of Virtual-Machine-Level Responses 

 

 
 

 

 

 

 

 

 

 

  

ID Response Name: Definition

y29 Current Instances: Avg. # VM Instances Extant in Cloud

y30 M1small Instances: Fraction of Current Instances that are M1 small VMs

y31 M1large Instances: Fraction of Current Instances that are M1 large VMs

y32 M1xlarge Instances: Fraction of Current Instances that are M1 xlarge VMs

y33 C1medium Instances: Fraction of Current Instances that are C1 medium VMs

y34 C1xlarge Instances: Fraction of Current Instances that are C1 xlarge VMs

y35 M2xlarge Instances: Fraction of Current Instances that are M2 xlarge VMs

y36 M4xlarge Instances: Fraction of Current Instances that are M4 xlarge VMs
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4. Results and Discussion 

 

Using two values for each of the 20 variable input factors, as explained in Sec. 

3.1.5, we implemented a 2
20-12 

OFF experiment design, which required running 256 

simulations, where each simulation was configured with a unique combination of values 

for the 20 factors. For each simulation, we collected the 45 responses described in Sec. 

3.3. We organized the collected data into a 256 row x 46 column matrix, one row per 

simulation run, one column for the simulation run identifier (1 to 256), and one column 

for each of the responses (y1 to y45). This matrix served as input to our analysis, which 

we explain below. 

We begin, in Sec. 4.1, by describing how we reduced dimensionality of the 45 

responses, using a correlation and analysis technique that we have explained and applied 

elsewhere [2, 10]. We compare the dimensionality found by this experiment against an 

earlier sensitivity analysis [2], where we explored only 11 input factors and 40 responses. 

Subsequently, in Sec. 4.2, we gauge the influence of each of the 20 variable input factors 

on the 45 measured responses, as well as on the dimensions identified in Sec. 4.1. In Sec. 

4.3, we rank the variable input factors from most to least influential across responses. In 

Sec. 4.4, we identify the influence of two-term interactions, and compare them against 

two-term interactions from a previous sensitivity analysis [2] of the basic Koala model. 

We close, in Sec. 4.5, with a summary of our findings. 

 

4.1 Response Dimensions 

 

We applied correlation analysis and clustering (CAC) [10] to the results data set 

in order to remove redundancy from the 45 responses, thus creating a lower dimensional 

response space, which identifies the salient, unique behaviors present in the Koala 

simulator. CAC begins with computation of correlation coefficients (r) between each pair 

of responses. Analysis of a histogram of the resulting r values enabled us to identify a 

threshold (|r| > 0.65 here) above which to retain correlation pairs. We then clustered the 

124 retained pairs into mutually correlated groups that represent the main response 

dimensions. Table 21 reveals the 14 correlated response clusters, where each cluster 

represents a unique behavioral dimension exhibited by the Koala simulator. A response 

uncorrelated with any others appears as a singleton group (five cases in Table 21). 

As a next step, we identified one response (highlighted in red, enlarged font in 

Table 21) to represent each dimension. We selected the response in a cluster that 

exhibited highest average correlation with other responses. We compared the dimensions 

in Table 21 with the eight dimensions found in our previous experiment [2], which 

considered only 11 inputs and 40 responses. Table 21 contains annotations showing the 

results of the comparison: √ denotes a dimension also found in the previous experiment, 

≈ denotes a variation of a dimension found in the previous experiment, and + denotes a 

new dimension. 

Note that seven of the eight dimensions found previously are also found in the 

current experiment. One dimension, Reallocation Rate, from the previous experiment 

divides into two (Cluster Reallocation Rate and Node Reallocation Rate) in the current 

experiment. A third dimension, Standard Deviation in Cluster Estimates, which was 
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incorporated into Variance in Cluster Load in the previous experiment, appears separated 

as its own dimension in the current experiment. 

 

Table 21. Correlation and Cluster Analysis for Experiment Responses 

 
The results in Table 21 reveal four new behavioral dimensions, not seen in our 

earlier experiment. One new dimension, Run Instance Response Time, reflects how long 

the user must wait for the cloud controller to provide a verdict (either positive or 

negative) to a request for virtual machines. The related response (y42) was not included 

in our previous experiment, but in our current experiment the response represents a model 

Response Dimension Response Variables

Cloud-wide Demand/Supply 
Ratio

y1, y2, y3, y5, y6, y8, y9 y11, 
y23, y24, y27, y30, y31, y32, 

y34, y35, y36, y39, y40, y41

Cloud-wide Resource Usage y10, y13

Variance in Cluster Load y16, y17, y18, y19, y20, y21

Mix of VM Types y11, y31, y33, y34, y35

Number of VMs y12, y14, y15, y29, y39

Cluster Reallocation Rate y7, y37

Variance in Cluster Choice y25, y28

Extension Difficulty y44, y45

Std. Dev. in Cluster Estimates y2, y27, y26

User Arrival Rate y4

Node Reallocation Rate y22

Fraction Intra-site Messages y38

Run Instance Response Time y42

Early Termination Rate y43

√

√
√

√

√

√
≈

≈

√

≈

√ found in previous experiment
≈ variation of dimension found in previous experiment

+

+
+
+

+ new dimension
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behavior that is independent from other behaviors. A second new dimension, Extension 

Difficulty, reflects the relative success of users in obtaining additional virtual machines to 

increase the size of the initial allocation granted by the cloud. This dimension reflects 

behavior that was not included in the original Koala model, but that was added for the 

current experiment. Similarly, a third new dimension, Early Termination Rate, reflects a 

behavior not included in the original Koala model, but added for the current experiment. 

Specifically, users now try to maintain a minimum number of virtual machines required 

to support their application. The Early Termination Rate reflects the proportion of users 

who release their virtual machines early because they could not maintain the minimum 

number required, either due to virtual machine crashes or cloud terminations of virtual 

machines due to changes in resource availability. A fourth new dimension, Fraction of 

Intra-site Messages, reflects the relative proportion of message exchanges within a cloud, 

as virtual machines are relocated due to reduction in the number of available clusters and 

nodes. In our previous experiment, the Fraction of Intra-site Messages was grouped 

together with other responses into the main dimension reflecting the ratio of cloud-wide 

supply and demand. The current experiment finds the Fraction of Intra-site Messages to 

be independent of other responses. This change occurs because the modified Koala model 

contains added internal processing that is used to relocate virtual machines, as clusters 

and nodes are removed through failures or planned shutdowns. The Fraction of Intra-site 

Messages varies in response to such virtual-machine relocations, which can entail the 

exchange of a significant number of messages within the cloud. 

Overall, then, the current experiment identifies roughly the same behavioral 

dimensions within Koala as the previous experiment. There are a few cases where 

responses that had previously been grouped now appear as separate dimensions. The 

current experiment also found four new dimensions, all of which can be traced to new 

behaviors injected into the Koala model for the current experiment. In subsequent 

analyses related to Koala behavioral dimensions, we adopt the 14 dimensions, 

represented by the indicated responses, shown in Table 21. 

 

4.2 Factor Influence on Model Responses 

 

Next we applied main-effects analysis (MEA) [11] separately to each of the 45 

responses listed in Tables 17 through 20. MEA iterates over each response, which will be 

represented by 256 data points, one for each parameter combination. For each selected 

response, MEA iterates over each of the 20 parameters, dividing the 256 data points into 

two groups of 128: results obtained with the parameter at the PLUS level and at the 

MINUS level. For each parameter, we applied a t-test [12] to determine whether the 

averages of the PLUS and MINUS level data points were significantly different, and if so 

at which confidence level: p < 0.05 or p < 0.01. For each parameter (x1 to x20), we 

computed the percent of responses influenced (Ψ), weighting p < 0.05 at ½ and p < 0.01 

at 1, as shown in the following equation: 

 

(1) 

 

To consider the influence of each parameter on only the behavioral dimensions 

shown in Table 21, we computed the proportion of dimensions influenced. Specifically, 

Ψ = (|{y | p < 0.01}| + ½ |{y | p < 0.05}|) / |{y}|  
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let yd be the response selected to represent dimension d (= 1 to 14), where the chosen 

response for each dimension is noted in Table 21. For each parameter (x1 to x20), we 

computed the percent of dimensions influenced (Δ), weighting p < 0.05 at ½ and p < 0.01 

at 1, as shown in the following equation: 

 

(2) 

 

Table 22 shows Ψ and Δ computed for each of the six holdover parameters, which 

most influenced Koala in our previous sensitivity analysis. In Table 22, and subsequent 

similar tables, cells are color/symbol coded: green/<> indicates strong influence (≥ 50), 

yellow/{} moderate influence (≥ 30 and < 50), tan/() weak influence (≥ 10 and < 30), and 

gray/[] little influence (< 10). Table 22 indicates that the relationship of the number (x1) 

and type (x2) of users to the type of platforms (x10) provided by the cloud primarily 

drives the Koala model behavior, whether considering all 45 responses (Ψ) or only 

responses representing the 14 behavioral dimensions (Δ) of Koala. Cluster size (x8) and 

user holding time (x3), two other factors affecting the demand-supply relationship, also 

exhibit moderate influence. The algorithm for choosing the cluster on which to place 

VMs has relatively little influence on Koala behavior. These results are congruent with 

the results from our previous sensitivity analysis [2], where the relationship between 

supply and demand also was the primary driver of Koala behavior. 

 

Table 22. Ψ and Δ Computed for the Six Holdover Parameters  

 
*x2 is both a holdover and dynamics parameter 

 

To explore the influence of asymmetries, dynamics, and failures, we examined Ψ 

and Δ for the parameters within each related category. Table 23 depicts Ψ and Δ 

computed for the four parameters controlling asymmetries within Koala. Relative cluster 

size variation (x9) is the sole parameter showing even moderate influence on Koala 

behavior, and that occurs only when considering all 45 responses. When considering only 

the 14 responses representing the Koala behavioral dimensions, the influence of cluster 

size variation fades to insignificance. 

 

Table 23. Ψ and Δ Computed for the Four Asymmetry Parameters  

 
 

x1 x2* x3 x6 x8 x10

Y <61> <60> (27) (18) {32} <62>

D <57> <75> {43} [7] {43} <61>

x9 x15 x16 x17

Y {36} [4] [2] [0]

D [7] (11) [7] [0]

Δ = (|{yd | p < 0.01}| + ½ |{yd | p < 0.05}|) / |{yd}| 
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Table 24 reports Ψ and Δ computed for the four parameters controlling dynamics 

within Koala. Only the user type probability (x2) exhibits significant influence on Koala 

behavior. Recall, though, that user type probability is a dual parameter, which can 

influence both the supply-demand relationship and Koala dynamics. Our assessment is 

that the influence of user type probability on the supply-demand relationship is the 

primary driving factor. Below, after considering all four parameter categories, we will 

show that, whether or not we include x2, the set of dynamics parameters has little overall 

influence on Koala behavior. 

 

Table 24. Ψ and Δ Computed for the Four Dynamics Parameters 

 
*x2 is both a holdover and dynamics parameter 

 

Table 25 displays Ψ and Δ computed for the seven parameters controlling failures 

within Koala. Probability of inter-site message loss (x19) is the only parameter showing 

even modest influence on Koala behavior. Most failure parameters show little influence. 

As we will demonstrate below, inter-site message losses strongly influence cluster and 

node reallocation rates, and also the time taken for the cloud to respond to Run Instances 

requests from users. In effect, increased loss of messages, flowing between the cloud 

controller and cluster controllers and between cluster controllers and node controllers, 

increases the rate at which the cloud believes replacement clusters must be chosen, and 

the rate at which cluster controllers believe replacement nodes must be chosen. This 

increasing rate of reallocations also drives up the time taken for the cloud controller to 

render a placement decision to the user. 

 

Table 25. Ψ and Δ Computed for the Seven Failure Parameters 

 
 

To summarize the information presented in Tables 22 through 25, we computed a 

simple average influence for parameters in each category: Holdovers, Asymmetries, 

Dynamics, and Failures. The resulting averages, taken over each category parameter on 

the 14 behavior dimensions (Δ) of Koala, are shown in Table 26. For the dynamics 

parameters, we give the average influence both with and without the dual parameter x2 

(user type probability). As seen in Table 26, the holdover parameters have the highest 

average influence (almost strong influence) on Koala behavior, while the other categories 

have little influence. This result demonstrates that the findings from our previous study 

x2* x4 x7 x11

Y <60> [6] (16) [6]

D <75> [4] (11) (11)

x5 x12 x13 x14 x18 x19 x20

Y [0] [2] [7] [7] [3] (17) [1]

D [0] [7] (14) (11) (11) {36} [4]
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[1] of VM-placement algorithms would likely stand, even when injecting asymmetries, 

dynamics, and failures into Koala. 

 

Table 26. Average Influence of Parameter Categories on Koala Behaviors 

 
 

The data used to establish the significance of model parameters can also provide 

additional insights into Koala behavior by considering the relative effects on responses 

when parameter settings move from the MINUS level to the PLUS level. To measure the 

relative effect of a selected parameter on a specific response, we subtracted the mean 

response when the parameter was at the MINUS level (128 data points) from the mean 

response when the parameter was at the PLUS level (128 data points), and then divided 

that result by aggregate mean response for all 256 data points, yielding the percentage 

change (δ) in response due to changing the parameter level. A positive δ means that 

increasing the parameter level (i.e., form MINUS to PLUS) increased the response, while 

a negative δ means increasing the parameter level decreased the response. Table 27 gives 

the relative effect that each holdover parameter had on 14 responses, each representing 

one of the behavioral dimensions of Koala, as indicted in Table 21. 

The first thing to note in Table 27 is that each cell gives a δ value representing the 

relative effect of a specific parameter (columns labeled under Factor) on a specific 

response (rows labeled under Dimension). The second thing to note is that the same 

color/symbol coding used in Tables 22 through 26 is retained, to indicate different 

strengths of relative effect. We will concentrate on cells showing large and moderate 

magnitude for relative effects, i.e., ≥ |31| %. Based on our discussion of those cells, 

readers will be able to interpret for themselves the cells showing lower relative effects. 

As our examination will reveal, a handful of parameters cause the greatest changes in 

model responses, and the observed directionality (increases or decreases) for those 

changes make logical sense. We organize our review based on response dimension (rows 

from top to bottom in Table 27), and we address mainly green/<> and yellow/{} cells. 

The proportion of requested VMs obtained by all users (y41) is influenced mainly 

by three factors. Increasing the diversity of user types (x2+), the number of users (x1+), 

and the diversity of platform types (x10+) all lead to decreases in the proportion of VMs 

obtained. A larger population of users with a range of differing VM-type needs is much 

easier to accommodate when the platform types are all of the largest capacity available. 

When platform types are divided among a more diverse set, many smaller than the largest 

capacity, some user types will inevitably be squeezed out because insufficient resources 

will be available among the set of cloud platforms on offer. Table 27 also shows that 

Factor Category Avg. D

Holdovers {48}

Asymmetries [6]

Dynamics
(w/o x2) [9]

(w x2) (25)

Failures (12)
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increasing holding time (x3+) somewhat decreases (δ = -16 %) the proportion of VMs 

obtained, as should be expected because when users hold VMs longer, new users will 

have more difficulty obtaining VMs because insufficient cloud resources are available. 

 

Table 27.  δ Computed for Holdover Parameters on the 14 Koala Behaviors 

 
 

Increasing diversity of user types (x2+) also significantly increases y35, the 

proportion of VMs held that are of type M2xlarge. This occurs because when user types 

are less diverse (x2-) only one user type requires M2xlarge VMs, while four user types in 

the more diverse set require M2xlarge VMs. 

The cluster reallocation rate (y7) increases significantly when there are more users 

(x1+) with greater diversity (x2+) attempting to gain access to a more diverse set of 

platform types (x10+). This combination of factors causes clusters to have greater 

difficulty accommodating VMs, thus initial estimates that clusters provide may prove 

inaccurate, as users add VMs, as nodes fail, as VMs are relocated, and so on. On the other 

hand, two other factors can decrease significantly the reallocation rate. First, increased 

user holding time (x3+) results in less variation in resource availability, as users who 

acquire VMs hold them for a much longer period. As a result, cluster estimates of 

resource availability tend to be more stable and thus more accurate. Second, composing 

the cloud from fewer, larger clusters (x8+) gives clusters larger safety margins when 

estimating resource availability, as changes in a few VM holdings will not generally 

invalidate an earlier estimate and thus lead to decreased reallocation rate. Small clusters 

have a much lower margin of safety when estimating resource availability, as taking on a 

few additional VMs can more easily invalidate earlier estimates. 

Dimension ID

Factor

x1 x2* x3 x6 x8 x10

Demand/Supply Ratio y41 {-40} <-85> (-16) [2] [8] {-36}

Resource Usage y10 [7] [-5] [0] [-1] [3] [0]

Var. in Cluster Load y18 [-4] (-11) [0] [7] [-8] (-24)

Mix of VM Types y35 [6] <110> [1] [-5] [-8] [0]

Number of VMs y12 [5] (-20) [1] [3] [5] {-39}

Cluster Realloc. Rate y7 <85> <111> <-64> (-14) <-65> <58>

Var. in Cluster Choice y25 {43} {41} [-9] (18) <146> (28)

Extension Difficulty y44 {32} (26) <135> (19) <-82> {48}

Std. Dev. in Cluster Ests. y27 <-75> <-116> (-18) {-39} (-24) <-100>

User Arrival Rate y4 <60> (-25) <-131> [-2] [-1] [-9]

Node Reallocation Rate y22 [-6] (16) (12) [3] [-4] (-13)

Fraction Intra-site Msgs. y38 (-11) (-13) [4] [-1] (21) [-6]

Run Instance R.T. y42 (-22) [-8] (-21) (-18) {-37} (-21)

Early Termination Rate y43 (20) (23) <138> [-9] [-7] (13)
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The allocation rate (y25), i.e., the ratio of the number of times a cluster is chosen 

to the number of times the cluster stated sufficient availability, is mainly driven by the 

number of clusters. When the number of clusters is fewer (x8+) an offering cluster is 

more likely to be chosen. When the number of clusters is greater, an offering cluster is 

less likely to be chosen, simply because there are more available alternatives. Two other 

factors somewhat influence allocation rate. When the number of users is greater (x1+) 

and user types more diverse (x2+), then offering clusters are more likely to be chosen 

because the set of clusters that can accommodate specific user requests is likely to be 

fewer, meaning the number of available alternatives is lower. 

The give-up rate (y44) among users attempting to acquire additional VMs during 

a holding period is driven primarily by longer user holding times (x3+). When users hold 

acquired VMs for longer periods, then the cloud has fewer resources to accommodate the 

need for users to increase the size of their VM holdings. Having more users (x1+) and a 

more diverse set of platform types (x10+) also increases extension give-up rate among 

users. Increasing the number of users absorbs more cloud capacity, leaving fewer 

resources available to permit extensions in VM holdings. A more diverse set of platform 

types generally decreases cloud capacity over a cloud composed of a homogeneous 

collection of large platforms. With fewer available resources, users have a more difficult 

time extending their holdings. One factor, however, can significantly decrease extension 

difficulty for users. A cloud composed from larger clusters (x8+) can more easily 

accommodate extension requests because more nodes are available on large clusters, and 

users needing to extend their holdings are restricted to placing the new VMs on the same 

cluster as their original VMs. Smaller clusters (x8-) will simply have less room to 

accommodate user requests for VM extensions. 

Sometimes clusters can accommodate all VMs in a user request (for a so-called 

full grant) and sometimes clusters can only accommodate some VMs in a user request 

(for a so-called partial grant). Response y27 measures the standard deviation in the rate of 

full-grant estimates among the clusters in a cloud. Increasing the number (x1+) and 

diversity (x2+) of users and the diversity in platform types (x10+) all lead to significant 

decreases in this variance. This combination of conditions generally causes a cloud to 

have more difficulty accommodating user requests, leading to more cases where clusters 

report an inability to fully grant user VMs. This means a lower standard deviation in full-

grant estimates across clusters. Another factor, cluster-selection criterion (x8), also 

somewhat reduces the standard deviation in full-grant estimates. In a previous study [1], 

we found that using the percent-allocated selection criterion (x8+) caused a cloud to be 

more heavily utilized. Full-grant estimates are less likely to be provided by heavily 

utilized clusters, leading to reduced variance in full-grant estimates. 

User arrival rate (y4) is significantly influenced by only two factors. Increasing 

the number of users will increase the arrival rate, simply because there are more users in 

the simulated cloud. On the other hand, the user arrival rate will decrease when users 

hold VMs longer. This occurs because after liquidating VM holdings, a user is recycled 

as a new arrival. Longer holding times imply less frequent liquidation of VMs, which 

implies fewer users being recycled as new arrivals. 

The Run Instances request response time (y42) decreases somewhat when the 

number of clusters is small (x8+). A cloud controller will consult up to a maximum 

number (15 here) of eligible clusters when attempting to place VMs for a user’s request. 
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Under parameter setting x8+ the cloud consists of around 10 clusters, while under the 

alternative setting (x8-) the cloud consists of around 100 clusters. This means that 

generally, with only 10 clusters to consult, the cloud can give users faster responses than 

is the case when the maximum of 15 clusters are consulted for each user request. 

Early termination rate (y43) is the ratio of the number of users who terminated 

early to the number of arriving users. A user will terminate early when that user obtains 

VMs from the cloud, but then cannot maintain the minimum number of VMs required for 

the user’s intended purpose. Only user holding time (x3) significantly influences early 

termination rate. Increased holding times (x3+) require a user to maintain a minimum 

number of VMs for a longer period, which increases chances of failure to do so. Further, 

longer holding times increase cloud utilization, decreasing resource availability, which 

increases the difficulty for a user who must acquire an additional VM to replace one that 

has crashed or been terminated by the cloud. 

Table 28 gives the relative effect that each asymmetry parameter had on the 14 

selected responses that each represent one of the behavioral dimensions of Koala, as 

indicted in Table 21. The main point conveyed by the table is that asymmetry parameters 

stimulated very little change in Koala behavior. We will discuss only the yellow {} cells 

in Table 28. First, when clusters have uniform size (x9+), then the standard deviation in 

cluster full-grant estimates (y27) is substantially smaller. This stands to reason, because 

when cluster sizes are uniform, then full-grant estimates will be similar, while varying 

cluster sizes will lead to varying full-grant estimates. 

 

Table 28.  δ Computed for Asymmetry Parameters on the 14 Koala Behaviors 

 

Dimension ID

Factor

x9 x15 x16 x17

Demand/Supply Ratio y41 [-1] [-3] [0] [0]

Resource Usage y10 [-1] [0] [0] [0]

Var. in Cluster Load y18 [-1] [3] [0] [1]

Mix of VM Types y35 [4] [-1] [0] [0]

Number of VMs y12 [0] [-3] [0] [1]

Cluster Realloc. Rate y7 (-26) [0] (16) [-2]

Var. in Cluster Choice y25 [-7] (11) [-1] [1]

Extension Difficulty y44 (18) (15) [2] [1]

Std. Dev. in Cluster Ests. y27 {-32} {-36} [-2] [-2]

User Arrival Rate y4 (13) [7] [0] [-2]

Node Reallocation Rate y22 [0] [3] [5] [0]

Fraction Intra-site Msgs. y38 [-1] {-40} [0] [0]

Run Instance R.T. y42 [8] (12) {36} [3]

Early Termination Rate y43 (-24) [-5] [6] [-5]
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A less obvious factor, distribution of cluster locations (x15), also influences 

standard deviation in cluster full-grant estimates. When clusters are distributed to 

independent Internet sites (x15+), then the standard deviation in full-grant estimates is 

reduced. Note that when the cloud controller communicates with cluster controllers 

across the Internet, then those message exchanges take more time than when cloud and 

cluster controllers communicate locally. On the other hand, the cloud controller will wait 

only so long to hear from cluster controllers. Those cluster controllers that can offer full 

grants take relatively little time to determine that status, and so respond to the cloud 

controller quickly. Cluster controllers that can offer only partial grants take more time to 

determine that status, and so respond to the cloud controller less quickly. Apparently, 

adding extra Internet delays to these latter cluster controller replies increases the 

likelihood that the cloud controller will have moved on with its decision making before 

the replies arrive. Under such circumstances, more of the replies received by the cluster 

controller will be full-grant estimates. 

Table 28 also shows that when clusters are distributed to independent Internet 

sites (x15+) then the fraction of intra-site messages (y38) will be reduced because 

messages between the cloud and cluster controllers will cross the Internet rather than 

remain within a single site. Also as expected, when Internet communication distances are 

increased by an order of magnitude (x16+), Run Instances request response times (y42) 

increase significantly because message exchanges take longer between users and the 

cloud controller. 

Table 29 gives the relative effect that each dynamics parameter had on the 14 

selected responses that each represent one of the behavioral dimensions of Koala, as 

indicted in Table 21. The main point conveyed by the table is that, aside from factor x2 

(user type probability), dynamics parameters stimulated relatively little change in most of 

the Koala response dimensions. Recall that factor x2 is both a holdover and dynamics 

factor, and that we already discussed related results above, when discussing the relative 

effects of holdover parameters. Here, we will discuss only the green <> and yellow {} 

cells under factors x4, x7, and x11. First, note that when the cloud can be reconfigured 

(x7+) then the variance in cluster load increases significantly. This occurs because cloud 

reconfiguration can add and remove clusters. When clusters are added, they start empty, 

which increases the variance in load among clusters. When clusters are removed, then 

VMs must be relocated to other clusters, or else terminated. Clusters receiving relocated 

VMs become more heavily loaded, which increases the variance in load among clusters. 

The cluster reconfiguration process also has a subsidiary effect on the standard deviation 

in estimates that clusters make on their ability to offer full grants (y27). Higher variance 

in cluster loads should be reflected in higher variance in the ability of clusters to offer full 

grants. 

Table 29 also shows that when clusters can be reconfigured (x11+) then it 

becomes more difficult for individual users to extend their holding of VMs (y44). Cluster 

reconfiguration can add and remove nodes. When nodes are added, cluster capacity 

increases, which attracts demands from more users. As the increased capacity is filled by 

newly arriving users, there are fewer available nodes to serve existing users who wish to 

increase the number of VMs that they hold. On the other hand, removing nodes from a 

cluster means that VMs on those nodes must be relocated or terminated. Successfully 

relocated VMs absorb demand on new clusters, making it difficult for existing users to 
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find nodes on which to increase the number of VMs they hold. Whether or not VMs can 

be relocated successfully, removing nodes from a cluster lowers capacity and makes it 

more difficult for existing users to extend their VM holdings. The cluster reconfiguration 

process also has a subsidiary effect on the ability of users to maintain the minimum 

number of VMs required to remain viable. This shows up as an increase in the proportion 

of users that must terminate early (y43). 

 

Table 29.  δ Computed for Dynamics Parameters on the 14 Koala Behaviors 

 
 

Table 29 also shows some increase in the cluster reallocation rate (y7) when users 

can change their demand profile while holding VMs (x4+). Increasing demands from 

existing users apparently can lead to an increase in the number of invalid estimates made 

by clusters. Here, the absolute increase is from a rate of 12% reallocations (x4-) to a rate 

of 17% (x4+), a change that is fairly small. We could determine no explanation for this 

effect, which might disappear under additional replications of the experiment. Further 

investigation is needed to determine whether this effect is real, and what the cause might 

be. 

Table 30 gives the relative effect that each failure parameter had on the 14 

selected responses that each represent one of the behavioral dimensions of Koala, as 

indicated in Table 21. The main point conveyed by Table 30 is that failures had limited 

influence on Koala behavior. Node (x13) and component (x14) failures, along with 

message losses between (x18) and within (x19) sites, had some influence. Here, we will 

discuss only the green <> and yellow {} cells in Table 30. 

Dimension ID

Factor

x2* x4 x7 x11

Demand/Supply Ratio y41 <-85> [-2] [-1] [-3]

Resource Usage y10 [-5] [1] [0] [1]

Var. in Cluster Load y18 (-11) [5] <108> [1]

Mix of VM Types y35 <110> [-7] [1] [3]

Number of VMs y12 (-20) [2] [0] [0]

Cluster Realloc. Rate y7 <111> {35} [5] [4]

Var. in Cluster Choice y25 {41} [2] [0] [6]

Extension Difficulty y44 (26) (29) (-15) <76>

Std. Dev. in Cluster Ests. y27 <-116> [4] {30} [-7]

User Arrival Rate y4 (-25) [-1] [-2] [3]

Node Reallocation Rate y22 (16) [-2] [-1] [-1]

Fraction Intra-site Msgs. y38 (-13) [-1] [-1] [-1]

Run Instance R.T. y42 [-8] [-4] [-9] [-9]

Early Termination Rate y43 (23) [-4] [-8] {30}
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Among the failure parameters, intra-site message loss (x19) had the most 

influence on Koala behavior. First, increasing intra-site message loss (x19+) increased the 

need to reallocate VMs among clusters (y7) and nodes (y22). This occurred largely 

because either initial allocation messages were lost or else replies to the initial allocation 

messages were lost. In either case, VMs had to be reassigned to a different cluster or 

node, depending on which allocation was affected by a lost message. As a result, 

additional allocation messages and responses were needed, which caused the Run 

Instance response time (y42) to also increase. Inter-site message losses (x18+) had 

similar, but muted, effect on cluster reallocation (y7). The effect occurred in cases where 

clusters were located on sites independent from the cloud controller, requiring that 

messages between the cloud controller and cluster controllers transited between sites. 

 

Table 30.  δ Computed for Failure Parameters on the 14 Koala Behaviors 

 

Increased intra-site message losses (x19+) also reduced the difficulty users had in 

obtaining additional VMs (y44). This likely occurred because intra-site message losses 

interfered with the ability of users to obtain initial allocations, which made more space 

available to support extension requests from users who did obtain initial allocations. 

Extension difficulty (y44) was also reduced under increased node (x13+) and component 

(x14+) failures. This likely occurred because the early termination rate (y43) increased, 

meaning that users had more difficulty maintaining the minimum number of VMs 

required for viability. Subsequently, affected users terminated their VM holdings early, 

leaving more space in the cloud for unaffected users that wished to increase their VM 

holdings. 

Dimension ID

Factor

x5 x12 x13 x14 x18 x19 x20

Demand/Supply Ratio y41 [1] [-1] [-4] [-1] [1] [2] [-1]

Resource Usage y10 [0] [1] [1] [0] [0] [-2] [0]

Var. in Cluster Load y18 [0] [-3] [4] [3] [2] [0] [-1]

Mix of VM Types y35 [0] [0] [0] [-2] [-1] [-6] [0]

Number of VMs y12 [1] [0] [1] [1] [-1] [-2] [0]

Cluster Realloc. Rate y7 [0] [-2] [1] {-37} {31} <72> (24)

Var. in Cluster Choice y25 [-5] [-3] [-3] [6] [0] [-7] [-5]

Extension Difficulty y44 [7] [0] <-95> <-51> (-18) {-36} [1]

Std. Dev. in Cluster Ests. y27 (11) (19) (-14) [3] [0] [6] [-4]

User Arrival Rate y4 [0] [2] [8] [4] [-1] [0] [1]

Node Reallocation Rate y22 [0] {35} [1] [-2] [4] <73> [4]

Fraction Intra-site Msgs. y38 [0] [0] [2] [-2] [1] [0] [0]

Run Instance R.T. y42 [4] [9] [-3] [-5] (25) <66> (18)

Early Termination Rate y43 [-3] [5] <59> (19) (26) (29) (16)



 

43 

 

Table 30 reveals two remaining moderate effects from failures. First, when nodes 

exhibited an increased rate of issuing NERA (x12+) after promising to accept a VM, then 

node reallocation rate (y22) increased. This effect is as expected. When a node reneged 

on a promise to accept a VM, then the VM is assigned to a different node. Second, when 

the component failure rate increased (x14+), the cluster reallocation rate (y7) fell. Here, 

the absolute decrease is from a rate of 17 % reallocations (x12-) to a rate of 12 % (x12+), 

a change that is fairly small. We could conceive no explanation for this effect, which 

might disappear under additional replications of the experiment. Further investigation is 

needed to determine whether this effect is real, and, if so, what the cause might be. 

 

4.3 Factor Ranking 

 

To understand the degree to which each input factor influenced the overall 

behavior of Koala, we ranked the input factors based on decreasing percent of behavioral 

dimensions influenced (Δ), taken from Tables 22 through 25. We plot the factor ranking 

as Table 31, where the 20 input factors group into 10 ranks. 

 

Table 31. Ranking of Input Factors Based on Decreasing Δ 

 

 
 

We draw two main impressions from Table 31. First, even considering the 

increase in behavioral dimensions to 14 from eight in our previous sensitivity analysis 

Rank D Factor Factor Name

1 <75> x2 User Type Probability

2 <61> x10 Cluster Platform Type Probability

3 <57> x1 Number of Users

4 {43}
x3
x8

Holding Time
Absolute Cluster Size Variation

5 {36} x19 Probability Intra-site Message Loss

6 (14) x13 Probability of Node Failure

7 (11)

x7
x11
x14
x15
x18

Cloud Reconfiguration
Custer Reconfiguration
Probability of Node Component Failure
Cloud Distribution
Probability of Inter-Site Message Loss

8 [7]

x6
x9

x12
x16

Algorithm for Choosing Cluster
Relative Cluster Size Variation
Probability of Node NERA
Variability in Inter-Site Latency

9 [4]
x4

x20
Changes in User Demand While Holding
Probability of Cluster Communication Cut

10 [0]
x5

x17
Probability of Bogus User Request
Variability in Intra-Site Latency
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[2], Koala behavior is influenced mainly by five of the six holdover input factors (x2, 

x10, x1, x3, and x8). One holdover input factor, the algorithm for choosing a cluster (x6) 

on which to place virtual machines, exhibited little influence on Koala behavior. This 

same factor was least influential among the holdover factors in our previous sensitivity 

analysis. Second, only one new input factor, probability of intra-site message loss (x19), 

exhibited even moderate influence on Koala behavior. We had previously found that 

message losses, both within and between sites, could lead to VM orphans within a cloud 

[8]. In the current experiment, orphan-control procedures were implemented within our 

Koala model, so intra-site message loss was influencing other Koala behaviors. 

After reviewing the 14 Koala behavioral dimensions, we found that intra-site 

message loss (x19) influenced, to varying degrees, six dimensions, which reveal an 

integrated picture. Increasing intra-site message loss rate (x19+) interfered with a cloud’s 

ability to perform cloud resource-allocation procedures, increasing the need to reallocate 

VMs to clusters (y7) and to nodes (y22). Such reallocations involved repeated message 

exchanges among cloud components, which led to increased Run Instance response times 

(y42). Sometimes, reallocation procedures failed, due to repeated intra-site message 

losses, and VMs could not be allocated, which was reflected in an increased early 

termination rate (y43), as some users were unable to maintain the minimum number of 

VMs required for viability. This led to a decrease in cloud-wide resource usage (y10), 

which allowed some users to achieve better success in extending (y44) their collection of 

VMs. 

While increased intra-site message loss rate had a moderate influence on selected 

Koala behavioral dimensions, from our analysis we concluded that such influence 

appears likely to affect equally any of the cluster-assignment algorithms we investigated 

in our earlier experiment [1]. This means that rerunning those experiments while 

including intra-site message loss is unlikely to change the results and conclusions. Table 

31 shows that the remaining (13 of 14) input factors added to inject asymmetries, 

dynamics, and failures had little influence on Koala behavior.  

  

4.4 Two-Term Interactions 

 

Sometimes, two-term interactions can have a significant influence on model 

behavior. In our previous study [2], we investigated two-term interactions but omitted 

reporting them. We did not report two-term interactions because we had limited space for 

publication. In our previous study, while only about 0.8 % of possible two-term 

interactions proved statistically significant, about 75 % (25) of those interactions 

exhibited magnitudes greater than main effects for the same response. The two-term 

interactions, however, influenced only 14 responses. Further, when considered across all 

responses, the magnitude of statistically significant main effects generally much 

exceeded the magnitude of interactions. Here, we introduce two-term interactions from 

our previous study, and compare them to interactions from the current study. 

Figure 3 depicts a half matrix, summarizing two-term interactions from our 

previous sensitivity analysis [2].  For convenience, we include a table identifying an 

identifier (x1 to x11) for each the eleven input factors used. These identifiers relate to the 

integers across the top (and also down the right side) of the half matrix (i.e., x1 = 1, x2 = 

2, and so on to x11 = 11). Excluding the diagonal, each cell in the half matrix reports 
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interactions between two, intersecting, input factors. In each cell, two-term interactions 

are reported in two classes: the count of those with statistical significance p < 0.01, 

followed by the count of those with statistical significance p < 0.05. Where no two-term 

interactions exist, a cell is left blank. Where present, a count refers to the number of the 

40 responses (from Table V in [2]) for which a statistically significant two-term 

interaction was found. The count of interactions where p < 0.01 is listed first, followed by 

a slash, and then the count of interactions where p < 0.05. For example, the cell in row 

one, column eleven (contents are 2/1), shows that simulation duration and probability of 

packet loss interacted at p < 0.01 on two responses and at p < 0.05 on one response. Each 

cell on the diagonal sums all interactions, in each significance class, for the factor in the 

indicated column. For example, the first cell on the diagonal shows that simulation 

duration (x1) had two interactions with other factors at p < 0.01 and six interactions at p < 

0.05. Cells along the diagonal are color-coded to indicate input factors with more (blue) 

and fewer (gray) two-term interactions. 

 

Figure 3. Two-term Interactions from a Previous Study [2] 

 

 
  

Figure 3 shows that only nine two-term interactions appeared at p < 0.01 and 24 

appeared at p < 0.05. The largest number of interactions (12) involved platform type 

probability (x7). Overall, the number of two-term interactions was quite limited, 

especially at the higher level of statistical significance. 

Table 32 summarizes two-term interactions for cases where the magnitude of the 

interaction exceeded the magnitude of the main effect for individual response variables in 

our previous sensitivity analysis [2]. (This summarization is independent of whether or 

1 2 3 4 5 6 7 8 9 10 11

2/6 0/3 0/2 2/1 1

4/2 0/1 2/0 2/1 2

1/6 1/0 0/3 0/3 3

1/5 0/1 4

1/8 0/1 1/1 0/1 5

0/5 1/4 6

4/8 7

0/1 0/1 8

0/2 0/1 9

2/2 10

2/2 11

Factor Definition

x1 Simulation Duration

x2 Number of Users

x3 User Type Probability

x4 Average Holding Time

x5 Number of Clusters

x6 Nodes per Cluster

x7 Platform Type Probability

x8 Cluster-Assignment Algorithm

x9 Node-Assignment Algorithm

x10 Number of Sites for Cloud Components

x11 Probability of Packet Loss
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not the corresponding main effect was statically significant or not.) Though 14 different 

responses were influenced by two-term interactions, only four of the eight behavioral 

dimensions were influenced. Below, we provide a general impression of the influence of 

the interactions on each response dimension. 

 

Table 32. Large, Significant Two-Term Interactions from Previous Study [2] 

 

 
As shown in Table 32, variance in cluster load was influenced by a number of 

two-term interactions. First, the number of clusters (x5) interacted with platform types 

(x7) to influence variance in load among clusters. Similar influence was exhibited by 

interaction between user types (x3) and average holding time (x4). These interactions 

influence supply-demand relationships, which can naturally influence variance in load 

among clusters. Second, the interaction between simulation duration (x1) and cluster 

assignment algorithm (x8) suggests that one of the cluster assignment algorithms leads to 

greater variance in cluster load over longer simulated times. Third, one of interactions, 

nodes per cluster (x6) and number of sites (x10), influences NERA rate across clusters. 

Similar influence arises from interaction between node-assignment algorithm (x9) and 

packet-loss rate (x11), though this interaction is suspect because node assignment is an 

intra-site operation, and packet-loss rate affects only inter-site message exchanges. 

Table 32 also suggests that resource usage is influence by several two-term 

interactions. First, user types (x3) interact with platform types (x7) to influence resource 

usage. This should be expected, as well as the fact that this demand-supply interaction 

has a primary influence on Koala behavior. Similar demand-supply interactions arise 

between user holding time (x4) and the number of clusters (x5) and between user types 

(x3) and nodes per cluster (x6). The interaction between two demand-related factors, 

Interaction* Count Responses Influenced Behavioral Dimension

x5-x7 6 y16, y18, y19, y20, y21, y28 Variance in Cluster Load

x3-x4 4 y16, y19, y27, y28 Variance in Cluster Load

x1-x8 3 y16, y19, y27, y28 Variance in Cluster Load

x1-x11 2 y7, y22 Reallocation Rate

x3-x7 2 y11, y28 Resource Usage

x4-x5 2 y11, y28 Resource Usage

x1-x6 1 y3 Demand-Supply Ratio

x2-x10 1 y7 Reallocation Rate

x3-x6 1 y11 Resource Usage

x4-x2 1 y11 Resource Usage

x4-x7 1 y36 Demand-Supply Ratio

x6-x10 1 y26 Variance in Cluster Load

x9-x11 1 y26 Variance in Cluster Load

*Here, variable identifiers are taken from Fig. 3 and behavioral dimensions are taken from [2]
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number of users (x2) and user holding time (x4), is also unsurprising. This group of 

interactions influences the relationship between demand and supply, which is the major 

factor driving Koala behavior. 

Table 32 also shows some other two-term interactions of interest. First, the 

average holding time (x4) interacts with platform types (x7) to influence the proportion of 

M4xlarge instances within the cloud. This makes sense because only large platform types 

can hold M4xlarge instances, and so, when users obtaining such instances tend to hold 

them longer, then more such instances will be extant. Second, the full grant rate is 

influenced by an interaction between the length of the simulation (x1) and the number of 

nodes per cluster (x6). While such an interaction seems plausible, the nature of the 

interaction requires further investigation. Finally, a pair of two-term interactions 

influences the reallocation rate. The number of users (x2) and number of sites for clusters 

(x10) interact to influence cluster reallocation rate. This makes sense because cluster 

reallocations tend to occur more when the cloud is distributed among multiple sites, and 

the number of users influences the number of opportunities for allocation decisions to be 

made. An interaction between simulation duration (x1) and packet-loss probability (x11) 

also influences reallocation rate. This makes sense because a longer simulation gives 

more opportunity for packet losses to interfere with allocation decisions. 

Figure 4 reports a half matrix similar to Fig. 3, but showing two-term interactions 

among the 20 input factors (listed in Tables 5 through 8) in the current sensitivity 

analysis. In Fig. 4, the counts refer to two-term interactions with respect to the 45 

responses listed in Tables 17 through 20. In comparing Fig. 3 with Fig. 4, remember that 

Fig. 4 includes five additional responses, not possible in Fig. 3, and 20 input factors 

rather than 11. Figure 4 also has one additional feature not included in Fig. 3. Several 

cells in Fig. 4 are highlighted in beige to identify specific two-term interactions that occur 

more frequently than others. 

Comparing Fig. 3 with Fig. 4 gives a general impression that the current study 

exhibited more two-term interactions than the previous study. Of course, this could be 

due in part to the fact that the current study has nine additional input factors and five 

additional responses. To compare the two figures on a fair basis, we computed the 

percentage of possible two-term interactions portrayed on each figure. Figure 3 shows 0.8 

% of all possible two-term interactions. Figure 4 shows 2.9% of all possible two-term 

interactions. This confirms the general impression that the current study revealed more 

two-term interactions. 

Comparing two-term interactions in more detail between the previous and current 

sensitivity analyses requires some care because the input factors intersect but do not 

overlap completely. Each study has factors that cannot be mapped directly to factors in 

the other. After due consideration, we were able to map (see Table 33) eight of the 11 

input factors from the previous study [2] to input factors in the current study. This means 

that three input factors (simulation duration, node choice, and packet-loss probability) 

from the previous study have no analog in the current study. Similarly, 12 input factors 

(i.e., those omitted from Table 33) in the current study have no analog in the previous 

study.  

As we consider two-term interactions in the current study, some of the 

interactions can be equated loosely to interactions in the previous study (we call this the 

MM group), but there are also two other classes of interactions: (1) those between factors 
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mapped from the previous study and factors not mapped (the MU group) and (2) those 

between factors not mapped from the previous study (the UU group). We will need to 

consider separately each of these three classes of two-term interactions. 

 

Figure 4. Two-term Interactions from the Current Study 
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Table 33. Mapping of Eight Input Factors from the Current Study to Previous Study [2] 

 

 
 

In our current study, while only 2.9 % of possible two-term interactions proved 

statistically significant, about 66 % (i.e., 317) of those interactions exhibited magnitudes 

greater than main effects for the same response. (Despite this, considering all responses, 

the magnitude of statistically significant main effects generally much exceeded the 

magnitude of two-term interactions, as was also the case in our previous study.) Among 

the 317 interactions that we considered, 93 (30 %) involved pairs in the MM group: 

where both factors could be mapped between our previous and current experiments; 165 

(52 %) involved interactions in the MU group: where one factor could be mapped 

between experiments and the other could not; the remaining 59 (18 %) involved 

interactions in the UU group: where neither factor could be mapped between 

experiments. From this, we concluded that input factors causing asymmetries, dynamics, 

and failures (MU and UU groups) were involved in most (70 %) of the significant, two-

term interactions seen in the current experiment. And most (74 %) of those interactions 

(the MU group) involved one factor that could be mapped from the previous study. 

Table 34 lists two-term interactions in the MM group, sorted in decreasing order 

of number of responses influenced. We list only the top 10 (of 18) interactions. Though 

the factors involved in the MM group can all be mapped to factors from our previous 

experiment, most of the interactions are quite different. There is a main subgroup of five 

two-term interactions involving relative cluster size (x9), an asymmetry parameter that 

can be set to uniform cluster sizes or to an 80/20 rule, where a few clusters are very large 

and most are very small. Apparently, this factor interacts with numerous other factors, 

including holding time (x3), cloud distribution (x15), number (x1) and types (x2) of users, 

and absolute cluster size (x8). Further, these interactions can influence many responses. A 

secondary subgroup of interactions involves the number of users (x1), which interacts 

with platform types (x10), holding time (x3) and user types (x2). This subgroup is similar 

to interactions seen in our previous experiment. The remaining two MM interactions are 

singletons. Of note, holding time (x3) interacts with cloud distribution (x15) to influence 

12 responses, all of which reflect the demand-supply ratio. Apparently, the influence of 

holding time differs depending upon whether a cloud is centralized or distributed. This 
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interaction did appear in our previous study, but a distributed cloud in the current study is 

significantly more distributed than in our previous study. The final MM interaction 

involves absolute cluster size (x8) and cluster assignment algorithm (x6). This interaction 

did not appear in our previous study, but the current study varies cluster size (and also 

number of clusters) by an order of magnitude (vs. two to six times in our previous study). 

 

Table 34. Top 10 Two-term Interactions in the MM Group 

 

 
         

Table 35 lists two-term interactions in the MU group, sorted in decreasing order 

of number of responses influenced. We list only the top eight (of 35) interactions. The 

interactions can be further divided into two main subgroups, related to: (1) failures and 

(2) changes in user demand while holding VMs (x4). One should expect failures to 

interact with other factors. Table 35 highlights various failure types: component failures 

(x14), intra-site message loss (x19), and probability of Node NERA (x12). The second 

subgroup illustrates that changes in user demand (x4) interacts with user (x2) and 

platform (x10) types, absolute cluster size (x8), and cloud distribution (x15). These 

interactions are not surprising. There is one singleton interaction involving cluster 

assignment algorithm (x6) and intra-site latency (x17). This suggests that increase in 

intra-site latency has greater influence on one of the two cluster assignment algorithms. 

Further analysis is needed to discern the nature of the influence.  

Table 36 lists two-term interactions in the UU group, sorted in decreasing order of 

number of responses influenced. We list only the top six (of 11) interactions. The 

interactions can be further divided into three subgroups: (1) bogus user requests, (2) 

cloud reconfiguration, and (3) changes in user demand. Each subgroup contains a pair of 

interactions. We discuss each subgroup in turn. 

Interaction Count Responses Influenced

x3-x9 21
y1, y2, y5, y7, y9, y10, y11, y13, y17, y23, y24, 
y27, y30, y32, y33, y36, y37, y40, y41, y43, y44

x9-x15 16
y1, y2, y5, y7, y11, y12, y17, y23, y24, y30, y32, 
y33, y35, y39, y40, y41

x3-x15 12
y6, y10, y13, y14, y15, y24, y26, y28, y29, y31, 
y34, y36

x1-x9 7 y1, y3, y5, y6, y7, y31, y40

x2-x9 5 y4, y5, y26, y27, y40

x1-x10 5 y13, y26, y28, y31, y34

x1-x3 4 y15, y24, y26, y27

x1-x2 3 y11, y43, y44

x6-x8 3 y10, y13, y27

x8-x9 3 y15, y42, y44
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Table 35. Top Eight Two-term Interactions in the MU Group 

 

 
 

 

Table 36. Top Six Two-term Interactions in the UU Group 

 

 
 

Unsurprisingly, the probability that a user issues an ill-formed request (x5) 

interacts with variability in inter-site delay (x16). All user requests transit between sites, 

across the Internet. Ill-formed requests are rejected by the cloud, requiring the user to 

retry the operation. So naturally, longer inter-site delays tend to lengthen the retry cycle, 

slowing the rate at which user requests arrive. Perhaps unexpectedly, ill-formed user 

Interaction Count Responses Influenced

x4-x10 20
y1, y2, y5, y7, y9, y10, y11, y13, y17, y23, y24, 
y27, y30, y31, y33, y37, y40, y41, y43, y44

x6-x12 20
y1, y2, y5, y7, y10, y11, y13, y17, y23, y24, y27, 
y30, y31, y33, y36, y37, y40, y41, y42, y43

x1-x14 19
y1, y2, y5, y6, y7, y9, y11, y12, y17, y23, y24, y27, 
y30, y31, y33, y36, y39, y40, y41

x8-x14 15
y1, y2, y5, y9, y11, y23, y24, y27, y30, y31, y33, 
y36, y40, y41, y43

x2-x4 14
y1, y6, y7, y8, y10, y13, y14, y15, y24, y26, y28, 
y29, y31, y34

x4-x15 6 y1, y4, y5, y7, y18, y40

x6-x17 6 y1, y5, y6, y7, y31, y40

x8-x19 6 y1, y4, y5, y6, y31, y40

Interaction Count Responses Influenced

x5-x11 18
y1, y2, y5, y7, y9, y10, y13, y17, y23, y24, 
y30, y32, y33, y36, y37, y41, y43, y44

x7-x13 18
y2, y5, y7, y9, y10, y11, y13, y23, y24, y27, 
y30, y32, y36, y37, y39, y40, y41, y44

x5-x16 7 y1, y4, y5, y6, y7, y31, y40

x7-x18 4 y4, y5, y7, y40

x4-x13 3 y18, y20, y21

x4-x14 3 y7, y20, y37
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requests also interact with cluster reconfiguration (x11). We surmise that an increased 

rate of ill-formed user requests spreads out the load of user operations on the cloud. This 

would then allow more time to complete cluster reconfigurations than might otherwise be 

available. Further analysis is required to confirm this explanation. 

Cloud reconfiguration (x7) interacts with node failure (x13) and with inter-site 

message loss (x18). Node failures require clusters to relocate VMs. Similarly, when 

removing clusters the cloud controller must also relocate VMs. The combination of these 

circumstances seems likely to increase the difficulty of relocating VMs. Confirming this 

explanation requires further analysis. When a cloud is distributed across multiple sites, 

inter-site messages are required for communication between the cloud controller and 

cluster controllers. In this case, inter-site message losses can interfere with cloud 

reconfigurations. 

Finally, dynamic changes in the number of VMs required by users (x4) interacts 

with both node (x13) and component (x14) failures. Such interactions should be 

anticipated. When a user needs to acquire additional VMs (increasing demand for cloud 

resources), failures of nodes and components (reducing available supply) would interfere. 

Confirming this explanation requires further analysis.  

   

4.5 Findings 

 

We can sum up our analysis through six findings. First, in the current study, 

Koala exhibited all of the behavioral dimensions found in our previous sensitivity 

analysis. We found a few minor variations, all of which were easily explainable, leading 

the eight dimensions from our previous study to appear as ten dimensions here. The 

current study also introduced four new behavioral dimensions. Three of these new 

dimensions arose from added user behaviors, which were not included in Koala during 

our previous study. The final new dimension (fraction of intra-site messages) arose 

because the current study ensured that each cluster was placed on a unique site, when 

distributing clusters on the Internet. The scope of distribution was not as large in our 

previous study. Thus we concluded that injecting asymmetries, dynamics, and failures 

into Koala did not fundamentally alter the behavioral dimensions found in our previous 

sensitivity analysis, though four behavioral dimensions were added. 

 Second, we found that the same primary factors drove Koala behaviors in both 

our current and previous studies. This was confirmed because the top five (of six) 

holdover factors, the most influential from the previous study, were most influential in 

determining Koala behavior in the current study. Only one new factor, intra-site message 

losses, showed even moderate influence on Koala behavior in the current study. And the 

influence of intra-site message losses fell below the influence of the top five factors from 

the previous study.  

Third, though intra-site message losses showed moderate influence in Koala 

behavior during the current study, we concluded that this factor would be unlikely to 

influence choice of algorithm for assigning clusters and nodes in the cloud. We reached 

this conclusion based on the observation that intra-site message losses would interfere 

equally with all such algorithms. Further supporting this conclusion, our current study 

revealed no significant interaction between intra-site message loss and cluster allocation 

algorithm. 
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Fourth, the influence of main effects outweighs the influence of two-term 

interactions in both our current and previous studies. We reached this conclusion because 

statistically significant main effects showed magnitudes that far exceeded most two-term 

interactions. The magnitude of two-term interactions exceeded main effects mostly in 

cases where the main effects were not statistically significant, and not of large magnitude. 

Fifth, the current study exhibited a substantial increase in two-term interactions 

over the previous study. This conclusion holds even when accounting for the increased 

number of responses and input factors in the current study. In the current study, two-term 

interactions could be classified into three groups: (1) interactions between factors that 

could be mapped between both experiments (MM), (2) interactions where one of the two 

factors could be mapped (MU), and (3) interactions where neither factor could be mapped 

(UU). Clearly, MU and UU interactions could not occur in our previous study. Even in 

the case of MM interactions, most of those found in our current study were different from 

those found in our previous study, though there was some overlap between studies. 

Finally, we concluded there was no need to compare cluster and node assignment 

algorithms under the expanded set of input factors from our current study. We reached 

this conclusion because: (1) the current study found the same main behavioral dimensions 

as the previous study, (2) the most influential input factors from the previous study also 

proved most influential in the current study, (3) the only new input factor that showed 

even moderate influence in the current study appears likely to have similar effects on any 

cluster and node assignment algorithm, and (4) main effects proved more influential than 

two-term interactions in both studies, which mitigated the finding that the current study 

revealed more two-term interactions. 

 

5.0 Conclusions 

 

We conducted a sensitivity analysis to characterize the effects of asymmetries, 

dynamics, and failures when introduced into Koala, a cloud computing simulator. 

Previously, we had conducted a sensitivity analysis to characterize Koala under static, 

homogeneous configurations with various patterns of demand and supply. We compared 

results from both sensitivity analyses to determine whether injecting these new 

parameters into the cloud simulator causes fundamental shifts in the factors driving 

macroscopic behavior and user experience. We found that introducing asymmetries, 

dynamics, and failures into Koala does not induce fundamental shifts in the factors 

driving simulator behavior, but these new parameters do exhibit interactions with the 

main driving factors, and with each other. Our findings suggest that our previous study 

[1], using Koala to compare VM placement algorithms, need not be extended to consider 

the effects of asymmetries, dynamics, and failures. These findings also increase 

confidence in results from the previous study.  
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