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 Modern large-scale cyber-physical systems (CPSs) involve a large 
number of uncertain parameters. 

 

 

 

 

 

 

 

 

Uncertainties 

 Modulate system’s 

dynamics 

 Pose significant 

challenges for real-time 

system evaluation & 

decision-support 

 

Management of physical dynamics must be 

designed in a way to achieve robust performance 

under the uncertainties 

Effective 

uncertainty 

evaluation 
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 Problem Formulation 

 

 

 

 

 

 

 

 

Goal: correctly 

estimate the 

mean output 

Air Traffic Flow Management 

Uncertain input parameters: 

total traffic delay 

of aircraft over a 

time span 

 Example Application 
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Traffic System 

Weather start times 

Weather durations 

Weather intensities 

Output:  



 Monte Carlo Simulation Method 

 

 

 

 

 

High Computational Cost !! 
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Original System Mapping:   Low-order Mapping: 
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Predict the correct mean output! Reduce the number of simulations 

from 

2𝑚  𝑛𝑖

𝑚

𝑖=1
  𝑛𝑖

𝑚

𝑖=1
 

 Multivariate Probabilistic Collocation Method (M-PCM)  

Y. Zhou, Y. Wan, S. Roy, C. Taylor, C. Wanke, D. Ramamurthy, J. Xie, “Multivariate Probabilistic Collocation Method for Effective 

Uncertainty Evaluation with Application to Air Traffic Management”, IEEE Transactions on Systems, Man and Cybernetics: 

System, Vol. 44, No. 10, pp.1347-1363, 2014. 



    Possibility of Further Reduction 

 M-PCM assumes that there exist cross-multiplication terms for all 
combinations of uncertain parameters of all degrees 

 Suppose 𝑛𝑖 = 1, 𝑖 = 1,2, . . , 𝑚 
𝑔 𝑥1, 𝑥2, … , 𝑥𝑚 = 𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑚𝑥𝑚 + 𝑎𝑚+1𝑥1𝑥2 + ⋯ + 𝑎𝑁𝑥1𝑥2 … 𝑥𝑚 

 

Computational load issue for 

real-time applications  
m=2 

m=100 

22 

2100 

Number of 

parameters  

Number of 

simulations 
Suppose 𝑛𝑖 = 2, 𝑖 = 1,2, . . , 𝑚 

Number of simulations:  𝑛𝑖
𝑚
𝑖=1 =2𝑚 

Still too large !! 

Some of these terms may not exist (𝑎𝑖 ≈ 0 

or 𝑎𝑖 = 0 ) in realistic applications 

 Limitation of M-PCM: Not scalable with the number of parameters 
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    Approach: Integration of M-PCM with the orthogonal fractional      
factorial design (OFFD)------ M-PCM-OFFD 

  OFFDs meet our need to reduce the number of simulations 

   Both OFFDs and our study are motivated by the same assumption 

          ---high-order interactions among parameters are insignificant in real 
applications 

 

 

 

 

Numerical 

Truncation 

…
 

Simulation 

points 

mean output 

prediction 

Complex system 

Run 

simulation 

This is possible ! 

 Challenge: existence of a practical numerical issue 

 Many system simulations have constraints on the resolutions of 

input parameters 
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Incorrect 



     Full Factorial Designs 
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‘−’ lower level 

‘+’ higher level 

𝑥1, 𝑥2, 𝑥3 are factors 

(input parameters) 

𝑦 is the output 

23 full factorial design 

     Orthogonal Fractional Factorial Designs 
(OFFDs) 

 Selects a subset of experimental combinations that 
best estimate the main effects of single factors and 
low-order interaction effects. 

All possible combinations of levels of all factors. 

23−1 OFFDs 



     Main Effect and Interaction 

 Main effect 𝑀𝐸𝑖 of factor 𝑥𝑖  

Interaction effect 𝑀𝐸𝑖𝑗 of 𝑥𝑖𝑥𝑗  

Regression Model: 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+   𝛽𝑖.𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

+ϵ 

𝑘−1

𝑖=1

 

The least square estimators 

for 𝛽, denoted as 𝛽  are: 

𝛽 𝑖 =
1

2
𝑀𝐸𝑖 ,  𝛽 𝑖𝑗 =

1

2
𝑀𝐸𝑖𝑗 
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e.g., 𝑀𝐸3 =
𝑦5+𝑦6+𝑦7+𝑦8

4
−

𝑦1+𝑦2+𝑦3+𝑦4

4
 

𝑀𝐸23 =
𝑦1 + 𝑦2 + 𝑦7 + 𝑦8

4
−

𝑦3 + 𝑦4 + 𝑦5 + 𝑦6

4
 



 The main effects and interactions estimated by the subset of simulations 

selected by OFFDs are aliased.  

𝐼 = 𝑥1𝑥2𝑥3 

𝑥3 = 𝑥1𝑥2 

𝑥1 = 𝑥2𝑥3 

𝑥2 = 𝑥1𝑥3 

𝛽0 + 𝛽1.2.3 

𝛽1 + 𝛽2.3 

𝛽2 + 𝛽1.3 

𝛽3 + 𝛽1.2 

𝑀𝐸1
 = 𝑀𝐸1 + 𝑀𝐸2.3 

𝑀𝐸2
 = 𝑀𝐸2 + 𝑀𝐸1.3 

𝑀𝐸3
 = 𝑀𝐸3 + 𝑀𝐸1.2 
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𝑥3 = 𝑥1𝑥2 

Generator: 𝐼 = 𝑥1𝑥2𝑥3 

Regression Model: 

𝑦 = 𝛽0 +  𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+   𝛽𝑖.𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

+ϵ 

𝑘−1

𝑖=1

 

These are what 

OFFD estimates 



11 Generate the 𝑃𝑚−𝛾 

full factorial design 

for 𝑚 − 𝛾 factors 

Determine the levels of all 

other 𝛾 factors for each 

experimental run 

Specify 𝛾 

generators 

e.g., 23−1 OFFD, 𝑃 = 2 ,𝑚 = 3, 𝛾 = 1, 

22 full factorial design 23−1 OFFD 

Step 1 Step 2 Step 3 

Generator 

𝐼 = −𝑥1𝑥2𝑥3 

𝒙𝟑 = −𝒙𝟏𝒙𝟐 

‘−’ lower level 

‘+’ higher level 11 

𝑃: the number of levels 

𝑚: the number of factors 

𝛾: the fractionation constant 



 If we view all simulation points selected by M-PCM as a full factorial 
design, the OFFDs provide systematic procedures to select a subset of 
simulation points. 

 Design Procedures 

 

Choose 𝟐𝒎 

M-PCM 

simulation 

points  

Produce 

the low-

order 

mapping 

Run simulation at 

selected points 

Original System Mapping:   Low-order mapping: 

Check if  

1≤ 𝝉 ≤
𝒎

𝟐
− 𝟏 

Calculate 𝜸 and 

select simulation 

subset using 𝟐𝒎−𝜸 

OFFD 

Assumption: cross-terms 

involve at most 𝜏 parameters 



 Lemma 2: 

 

If the original system mapping 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑚) contains cross-

terms of at most 𝜏 parameters 

The low-order mapping 

𝑔∗(𝑥1, 𝑥2, … , 𝑥𝑚) also contains cross-

terms of at most 𝜏 parameters 

If 1≤ 𝝉 ≤
𝒎

𝟐
− 𝟏 

2𝑚−𝛾𝑚𝑎𝑥 OFFD can further reduce the number of 

simulations from 2𝑚 to 2𝑚−𝛾𝑚𝑎𝑥,  

where 𝛾𝑚𝑎𝑥 = 𝑚 − 𝑙𝑜𝑔2( 𝑖
𝑚

𝜏
𝑖=0 )    

Lemma 1 

Lemma 2 

Lemma 3 

The matrix 𝑳 ∈ 𝑹𝒍𝒐𝒇𝒇𝒅×𝒍 constructed by the M-PCM-OFFD is full column 

rank, and can be represented by 𝐿 = QU, where 𝑄 ∈ 𝑅𝑙𝑜𝑓𝑓𝑑×𝑙 is an 

orthogonal matrix and 𝑈 ∈ 𝑅𝑙×𝑙 is an upper triangular matrix.  

Constructed by selected simulation points to 

estimate the coefficients of the low-order 

mapping.  
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 Lemma 1: 

 

 Lemma 3: 

 



   Problem Formulation 

 The M-PCM-OFFD involves the calculation of 𝐿−1 or (𝐿𝑇𝐿)−1𝐿𝑇 

 𝐿 must be full column rank              

 Numerical errors may easily push 𝐿 to lose rank and fail the computation 

 To facilitate the calculation and minimize the impact of such numerical error-
induced disturbances, 𝐿 needs to have a large margin to rank loss. 

where 𝑒 ∈ 𝑅𝑙𝑜𝑓𝑓𝑑×𝑙 is a perturbation matrix 

We proved that  𝐿 matrix obtained using OFFD, denoted as 𝐿𝑜𝑓𝑓𝑑, has the 

largest margin to rank loss, among all designs of the same size.   

Guaranteed using OFFD 

 Metric: full-column-rank margin  

 The full-column rank margin for matrix 𝐿 to rank loss is  
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𝐷 𝐿 = 𝑚𝑖𝑛 𝑒 𝐹      𝑟𝑎𝑛𝑘 𝐿 + 𝑒 < 𝑙} 



 Original Mapping: 

 

 

 

 

 

 

 

  

𝑥1~ 𝑓𝑋1
𝑥1 = 2𝑒−2𝑥1;     

𝑥2 ~ 𝑓𝑋2
𝑥2 =

1

15
, 5 ≤ 𝑥2 ≤ 20;  

𝑥3 ~ 𝑓𝑋3
𝑥3 =

1

5
, 5 ≤ 𝑥2 ≤ 10;  

p1 = (0.2929,8.1699,6.0566), 

p2 = (1.7071,8.1699,6.0566),  

p3 = (0.2929,16.8301,6.0566), 

p4 = (1.7071,16.8301,6.0566),  

p5 = (0.2929, 8.1699,8.9434), 

p6 =(1.7071,8.1699,8.9434),  

p7 =(0.2929,16.8301,8.9434), 

p8 =(1.7071,16.8301,8.9434) 

Step 1: Choose 8 M-PCM points based 

on the pdf of each parameter 

Step 2: Use 𝟐𝑰𝑰𝑰
𝟑−𝟏 OFFD to select 4 

M-PCM points  

{p2, p3, p5, p8} 

 {p1, p4, p6, p7} 

or 

2𝐼𝐼𝐼
3−1 OFFD design table 

Step 3: Run simulations to evaluate 

𝒈(𝒙𝟏, 𝒙𝟐, 𝒙𝟑)at these 4 M-PCM points  

Step 4: Estimate the coefficients of 

the low-order mapping 

 

 Illustration of Design Procedures 
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 Illustration of Performance 

Estimation of Mean Output 

𝐸 𝑔 𝑥1, 𝑥2, 𝑥3 = 𝐸 𝑔∗ 𝑥1, 𝑥2, 𝑥3 = 3381.1 

Robustness to Numerical Errors 

𝐷 𝐿𝑜𝑓𝑓𝑑 = 1.4142 𝐷 𝐿 = {0,0.866,1.4142} 

𝑚𝑎𝑥 𝐷(𝐿) = 𝐷 𝐿𝑜𝑓𝑓𝑑  Selected by OFFD 

Other possible selections 
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 An effective and scalable uncertainty evaluation method for 
large-scale complex systems 

 

 

 

 

 

 

 

 

 

 

M-PCM-OFFD 

reduces the number of simulations from 22𝑚 to at most 

2 𝑙𝑜𝑔2(𝑚+1)  

accurately predicts the output mean under broad 
assumptions 

is the most robust to numerical errors compared with 
designs of the same size 

 In the future work 

 Generalize the degree of uncertain input parameters by 
exploring multiple-factor OFFDs  

 Exploit parameter dependency to further reduce the number of 
simulations required. 

 

 

 

 New interpretations of the optimality of OFFDs  
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