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ABSTRACT 

Simulation models for data communications networks encompass numerous parameters that can each take on millions of val-
ues, presenting experimenters with a vast space of potential parameter combinations. To apply such simulation models expe-
rimenters face a difficult challenge: selecting the most effective parameter combinations to explore, given available re-
sources. This paper describes an efficient method for sensitivity analysis, which can be used to identify significant parameters 
influencing model response. Subsequently, experimenters can vary combinations of these significant factors in order to exer-
cise a wide range of model behaviors. The paper applies the sensitivity analysis method to identify the most significant para-
meters influencing the behavior of MesoNet, a 20-parameter network simulator. The method and principles explained in this 
paper have been used to investigate parameter spaces for simulated networks under a variety of congestion control algo-
rithms.      

1 INTRODUCTION 

Paxson and Floyd (1997) describe many difficult problems that impede simulation of large data communication networks, 
and recommend two main coping strategies: search for invariants and careful exploration of the parameter space. Unfortu-
nately, typical network simulators (e.g., Fall and Varadhan 2009, SSFNet 2009, Tyan et al. 2009) use hundreds of parameters 
that can each take on millions of values. Several researchers (Riley et al. 2004, Yaun et al. 2003, Zeng et al. 1998) investigate 
parallel techniques as a means to simulate larger, faster networks. Unfortunately, such techniques do not reduce the parameter 
space, which remains difficult to configure and continues to require significant resources when conducting careful explora-
tion. While reduced scale models, such as the 20-parameter MesoNet (Mills, Schwartz and Yuan 2010), can be easily confi-
gured, the parameter space still requires infeasible resources to explore fully. In this paper, we describe an efficient method 
for sensitivity analysis, which can be used to identify the most significant parameters influencing model behavior. This al-
lows experimenters to explore a reduced set of parameter combinations by varying those parameters that contribute most to 
differences in model response. We demonstrate the sensitivity analysis method in the context of MesoNet, a network simula-
tor implemented using SLX1 (Henriksen 2000). Elsewhere (Mills et al. 2010) we use MesoNet to study a variety of conges-
tion control algorithms proposed for the Internet. In that study, we conduct five simulation experiments, each of which sub-
ject the congestion control algorithms to only 32 simulated conditions. The parameter combinations that compose those 
conditions were selected based on findings from the sensitivity analysis described in this paper. 
 The paper makes two contributions: (1) describes an efficient method for sensitivity analysis of simulation models and 
(2) shows how the method can be applied to identify the most significant parameters influencing behavior in a network simu-
lator. The ideas contained in this paper facilitate feasible exploration of the parameter space in large simulations and should 
improve the ability of researchers and practitioners to design efficient and effective simulation experiments. 

The paper is organized in six main sections. In Sec. 2 we explain why the parameter space of simulation models can be 
difficult to explore and discuss some theoretical techniques for reducing the search space. We also show the substantial re-
duction we achieved applying our sensitivity analysis method to MesoNet. In Sec. 3 we identify and summarize MesoNet pa-
rameters described more fully elsewhere (Mills, Schwartz and Yuan 2010). Sec. 4 discusses the 2-level-per-factor orthogonal 
fractional factorial (OFF) experiment design technique that underlies our sensitivity analysis method. Sec. 5 explains how we 
applied 2-level OFF experiment design to conduct a sensitivity analysis of MesoNet. In Sec. 6 we describe three analysis 
techniques we used to characterize model behavior, and we identify the relative significance of MesoNet parameters. We 
conclude in Sec. 7. 
                                                           
1 Any mention of commercial products within this paper is for information only; it does not imply recommendation or en-
dorsement by NIST. 
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2 SEARCH-SPACE REDUCTION: THEORY & PRACTICE 

As illustrated in Fig. 1(a), a simulation model can be viewed as a function transforming a set of p input parameters, x1 to xp, 
into a set of responses2, y1 to yz. Each input parameter can take on a range of values, 1 to l  in our example, defining a para-
meter space of size l p, which can be very large. Fig. 1(c) shows the infeasible search space arising from a communication 
network model with p = 1000 parameters that can each take on l = 232 values. 
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Figure 1:  (a) Functional representation of a simulation model; (b) Theoretical explanation of search-space reduction;  
(c) Search-space reduction applied to MesoNet simulation model 
 

Fig. 1(b) illustrates two processes that can help reduce the search space: reduce the number of parameters in the model 
and reduce the number of parameter configurations through judicious experiment design. The process of model reduction in-
volves two main steps. First, restrict model parameters to only that set of  (p – r1) factors relevant to the questions under in-
vestigation. Second, identify parameters that can be clustered together as facets of a single factor, leaving a reduced set of 
factors numbering (p – r1 – r2). These two steps require expertise within the domain of investigation. In many cases, a re-
duced model parameter space remains infeasible to search, requiring two additional reduction steps to limit the number of 
experiments. The first step involves selecting only two levels to assign for each parameter – reducing l  to 2. Choosing ap-
propriate levels requires domain knowledge. If the reduced search space of 2(p-r1-r2) remains too expensive, then one can adopt 
an orthogonal fractional factorial (OFF) experiment design (Box, Hunter and Hunter 2005) to further reduce the space to 2(p-

r1-r2-r3), providing the most information possible for the available resources. 
Fig. 1(c) illustrates the practical reduction we achieved in constructing a communication network model intended to 

compare proposed congestion control algorithms for the Internet. Assuming a detailed network model requires 1000 parame-
ters, we identified 64 parameters germane to our investigation, achieving an initial reduction of r1 = 936. Subsequently, we 
grouped some of the 64 parameters together to create a reduction of r2 = 44, leaving the 20-parameter model that we sum-
marize below in Sec. 3. In Sec. 4 we explain the theory underlying 2-level OFF experiment design, which allows us to reduce 
the search space further to (220-12 =) 256 parameter combinations. In Sec. 5 we use these 256 combinations to conduct a sensi-
tivity analysis of the network model. 

3 THE 20-PARAMETER NETWORK MODEL 

Table 1 identifies the 20 parameters composing MesoNet, our model of a communication network. We organize the parame-
ters into five categories: (1) network configuration, (2) user behavior, (3) sources and receivers, (4) protocols and (5) simula-
tion and measurement control. Here, we provide a summary of the parameters – more details can be found elsewhere (Mills, 
Schwartz and Yuan 2010). We defer until Sec. 5 a discussion of the contents of the Minus and Plus columns in Table 1. 

                                                           
2 Determining which responses to examine is an interesting problem in its own right. Though not detailed in this paper, we 
used correlation and principal components analyses to select the responses used in our sensitivity analysis. 
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Table 1:  MesoNet Parameters 
Category ID Name Minus (-1) Level Plus (+1) Level 

Network 
Configuration 

X1 Network Speed 800 packets/ms 1600 packets/ms 
X2 Propagation Delay 1 2 
X3 Buffer Provisioning RTT x C/sqrt(n) RTT x C 
X4 Topology Abilene - SPF prop. delay ISP - SPF assigned costs 

User 
Behavior 

X5 Web Object Size (  = 1.5) 75 packets 150 packets 
X6 Proportion/Size of Larger Files 

(Fx = 10 Sx = 1000 Mx = 10000) 
Fp = 0.02 Sp = 0.002  
Mp = 0.0002 

Fp = 0.04 Sp = 0.004 
Mp = 0.0004 

X7 User Think Time 2 s 5 s 
X8 User Patience 0.0 (Infinite) 1.0 (Finite) 
X9 Selected Spatiotemporal Congestion 4th Time Period None 
X10 Long-lived Flows 3 Start in 3rd Time Period None 

Sources &  
Receivers 

X11 Probability of Fast Interface 0.2 0.8 
X12 Number of Sources & Receivers 2 3 
X13 Distribution of Sources Web Centric Peer-to-Peer Centric 
X14 Distribution of Receivers Web Centric Peer-to-Peer Centric 

Protocols 
X15 Probability of Algorithms TCP = 0.8 CTCP = 0.2 TCP = 0.2 CTCP = 0.8 
X16 Initial Congestion Window Size 2 packets 8 packets 
X17 Initial Slow Start Threshold 43 packets 1 073 741 823 packets 

Simulation & 
Measurement 
Control 

X18 Measurement Interval Size 200 ms 1 s 
X19 Simulation Duration 25 minutes 50 minutes 
X20 Source Startup Pattern Exponential (mean = X7) 50 % start early 

 
A network configuration requires a topology (parameter X4) of routers and links, as shown for example in Fig. 2, 

adapted from the Abilene backbone network (Kratz et al. 2001). MesoNet supports topologies with up to three hierarchical 
router tiers: backbone routers (A-K in Fig. 2), point of presence (PoP) routers (A1-K2) and access routers (A1a-K2d). To 
model heterogeneity in network access, MesoNet allows three different types of access routers: D-class (e.g., six red nodes in 
Fig. 2, which connect directly to backbone routers), F-class (e.g., 28 green nodes) and N-class (e.g., 105 small gray nodes). 
Classifying access routers enables different speeds to be assigned to each class. Sources and receivers compose a fourth tier 
distributed below access routers. Packets flowing between a source-receiver pair follow a single ingress/egress path between 
an access router and a top-tier backbone router. In MesoNet ingress/egress paths are not subject to propagation delays. Prop-
agation delays on backbone links are an intrinsic property of all MesoNet topologies, as are the paths taken by packets flow-
ing among backbone routers. Given a cost metric for each link, one can use Dijkstra’s shortest-path first (or equivalent) algo-
rithm to generate least-cost paths. Assuming a link cost equal to propagation delay, the topology in Fig. 2 generates 110 
backbone paths with an average length of 3.51 router hops. Adding in the hops for sources and receivers to reach the back-
bone routers increases the average path length to 9.43 hops. To scale propagation delays in a topology, parameter X2 multip-
lies the delays assigned to each backbone link. Unlike real networks, where links have transmission speeds and associated 
buffers, MesoNet assigns speeds to routers. Each router multiplexes packet forwarding from a single buffer shared among all 
attached links. Because MesoNet packets have no size, router speeds are assigned in units of packets/millisecond. Parameter 
X1 defines the base speed of backbone routers and all other router classes operate at a proportion of that speed: PoP routers 
25 %, N-class 2.5 % , F-class 5 % and D-class 25 %. To provision router buffers, MesoNet allows buffer size (in packets) to 
be selected using an algorithm, specified by parameter X3. 

Given a three-tier topology of routers and links, the model constructs a fourth tier, where sources and receivers are dis-
tributed under (and attached to) access routers. The model includes a target number of sources and receivers which should be 
set to a value appropriate for the network speed. Model parameter X12 serves as a multiplier to scale the target number of 
sources and receivers. Parameter X13 specifies probabilities (not shown here) that bias the distribution of sources so that a 
higher or lower proportion of the target number appear under various classes of access router. Similarly, parameter X14 spe-
cifies probabilities that bias the distribution of receivers. Altering the distributions of sources and receivers adjusts the proba-
bility of flows transiting access routers of specific classes, where the slowest access router crossed by a flow determines the 
flow’s path class: very fast (VF) for D-class routers, fast (F) for F-class or typical (T) for N-class. The final property of 
sources and receivers concerns the maximum speed at which they can transfer packets to the network. The model allows two 
speeds: normal (e.g., 8000 packets/second) and fast (e.g., 80 000 packets/second). Parameter X11 specifies the probability 
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that a source or receiver connects at the fast speed. When a flow’s receiver and source are both connected at the fast speed, a 
flow’s maximum rate is fast (F); otherwise a flow’s maximum rate is normal (N). 
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Figure 2:  Three Tier Topology with 11 Backbone Routers (A-K), 22 Point of Presence Routers (A1-K2) and 139 Access 
Routers (A1a-K2d) – 6 red and 28 green Access Routers may operate at different speeds from the 105 others  
 
      User behavior is modeled through periodic activity by sources, which cycle between thinking, connecting and sending. 
Prior to entering the thinking state, a source selects a random residence time from an exponential distribution with a mean 
given by parameter X7. Upon expiration of residence, the source enters the connecting state, where a connection is attempted 
to a randomly selected receiver. If a connection attempt succeeds, the source enters the sending state, where a flow of packets 
is transmitted. Once all packets in a flow are acknowledged, the source reenters the thinking state. If a connection attempt 
fails, the source reenters the thinking state without sending. Sources may have finite or infinite patience. Parameter X8 speci-
fies the probability that a source has finite patience, where short flows must be completed within a reasonable time and long 
flows must progress at a reasonable rate or else a source aborts the flow and reenters the thinking state.  

Prior to sending, a source selects a Web object size (in packets) from a Pareto distribution with a mean defined by para-
meter X5. Through parameter X6, the model allows sources to transmit larger files in three categories: documents, software 
updates and movies, with corresponding multipliers (Fx, Sx and Mx) that scale the selected Web object to a larger size with a 
corresponding probability (Fp, Sp and Mp) for each category. The model also allows simulation of spatiotemporal congestion 
by specifying (parameter X9) a time period during which every flow transiting a very fast (VF) path will have the file size 
multiplied by 10, which creates spatiotemporal congestion on VF paths. The model also accommodates simulation of long-
lived flows that, once activated, send as many packets as possible in the course of a simulation. Parameter X10 specifies the 
number, location and starting time for any long-lived flows included in an experiment. 

The rate of each flow is regulated by protocols. Upon connecting to a receiver, a source first sends a number of packets, 
known as the initial congestion window (cwnd), specified by parameter X16. As acknowledgments arrive from the receiver, 
the source increases cwnd exponentially. Upon the first lost packet, the source adopts procedures associated with a specific 
congestion avoidance algorithm implemented by the source. Model parameter X15 specifies the probabilities that a given 
source uses each of the congestion avoidance algorithms simulated by MesoNet. If there are no losses, a source switches to 
its congestion avoidance algorithm once the cwnd reaches an initial slow start threshold (sst), defined by parameter X17.  

MesoNet measures numerous aspects of model behavior during each simulation run. Most measurements are made as 
time series, which sample system states at periodic intervals defined by parameter X18. Model parameter X19 controls the 
duration of a simulation run. Model parameter X20 determines the rate at which sources initially enter the sending state. 
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4 TWO-LEVEL ORTHGONAL FRACTIONAL FACTORIAL EXPERIMENT DESIGN THEORY 

Even a simulation model as concise as MesoNet presents experiment designers with a significant challenge: deciding which 
combination of parameters to simulate from the O(10192) possibilities. Two-level experiment designs, where each parameter 
(Xk, k=1,...,p) is assigned only two of its possible values, provide an immediate reduction in the search space to 2p combina-
tions. Restricting parameters to only two values has obvious limitations: only a small number of parameter values are ex-
plored and extrapolating from the results assumes a model behaves monotonically in the range between chosen values. On 
the other hand, adopting a two-level design provides some advantages (Box, Hunter and Hunter 2005): (1) requires few runs 
per parameter, (2) facilitates interpretation of response data, (3) identifies promising directions for future experiments (and 
may be augmented with thorough local explorations), (4) fits naturally into a sequential strategy, which supports the scientific 
method and (5) forms the basis for further reduction in parameter combinations through use of fractional factorial designs. 

While two-level designs reduce the required number of simulation runs, a full factorial search of 2p parameter combina-
tions may still be infeasible. For example, a full factorial experiment design with MesoNet (p = 20) would require (220 =) 
1,048,576 simulations. Given that an average MesoNet simulation requires about 28 processor hours, and assuming that 48 
processors are available, a full factorial experiment would take (220 simulations x 28 processor hours/simulation over 48 pro-
cessors =) about 611,670 hours, which is about 70 years. Adding processors could reduce the latency, e.g., to 3.4 years for 
1000 processors or to 4 months for 10,000 processors, but the expense would remain constant, e.g., just under $3M assuming 
processors cost $0.10/hour. Thus the expense of a full factorial experiment would prove infeasible for most researchers, 
which means the number of simulations must be reduced to fit within time and budget constraints. 

Reducing the time and cost of a full factorial experiment requires adopting a fractional factorial design, which simulates 
only a 2p-r3 subset of parameter combinations. While many experimenters adopt ad hoc techniques, such as factor-at-a-time 
(FAT) design, to select subsets of parameter combinations, orthogonal fractional factorial (OFF) theory (Box, Hunter and 
Hunter 2005) provides a principled approach to create designs, where the choice of 2p-r3 parameter combinations is made to 
achieve balance and orthogonality, which provide superior coverage and robustness and minimize variance in estimated ef-
fects3. Fig. 3 illustrates the difference in coverage between a 27-4 FAT and 27-4 OFF experiment design, where the sets of 
cubes represent a seven dimensional parameter space of (27 =) 128 possibilities and each red dot represents one of eight simu-
lation runs comprising a specific combination of parameters from the space. The FAT design provides a localized exploration 
of the design space, while the comparable OFF design spreads the eight runs more globally throughout the space, thus inject-
ing an element of robustness into conclusions derived from the experiments. 
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Figure 3:  Schematic comparison of a 27-4 OFF design and a 27-4 FAT design – cubes represent the space of possible parameter 
combinations and red dots represent combinations chosen for simulation – each cube represents three of seven dimensions 
 

In constructing an OFF design, an experimenter must ensure exploration of a sufficient number of parameter combina-
tions to prevent confounding, which can cause confusion about the specific parameters responsible for variations in model 
responses. As a rule of thumb, experimenters should strive for at least “Resolution IV” (Box, Hunter and Hunter 2005) de-
signs, which ensure no confusion among effects attributable to individual parameters and also prevent confusion about 
whether effects are caused by individual parameters or by interactions among parameter pairs. Further, Resolution IV designs 
                                                           
3 In a two-level experiment, an effect is the mean model response when a parameter is set to one level minus the mean re-
sponse when the parameter is set to the other level. 
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specify precisely which parameter pairs are confounded with which other parameter pairs. Typically, confusion involving 
specific parameter pairs can be resolved by a domain expert. A Resolution IV design must provide a sufficient number of si-
mulations (n) to estimate a leading constant, each parameter (p) and each pair of parameters (p choose 2), or 
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For example, MesoNet (p = 20) requires at least 211 (n = 1 + 20 + 190) simulations to construct a Resolution IV design. For a 
two-level design, choose the next higher power of 2 above n, i.e., 256 runs, which identifies the need for a 220-12 design. Box, 
Hunter and Hunter (2005) give an algorithm for choosing combinations of parameters for various two-level designs. Apply-
ing the algorithm yields a design template, such as the partial (8 of 256 combinations) matrix shown in Fig. 4, where each 
simulation run (row) is defined as a combination of levels (either -1 or +1) for each parameter (column). For each parameter, 
an experimenter selects a specific value corresponding to each of the two levels and then substitutes the appropriate parame-
ter value into the template to generate specific combinations to simulate. The resulting experiment design exhibits balance, 
i.e., each parameter has 128 -1 settings and 128 +1 settings, and orthogonality, i.e., each pair of parameters has 64 settings at 
each of (-1, -1), (-1, +1), (+1, -1) and (+1, +1).  Balance minimizes variance in estimated effects, as illustrated in Fig. 5, 
which graphs the standard deviation for various 220-12 fractional factorial designs.   
 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

2 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

3 -1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 -1
4 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1

5 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1

6 1 -1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1
7 -1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 1
8 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1  

 
Figure 4:  Template defining the first eight of 256 parameter combinations for a 220-12 Resolution IV experiment design 
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Figure 5:  Standard Deviation (SD) in estimated effects for various combinations of the number (n1) of -1 settings and the 
number (n2 = 256 – n1) of +1 settings for a 28 fractional factorial design covering a 220 space of parameter combinations – 
the standard deviation for a balanced design is 0.125, as compared to 1.4142… (i.e., √2) for a factor-at-a-time (FAT) design  
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5 EXPERIMENT DESIGN FOR MESONET SENSITIVITY ANALYSIS  

Given the template from Fig. 4 and the Minus (-1) and Plus (+1) values from Table 1, we generated 256 parameter combina-
tions, yielding a 220-12 OFF design to form the basis for a sensitivity analysis of MesoNet. Most of the parameter mappings 
from Table 1 are straightforward. Here, we discuss a few mappings that merit more explanation. We also introduce the re-
sponse variables used in the sensitivity analysis. 

 The -1 value for parameter X4 entails using the Abilene topology shown in Fig. 2. For the +1 value of X4 we used a 
larger topology adapted from a commercial Internet Service Provider (ISP). The ISP topology has more routers (16 back-
bone, 32 PoP, 8 D-class, 40 F-class and 122 N-class), more backbone links (24) and thus additional least-cost paths (240) in 
the backbone. The increased number (170) of access routers implies that the +1 topology will also have more sources and re-
ceivers than the -1 topology. Values for the X12 parameter scale the target number of sources and receivers under each access 
router in the selected topology. Backbone paths in the +1 topology are determined based on costs assigned by the ISP in order 
to achieve specific traffic engineering objectives. Both the -1 and +1 topologies have propagation delays corresponding to the 
physical length of backbone links. Values for the X1 parameter scale all router speeds in the selected topology. Values for the 
X2 parameter scale propagation delays on all backbone links in the topology. Values for the X3 parameter scale buffer sizes 
for all routers in the topology. The +1 value for X3 selects a buffer provisioning algorithm that corresponds to recommended 
practice (Bush and Meyer 2003), i.e., a router’s buffer size in packets is the average round-trip time (RTT) in a topology mul-
tiplied by the router’s speed (C). Following the suggestion of some researchers (Appenzeller et al. 2004), the -1 value for X3 
divides a router’s computed buffer size by the square root of the expected number (n) of flows transiting the router. 
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Figure 6:  Possible traffic scenarios generated by various combinations of values for parameters X5, X6, X9, X10 and X19 

 
Several parameters influence network traffic generated by sources, as illustrated in Fig. 6. Each simulation run can be 

viewed through a time line with length corresponding to the simulation duration assigned via parameter X19: 25 (-1 level) or 
50 (+1 level) minutes. The simulation begins with sources sending files of various sizes, as determined by the values of pa-
rameters X5 and X6. The -1 value for X6 denotes  transfer of fewer larger files, i.e., documents, software service packs and 
movies, which implies the transfer of more Web objects. The +1 value for X6 increases the number of transfers of larger files 
and decreases the number of Web objects. After a warm up period of either 10 (-1 for X19) or 20 (+1 for X19) minutes, the 
scenario unfolds over three additional time periods, each with a duration of either 5 (-1 for X19) or 10 (+1 for X19) minutes. 
At onset of the first time period three long-lived flows are started if X10 is -1. The long-lived flows are not started if X10 is 
+1. At onset of the second time period transfer of jumbo files may be started (-1) or not (+1) on VF paths, depending on the 
level of X9. At the onset of the third time period no further jumbo files will be initiated. 

A few other parameters merit mention. Parameters X13 and X14 vary the distribution of sources and receivers in a to-
pology, which influences the proportion of flows transiting specific access router classes. The -1 value for these parameters 
create Web centric traffic, which means an increase in proportion of flows transiting D-class and F-class access routers. The 
+1 value for these parameters increase the proportion of flows that transit N-class access routers, which is more consistent 
with peer-to-peer traffic. For this experiment, sources may regulate flow transmission rate using one of two congestion 
avoidance algorithms: the standard transmission control protocol (TCP) or compound TCP (CTCP), an alternative developed 
by researchers (Tan et al. 2006) at Microsoft. A -1 value for parameter X15 deploys more TCP sources in a topology, while a 
+1 value deploys more CTCP sources. Finally, a -1 value for parameter X20 causes sources to leave the initial thinking state 
after exponential delays with a mean determined by parameter X7. The +1 value for X20 causes 25 % of sources to start in 
the connecting state and 25 % to leave the initial thinking state early, while the remaining 50 % leave after a normal delay. 

As shown in Table 2, we characterized MesoNet behavior by measuring 18 macroscopic responses, summarizing net-
work state in six categories, and by averaging throughput (in packets/second) for each of 24 flow groups, where a flow group 
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is defined by three dimensions: (1) file size, (2) path class and (3) maximum transfer rate. We averaged each macroscopic re-
sponse separately in the three time periods identified in Fig. 6, yielding a total of (3 x 18 =) 54 macroscopic responses. We 
computed throughput per flow group separately for sources using TCP and for those using CTCP, yielding a total of (2 x 24 
=) 48 flow-group throughput measurements. Thus the number of computed responses totaled (54 + 48 =) 102. 
 

Table 2:  Responses measured during the sensitivity analysis of MesoNet 
Macroscopic Responses Flow Groups for Throughput Averages 

Category Identity Definition Number File Size Path Class Max. Rate 

Flow 
State 

Y1 Average # sources connecting 1 

Movie 

VF F 
Y2 Average # sources sending 2 VF N 
Y3 % sending flows in initial slow start 3 F F 
Y4 % sending flows in standard congestion avoidance 4 F N 
Y5 % sending flows in alternate congestion avoidance 5 T F 

 6 T N 

Conges-
tion 

Y6 Retransmission rate 7 

Software 
Service 

Pack 

VF F 
Y7 Average congestion window size (packets) 8 VF N 
Y8 Aggregate # connection failures 9 F F 

 10 F N 

Delay Y9 Average round-trip time (ms) 11 T F 
Y10 Average queuing delay (ms) 12 T N 

 13 

Docu-
ment 

VF F 

Work Y11 Average # flows completed per second 14 VF N 
Y12 Average # packets output per second 15 F F 

 16 F N 
Long-
Lived 
Flows 

Y13 Average throughput on long-lived flow #1 17 T F 
Y14 Average throughput on long-lived flow #2 18 T N 
Y15 Average throughput on long-lived flow #3 19 

Web 
Object 

VF F 
 20 VF N 
Flows by 

Path 
Class 

Y16 Average throughput on flows transiting VF paths 21 F F 
Y17 Average throughput on flows transiting F paths 22 F N 
Y18 Average throughput on flows transiting T paths 23 T F 

 24 T N 
 

A few responses require brief explanation. Recall that sources cycle through three states: thinking, connecting and send-
ing. We measured the average number of connecting (Y1) and sending (Y2) sources; other sources are thinking. Sending 
flows begin operating under initial slow start rules and may then move to congestion avoidance, where sources implementing 
CTCP may cycle between standard and alternate rules. We used responses Y3, Y4 and Y5 to measure the proportion of send-
ing flows operating under each rule set. Since lost packets must be resent, we computed retransmission rate (Y6) as a ratio: 
file size to data packets sent on a flow before receiving the last acknowledgment. We measured the average work/second ac-
complished in flows (Y11) and packets (Y12) for each time period. With responses Y13, Y14 and Y15 we estimated instan-
taneous throughput in each time period for individual long-lived flows transiting specified paths in the network. Similarly, we 
used responses Y16, Y17 and Y18 to estimate instantaneous throughput on each path class in each time period regardless of 
differences in file size and maximum transfer rate. To estimate instantaneous throughput we divided the number of acknowl-
edgments sent in a measurement interval by the interval size. For flow groups, we computed throughput measures by dividing 
file size (in packets) by the time interval between sending the first packet and receiving acknowledgment for the last packet.   

6 SELECTED ANALYSIS TECHNIQUES IDENTIFY SIGNIFICANT MESONET PARAMETERS 

We analyzed the main effects of each MesoNet parameter on all 102 measured responses. We also analyzed all two-
parameter interactions for each response. We conveyed these analyses through custom plots. For example, Fig. 7 shows a 
main effects plot for response Y2 (average number of sending sources) in Time Period 2. The x axis identifies each of the 20 
MesoNet parameters and the y axis gives the mean response. For each parameter the plot gives two means: (1) when the pa-
rameter is set to -1 value and (2) when set to the +1 value. Fig. 7 shows that the mean number of sending sources was just 
under 13 000 when network speed (X1) was low (-) and was about 8500 under high network speed (+). For each parameter, a 
line connects the two means to indicate direction and magnitude of the effect when changing the parameter from its -1 to +1 
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values. Two numbers are reported just above each parameter label. The top number gives the effect in raw terms (e.g., 4145 
fewer sending flows under higher network speed) and the bottom number gives the percentage change (e.g., 39 % fewer 
sending flows under higher network speed), which is called the relative effect. We subjected each effect to a t-test for statis-
tical significance, and inserted two asterisks (**) for effects, such as network speed, with statistical significance > 0.99. We 
insert one asterisk (*) for effects with significance > 0.95 and < 0.99. Interpreting Fig. 7, we find that shorter think time (X7 -
) coupled with more sources (X12 +) distributed in a peer-to-peer pattern (X13 +) induce the largest of the six statistically 
significant effects on the number of sending sources. The effect of these parameters is followed by larger file size (X5 +) and 
larger topology (X4 +). The indicated values for these five parameters increase demand on the network. The remaining sig-
nificant increase in sending sources arises from lower network speed (X1 -). In short, greater demand offered to a slower 
network increases congestion, which causes longer file transfer times for sources, leading more sources to be in the sending 
state. Similar analyses are possible for the remaining 101 responses. 

 

Shorter Think Time More Sources Distributed in a 
Peer-to-Peer Pattern

Larger 
Files

Bigger
Topology

Slower
Network

 
Figure 7:  Main effects plot showing absolute and relative influence of each MesoNet parameter (x axis) on mean (y axis) 
number of sending flows (response Y2) during the 2nd time period, and identifying six statistically significant parameters: 
network speed (X1), topology size (X4), file size (X5), think time (X7) and number (X12) and distribution (X13) of sources 
 

We created five (only one shown here) summary tables: three tables (one per time period) report statistically significant 
effects of parameters on the 18 macroscopic responses and two tables (one for TCP and one for CTCP) report statistically 
significant effects of parameters on throughput for each of the 24 flow groups. For example, Table 3 provides a summary for 
the 18 macroscopic responses in the 2nd time period – the row for Y2 was created from the main effects plot in Fig. 7. Cells in 
Table 3 highlighted in blue denote ** effects and those highlighted in tan denote * effects. Each highlighted cell also includes 
either a + or – to indicate which value for the corresponding parameter (column) led to a higher value in the response (row). 
For Y2 for example, we find slower (-) network speed (X1), larger (+) topology (X4), bigger (+) file sizes (X5) , shorter (-) 
think times (X7) and more (+) sources (x12) distributed in a peer-to-peer (+) pattern (X13) led to a larger number of active 
flows. This corresponds to the information given in Fig. 7. A quick scan of Table 3 shows that network speed had significant 
influence on all 18 responses during the 2nd time period. Other significant parameters can also be identified, as well as those 
that had little or no significant influence on the responses. Other patterns can also be discerned, such as the influence of par-
ticular sets of parameters on responses associated with network congestion. 

We also used response data to explore the influence of two-parameter interactions on model behavior. This allowed us to 
establish that MesoNet is driven primarily by main effects rather than by interactions. We investigated two-parameter interac-
tions using custom plots, such as the sample shown in Fig. 8, which reports interactions associated with response Y2 (number 
of sending sources) during the 2nd time period. 
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Table 3:  Significance of influence of 20 MesoNet parameters (columns) on 18 macroscopic responses (rows) during 2nd time 
period: blue cells indicate significance > 0.99 and tan cells indicate significance > 0.95 and < 0.99, where a – or + in hig-
hlighted cells indicates the parameter setting that causes an increase in the corresponding response 

 

Category  ID  Short Name 

Network  User Behavior  Source/Receiver  Protocol 
Sim. Control & 

Meas. 

X1  X2  X3  X4  X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15  X16  X17  X18 X19 X20
NSp  PrD  Buf  Top  FS  LFS  ThT  UP  CVF  LLF SSR  NSR  DiS  DiR  CCA  ICW  IST  MIS  DUR  StP 

Flow 
State 

Y1  # Connecting  ‐**    +**  +*      ‐**          +**  +**      +**         

Y2  # Active  ‐**      +**  +**    ‐**          +**  +**               

Y3  % ISS  +**  +**  +**    ‐**    +**          ‐**  ‐**        +**       

Y4  % NCA  ‐**  ‐**  ‐**    +**    ‐**          +**  +**    ‐*           

Y5  % ACA  +**    +**        +**          ‐**  ‐**    +**  +*  ‐**       

Congestion 

Y6  Retrans. Rate  ‐**  ‐**  ‐**    +**    ‐**          +**  +**      +**         

Y7  cwnd Size  +*                                       

Y8  # conn. fails  ‐**  ‐**  ‐**    +**              +**  +**      +**         

Delay 
Y9  SRTT  ‐**  +**  +**                  +*  +*               

Y10  Queue Delay  ‐**  +**  +**        ‐*          +**  +**               

Work 
Y11  Flows/sec  +**  ‐*    +**  ‐**    ‐**          +**  +**               

Y12  Packets/sec  +**    +**  +**  +**    ‐**    ‐**      +**                 

Long‐Lived 
Flows 

Y13  LLF 1  +**    +*  +*          +**  ‐**                    

Y14  LLF 2  +*      +**          +**  ‐**                    

Y15  LLF 3  +**                +**  ‐*        ‐*             

Flows by 
Path 
Class 

Y16  VF Paths  +**  ‐**    ‐**      +*    +**      ‐**    ‐*      +**  ‐*     

Y17  F Paths  +**  ‐**    +*      +**    +**      ‐**  +**  ‐**   +**    ‐*     

Y18  N Paths  +**  ‐**    ‐**      +**          ‐**  ‐**      +**         

 
Figure 8:  Two-parameter interaction effects plot for the average number of sending sources (Y2) during 2nd time period: hig-
hlighted rows indicate significant parameters from Fig. 7 and circled pairs of traces identify possible parameter interactions, 
which appear rather minor 
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Each row of Fig. 8 corresponds to a different parameter. The first column in each row provides a reference trace 

representing the main effects for the parameter. Each subsequent pair of traces in the same row shows the parameter effect 
when each other parameter takes on each of its two levels (first –1 and then +1). Traces with slopes differing from the refer-
ence identify the existence of interactions. For example, the first red circle in Fig. 8 suggests that when X2 = -1 (i.e., shorter 
propagation delay) then network speed (X1) has less influence on the response (number of sending sources). Similarly, the 
second red circle suggests that when X4 = -1 (smaller topology) then file size has less influence on the response. File size al-
so interacts with number and distribution of sources. All these interactions appear rather minor. Overall, Fig. 8 instills confi-
dence that the response is driven by single parameters rather than by two-parameter interactions. This was largely the case for 
all responses, thus we can summarize the sensitivity of MesoNet using only main effects analyses. 
 
Table 4:  Count (zeroes left blank) of macroscopic responses in each of 3 time periods and flow group throughputs for each 
of 2 congestion avoidance algorithms for which each MesoNet parameter had statistical significance > 0.99 and between 
0.95+ and 0.99; counts are totaled for responses in each of the five sets and for all responses 
 

Responses 
Covered 

t‐test 
Statistic 

Network  User Behavior  Source/Receiver  Protocol 
Sim. Control & 

Meas. 
X1  X2  X3  X4  X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15  X16  X17  X18 X19 X20
NSp  PrD  Buf  Top  FS LFS ThT UP CVF LLF SSR NSR DiS DiR CCA  ICW  IST  MIS DUR StP

Time 
Period #1 

>0.99  17  9  10  8  8    11      3   12  11  2 1  7  2  1     

>0.95<0.99  1  1  3  2  2    2        3  2  1   2  1  1     

Total  18  10  13  10  10    13      3   15  13  3 1  9  3  2     

Time 
Period #2 

>0.99  16  9  9  6  7    10    6  2   13  11  1 1  5  3       

>0.95<0.99  2  1  1  2  2 1 1 1 2 1  1    2

Total  18  10  10  8  7    12    6  3   14  12  3 2  6  3  2     

Time 
Period #3 

>0.99  17  9  11  6  9    12    4  3   12  11  2 1  5  3  1     

>0.95<0.99  1  2    3  1    1    1    3  2        2     

Total  18  11  11  9  10    13    5  3   15  13  2 1  5  3  3     

TCP 
>0.99  19  16  12  8  11    10    1    4  16    8  16  1     

>0.95<0.99    2  3  3  5    4        2               

Total  19  18  15  11  16    14    1    6  16    8  16  1     

CTCP 
>0.99  19  18  10  9  15    13    1    8  16    7  12       

>0.95<0.99      2  3  1    3        6    4   1         

Total  19  18  12  12  16    16    1    14  16  4   8  12       

Total 
>0.99  88  61  52  37  50    56    12  8   49  65  5 3  32  36  3     

>0.95<0.99  4  6  9  13  9    12    1  1   15  5  7 1  4  1  5     

Total  92  67  61  50  59    68    13  9   64  70  12 4  36  37  8     

 
Table 4 condenses our five tables summarizing main effects for macroscopic responses (in each of three time periods) 

and for throughput per flow group (under each of two congestion avoidance algorithms). Each column in Table 4 denotes one 
parameter. The table shows three rows for each of the five response sets. The final row of the table reports the total number of 
the 102 responses for which each parameter showed a statistically significant effect > 0.95. Network speed influenced 90 % 
of responses, while the number and distribution of sources, along with think time and file size influenced between 58 % and 
69 % of responses. Propagation delay influenced 66 % of responses and buffer sizing influenced 60 %. Eight parameters in-
fluenced a relatively low proportion of responses, and five influenced no responses. The table also reveals that initial slow 
start threshold (X17) had significant influence on flow group throughput, especially under TCP. 

We find that MesoNet is driven mainly by network capacity, demand (i.e., number, distribution and activity of sources), 
propagation delay and buffer sizing. This finding suggests that MesoNet can create significant variation in behavior under 
experiments that use only 7 of its 20 parameters. Further, since per-flow throughput can be influenced significantly by initial 
slow start threshold, throughput experiments should take that parameter into account. These findings suggest that MesoNet 
can be used to evaluate proposed congestion control algorithms with 27 parameter combinations, which can be reduced to on-
ly 32 combinations using a 27-2 Resolution IV OFF design.  

7 CONCLUSIONS 

We showed how 2-level-per-factor designs can be used to construct experiments for simulation models. We discussed the ap-
plication of orthogonal fractional factorial (OFF) experiment design theory to reduce the number of parameter combinations 
simulated. We exploited this reduction to define an efficient sensitivity analysis method for simulation models, which we ap-
plied to MesoNet, where we simulated only 28 of 220 possible parameter combinations. We introduced effective techniques to 
concisely analyze the influence of parameters on main effects and to investigate two-parameter interactions. We showed that 
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MesoNet is driven primarily by 7 of its 20 parameters, which influence main effects rather than interactions. Based on these 
findings we identified that a 27-2 Resolution IV OFF design could be constructed to generate significant variations in Meso-
Net using only 32 parameter combinations. Elsewhere (Mills et al. 2010) we use these insights to compare seven proposed 
Internet congestion control algorithms.     
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