
Proceedings of the 2010 Winter Simulation Conference
B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.

HOW TO MODEL A TCP/IP NETWORK USING ONLY 20 PARAMETERS

Kevin L. Mills Edward J. Schwartz

Information Technology Laboratory Dept. of Electrical & Computer Eng.
National Inst. Of Stds. & Tech. Carnegie Mellon University
Gaithersburg, MD 20899, USA Pittsburgh, PA 15213, USA

Jian Yuan

Dept. of Electronic Engineering
Tsinghua University

Beijing, 100084, P. R. CHINA

ABSTRACT

Most simulation models for data communication networks encompass hundreds of parameters that can
each take on millions of values. Such models are difficult to understand, parameterize and investigate.
This paper explains how to model a modern data communication network concisely, using only 20 para-
meters. Further, the paper demonstrates how this concise model supports efficient design of simulation
experiments. The model has been implemented as a sequential simulation called MesoNet, which uses
Simulation Language with Extensibility (SLX). The paper discusses model resource requirements and the
performance of SLX. The model and principles delineated in this paper have been used to investigate pa-
rameter spaces for large (hundreds of thousands of simultaneously active flows), fast (hundreds of Giga-
bits/second) simulated networks under a variety of congestion control algorithms.

1 INTRODUCTION

Paxson and Floyd (1997) describe many difficult problems that impede simulation of large data commu-
nication networks, and recommend two main coping strategies: search for invariants and carefully explore
the parameter space. Unfortunately, typical network simulators (e.g., Fall and Varadhan 2009, SSFNet
2009, Tyan et al. 2009) use hundreds of parameters that can each take on millions of values. Such simula-
tions can be difficult to configure and usually require infeasible resources to explore the parameter space.
Several researchers (Riley et al. 2004, Yaun et al. 2003, Zeng et al. 1998) investigate parallel techniques
as a means to simulate larger, faster networks. Unfortunately, such techniques do not reduce the parame-
ter space, which remains difficult to configure and continues to require significant resources when con-
ducting careful exploration. In this paper, we describe how to model a modern data communication net-
work, including the transmission control protocol (TCP) and Internet protocol (IP), using only 20
parameters. We implemented the model using SLX (Henriksen 2000) as a sequential simulation, called
MesoNet. (Any mention of commercial products within this paper is for information only; it does not
imply recommendation or endorsement by NIST.) As we demonstrate, a concise parameter space can be
searched efficiently and effectively using sequential simulations deployed in parallel, where each simula-
tion explores a selected configuration of parameters. Elsewhere (Mills et al. 2010), we use MesoNet to
study a variety of congestion control algorithms proposed for the Internet. In that study, we perform a
sensitivity analysis of the model’s parameter space, providing key insights that guide design of the expe-
riments. Here, we discuss only two sample experiments to illustrate the utility and resource requirements
of MesoNet.

Mills, Schwartz and Yuan

 The paper makes three contributions: (1) defines a concise TCP/IP network simulation model that can
be configured using only 20 parameters; (2) shows how the model can be applied to design efficient expe-
riments; and (3) discusses resource requirements for the model and selected performance properties of
SLX, the underlying simulation platform. The ideas contained in this paper facilitate feasible exploration
of the parameter space in large network simulations and should also stimulate other researchers to devel-
op concise models for large distributed systems, such as computational grids and clouds.
 The paper is organized in six main sections. In Sec. 2 we explain why the parameter space of simula-
tion models can be difficult to explore and then discuss some theoretical techniques for reducing the
search space. We also show the substantial reduction we were able to achieve in formulating our model.
In Sec. 3 we introduce and define the 20 parameters of our model. Sec. 4 outlines two sample experi-
ments, illustrating the utility of our reduced model. Sec. 5 discusses resource requirements for our model
and also related SLX performance characteristics. In Sec. 6 we discuss work by others who aim to enable
simulation of large data networks. We conclude in Sec. 7.

2 SEARCH-SPACE REDUCTION: THEORY & PRACTICE

As illustrated in Fig. 1(a), a simulation model can be viewed as a function transforming a set of input pa-
rameters, x1 to xn, into a set of responses, y1 to ym. Each input parameter can take on a range of values, 1 to
k in our example, defining a parameter space of size kn, which can be very large. Fig. 1(c) shows the in-
feasible search space arising from a communication network model with n = 1000 parameters that can
each take on k = 232 values.

Figure 1: (a) Functional representation of a simulation model; (b) Theoretical explanation of search-space
reduction; (c) Search-space reduction applied to MesoNet simulation model

Fig. 1(b) illustrates two processes that can help reduce the search space: reduce the number of para-

meters in the model and reduce the number of parameter configurations through judicious experiment de-
sign. The process of model reduction involves two main steps. First, restrict model parameters to only that
set of (n – r1) factors relevant to the questions under investigation. Second, identify parameters that can
be clustered together as facets of a single factor, leaving a reduced set of factors numbering (n – r1 – r2).
These two steps require expertise within the domain of investigation. In many cases, a reduced model pa-
rameter space remains infeasible to search, requiring two additional reduction steps to limit the number of
experiments. The first step involves selecting only two levels to assign for each parameter – reducing k to
2. Choosing appropriate levels requires domain knowledge. If the reduced search space of 2(n-r1-r2) remains
too expensive, then one can adopt an orthogonal fractional factorial (OFF) experiment design (Box, Hunt-
er and Hunter 2005) to further reduce the space to 2(n-r1-r2-r3), providing the most information possible for
the available resources.

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(a)

(b) Theory of Search-space Reduction (c) Search-space Reduction Applied

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

y1, …, ym = f(x1|[1,…,k], …, xn|[1,…,k])

Response State‐Space Stimulus State‐Space

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

 kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

kn

k(n‐r1)

k(n‐r1‐r2)

2(n‐r1‐r2)

2(n‐r1‐r2‐r3)

2‐level
experiment

design

model
restriction

factor
clustering

OFF (orthogonal fractional factorial)
experiment design

SCIENTIFIC
DOMAIN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

STATISTICAL
EXPERIMENT

DESIGN
EXPERTISE

Model Reduction

Experiment Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

(232)1000

220

28

k = 2

r1 = 944

O(109633) [1080 = atoms in visible universe]

(232)56 O(10539)

(232)20
r2 = 36

O(10192)

O(106)

r3 = 12 256

(232)1000

220

28

k = 2

r1 = 936

O(109633) [1080 = atoms in visible universe]

(232)64 O(10616)

(232)20
r2 = 44

O(10192)

O(106)

r3 = 12 256

Domain
Analyst

Statistician

Model
Reduction

Experiment
Reduction

(a)

(b) Theory of Search-space Reduction (c) Search-space Reduction Applied

Mills, Schwartz and Yuan

Fig. 1(c) illustrates the practical reduction we achieved in constructing a communication network

model intended to compare proposed congestion control algorithms for the Internet. Assuming a detailed
network model requires 1000 parameters, we identified 64 parameters germane to our investigation,
achieving an initial reduction of r1 = 936. Subsequently, we grouped some of the 64 parameters together
to create a reduction of r2 = 44, leaving the 20-parameter model that we describe below in Sec. 3. In Sec.
4 we give examples using a two-level, OFF experiment design to further reduce the search space.

3 THE MODEL

Table 1 identifies the 20 parameters composing our model TCP/IP network. We organize the parameters
into five categories: (1) network configuration, (2) sources and receivers, (3) user behavior, (4) protocols
and (5) simulation and measurement control. We discuss each category in turn, defining every parameter
in detail.

Table 1: Model Parameters
Category Identifier Name

Network
Configuration

X1 Topology
X2 Propagation Delay
X3 Network Speed
X4 Buffer Provisioning

Sources &
Receivers

X5 Number of Sources & Receivers
X6 Distribution of Sources
X7 Distribution of Receivers
X8 Source & Receiver Interface Speeds

User
Behavior

X9 Think Time
X10 Patience
X11 Web Object Size for Browsing
X12 Proportion & Size of Larger File Down-

loads
X13 Selected Spatiotemporal Congestion
X14 Long-lived Flows

Protocols
X15 Congestion Control Algorithms
X16 Initial Congestion Window Size
X17 Initial Slow Start Threshold

Simulation &
Measurement
Control

X18 Measurement Interval Size
X19 Simulation Duration
X20 Startup Pattern

3.1 Network Configuration

A network configuration requires a topology (parameter X1) of routers and links, as shown for example in
Fig. 2, adapted from the topology of a modern Internet service provider. MesoNet supports topologies
with up to three hierarchical router tiers: backbone routers (A-P in Fig. 2), point of presence (PoP) routers
(A1-P2) and access routers (A1a-P2g). To model heterogeneity in network access, MesoNet allows three
different types of access routers: D-class (e.g., eight red nodes in Fig. 2, which connect directly to back-
bone routers), F-class (e.g., 40 green nodes) and N-class (e.g., 122 small gray nodes). Classifying access
routers enables different speeds to be assigned to each class. As discussed later, sources and receivers
compose a fourth tier distributed below access routers. Packets flowing between a source-receiver pair
follow a single ingress/egress path between an access router and a top-tier backbone router. Propagation
delays on backbone links are an intrinsic property of the topology, which also specifies the paths taken by

Mills, Schwartz and Yuan

packets flowing among backbone routers. Parameter X2 can scale down (e.g., X2 = 0.5) or up (e.g., X2 =
2) propagation delays on all backbone links.

Figure 2: Three Tier Topology with 16 Backbone Routers (A-P), 32 Point of Presence Routers (A1-P2)
and 170 Access Routers (A1a-P2g) – 8 red and 40 green Access Routers may operate at different speeds

Unlike real networks, where links have transmission speeds and associated buffers, MesoNet assigns

transmission speeds to routers. Each router multiplexes packet forwarding from a single buffer shared
among all attached links. Because MesoNet packets have no size, router speeds are assigned in units of
packets/millisecond. Six parameters, shown in Table 2 col. 1, are needed to define the speed of all router
classes (col. 3), using relationships shown in col. 4. Note that every defined relationship includes parame-
ter s1. By assigning values to the remaining parameters, e.g., as in col. 2, one can establish reasonable en-
gineering relationships among the speeds of the various router classes. Then, by equating s1 with model
parameter X3, the speeds of all routers in a topology can be scaled appropriately by changing the value of
X3, as shown in cols. 5 and 6, which indicate the speed of each router class in packets/millisecond.

Table 2: Speed Relationships among Router Classes used to Scale Router Speeds with Parameter X3

Parameter Value Speed Relationships Speed Scaling with X3
s1 X3 Router Class Speed X3 = 800 X3 = 1600
s2 4 Backbone s1 x BBspeedup 1600 3200
s3 10 PoP s1/ s2 400 800
BBspeedup 2 N-Class s1/ s2/ s3 40 80
Bfast 2 F-Class s1/ s2/ s3 x Bfast 80 160
Bdirect 10 D-Class s1/ s2/ s3 x Bdirect 400 800

To provision router buffers, MesoNet allows buffer size (in packets) to be selected using any of four

algorithms: (1) RTT x C, recommended practice (Bush and Meyer 2003), where RTT is the average round-
trip time among all backbone routes and C is the capacity, derived from X3, for the router class; (2)
(nCRTT ×), recommended by some researchers (Appenzeller et al. 2004), where n is the expected num-
ber of flows transiting a router; (3) the average of (1) and (2); or (4) a designated value. In addition, a va-
riable, Qfactor, can scale the buffer sizes computed by the chosen algorithm. Thus, parameter X4 may be
a value pair (buffer sizing algorithm, Qfactor) or one may fix the buffer sizing algorithm and equate X4 to
Qfactor or fix Qfactor and equate X4 to a buffer sizing algorithm.

Mills, Schwartz and Yuan

3.2 Sources and Receivers

Given a three-tier topology of routers and links, a fourth tier of sources and receivers must be created and
then distributed under (and attached to) access routers. Sources equate to computers that have information
that receivers wish to download. The model fixes the number of receivers to be four times the number of
sources. The number of sources in a topology should be suited to the network speed, otherwise the net-
work will experience an inappropriate traffic load. To accommodate this engineering relationship, the
model includes a variable, baseSources, which should be set to a value appropriate for the network speed.
Model parameter X5 serves as a multiplier to scale the number of sources and receivers. For example,
given that baseSources = 100 and X5 = 3, then about 300 sources and 1200 receivers would be attached
to each access router – so the topology in Fig. 2, which has 170 access routers, would contain about
51,000 sources and 204,000 receivers. These numbers are only approximate because, as discussed next,
changing the distribution of sources and receivers causes adjustments.

Recall that access routers come in three classes, as show in Table 3 col. 1. The precise number of
sources under access routers of each type can be adjusted by assigning the probability, probNs, a source is
under an N-class router and the probability, probNsf, a source is under an F-class router. The probability a
source is under a D-class router is then 1 – (probNS + probNsf). For example, if each router class has a
target of 300 sources, then the total number of sources under three routers, one of each class will be (3 x
300 =) 900. Assigning probNs = 0.1 and probNsf = 0.6 would reapportion the 900 routers as shown in
Table 3 col. 3. Given the quantity of routers in each class (Table 3 col. 2), the total number of sources un-
der each router class would be as shown in Table 3 col. 4, and so the aggregate number of sources in the
topology would be 34,740 instead of 51,000. Table 3 col. 5 gives the proportion of sources in the topolo-
gy located under each router class. Similar computations can be made by assigning probNr and probNrf
to reapportion receivers, as shown in cols. 6 and 7, where the total number of receivers in the topology is
reduced to 122,880. Table 3 col. 8 gives the proportion of receivers in the topology located under each
router class. As discussed below, each source will periodically transfer a flow of packets, after randomly
selecting a receiver from under a parent backbone router that differs from the source’s parent backbone
router. Since access routers of different classes have differing speeds, the locations of a source-receiver
pair influence the characteristics of the path for each flow of packets. Table 3 col. 9 lists six possible flow
classes, as determined by the location of the source and receiver for a flow. For the parameters given in
the caption of Table 3, col. 10 shows the proportion of flows in each class. One can view NN-flows as a
form of peer-to-peer (P2P) traffic, while the remaining flow classes can be viewed as Web-centric traffic.
Table 3 represents a network with about 30% P2P flows and 70% Web-centric flows. Model parameter
X6 specifies the distribution of sources with a pair of probabilities (probNs, probNsf) and parameter X7
specifies the distribution of receivers with another pair of probabilities (probNr, probNrf).

Table 3: Sample Computation of Number and Distribution of Sources and Receivers
(given Fig. 2 and baseSources = 100, X5 = 3, probNs = 0.1, probNsf = 0.6, probNr = 0.8, probNrf = 0.1)
Class routers srcs/router #srcs % srcs rcvrs/router #rcvrs % rcvrs Flows %

N 122 90 10,980 31.6 960 117,120 95.3 NN 30.1
FN 60.5

F 40 540 21,600 62.2 120 4,800 3.9 FF 2.4
DN 6.1

D 8 270 2,160 6.2 120 960 0.8 DF 0.74
DD 0.05

The final property of sources and receivers concerns the maximum speed at which they can transfer

packets to the network. The model includes two settings: Hbase and Hfast, which specify a number of
packets/millisecond. For example setting Hbase = 8 corresponds to 8,000 packets/second, which equates
to 96 Mbps, assuming 1500-byte packets. Similarly, setting Hfast = 80 corresponds to 80,000 pack-

Mills, Schwartz and Yuan

ets/second, which equates to 960 Mbps. Parameter X8 specifies the probability that a source or receiver
connects at a speed of Hfast.

3.3 User Behavior

User behavior is modeled through periodic activity by sources. As shown in Fig. 3, sources cycle between
thinking and sending. (For simplicity, Fig. 3 omits a flow connection phase that occurs prior to sending,
and also the potential for connection failure after which a source reenters the thinking state.) As explained
later, a source may begin in either state. Prior to entering the Thinking state, a source selects a random
residence time from an exponential distribution with a mean given by parameter X9. Upon expiration of
residence, the source enters the Sending state, where a flow of packets is transmitted to a randomly se-
lected receiver. Once all packets in a flow are acknowledged, the source follows the Finished transition,
reentering the Thinking state. Flows may be associated with human users that have finite patience or with
programs that have infinite patience. Human users expect short flows to be completed within a reasonable
time and long flows to progress at a reasonable rate. Violation of these expectations cause a source to en-
ter the thinking state, following the appropriate failure transition: Too Slow or Too Long. Parameter X10
specifies the probability that a source has finite patience.

Figure 3: User Behavior Represented through Periodic Activity by Sources

Prior to entering the Sending state, a source selects a Web object size (in packets) from a Pareto dis-

tribution with shape parameter and mean , which define parameter X11. Alternatively, one can fix
and use X11 as the mean size. We adopt a Pareto distribution to mimic long-tailed file sizes observed in
Internet traffic (Crovella, Taqqu and Bestavros 1998). The model also allows sources to transmit larger
files in three categories: documents, software updates and movies, with corresponding multipliers (Fx, Sx
and Mx) that scale the selected Web object to a larger size. The model includes variables to specify a cor-
responding probability of transmission (Fp, Sp and Mp) for each category. Parameter X12 can be a set of
multiplier and probability pairs {(Fx, Fp), (Sx, Sp), (Mx, Mp)} or the multipliers may be fixed, allowing
X12 to specify a set of probabilities for transferring larger files. The probability of a Web object is 1 –
(Fp + Sp + Mp). The model also allows simulation of spatiotemporal congestion by specifying a time pe-
riod during which jumbo files will be transferred on every DD flow. Parameter X13 specifies this with a
set of three variables: proportion (Jon) of simulated time before jumbo files commence, proportion (Joff)
after which jumbo transfers cease and a multiplier (Jx) applied to convert Web object sizes into jumbo
files.

The model also accommodates simulation of long-lived flows that, once activated, send as many
packets as possible in the course of a simulation. Each long-lived flow is specified by four parameters:
proportion (Lon) of simulated time before the flow starts, access routers under which the source (sLoca-

Mills, Schwartz and Yuan

tion) and receiver (rLocation) are located and identifier (sType) for the congestion control algorithm used
by the source. If no sType is selected from Table 4 col. 2, then the congestion control algorithm will be
assigned using the probabilities given in col. 3. Each parameter set, LLFx = {Lon, sLocation, rLocation,
sType}, describes a single long-lived flow x. Parameter X14 consists of a set of sets {LFF1, …, LFFn} de-
scribing all long-lived flows in an experiment. MesoNet measures long-lived flows in detail, which per-
mits observation of behaviors in individual flows. In addition, long-lived flows can be positioned deter-
ministically within a topology to investigate effects of spatiotemporal congestion on individual flows.
Finally, because empirical results are available (Li, Leith and Shorten 2007) for long-lived flows sharing
a bottleneck link, behavior of MesoNet congestion control algorithms can be verified against empirical
measurements.

Table 4: MesoNet Congestion Control Algorithms, Identifiers and Probabilities of Source Implementation

Congestion Control Algorithm Identifier Probability of Source Implementation
Transmission Control Protocol (TCP) 1 prTCP
High Speed TCP (HSTCP) 2 prHSTCP
Compound TCP (CTCP) 3 prTCP
Scalable TCP (STCP) 4 prSTCP
FAST AQM Scalable TCP (FAST) 5 prFAST
Hamilton TCP (HTCP) 6 prHTCP
Binary Increase Congestion (BIC) 7 prBIC

3.4 Protocols

MesoNet was created to compare congestion control algorithms, which regulate the rate at which sources
send packets on individual network flows. A congestion control algorithm allows a source to estimate the
transmission rate available to a flow, to attempt to increase the rate, and to reduce the rate in response to
packet losses, which are assumed to result from network congestion on a path. Each source requires a
congestion control algorithm, such as TCP, which is implemented in most computers connected to the In-
ternet. In outline, standard TCP probes (during a process known as initial slow start) for available trans-
mission capacity on a flow by first sending a few packets and then increasing the rate exponentially as ac-
knowledgments arrive. When a packet is lost, TCP switches to a process known as congestion avoidance,
reducing transmission rate by 50% and then increasing the rate linearly on subsequent acknowledgments.
When repeated, the resulting behavior exhibits a saw-tooth pattern of increasing and decreasing transmis-
sion rate on a flow. As we explain elsewhere (Mills et al. 2010), various researchers have critiqued the ef-
ficacy of this behavior in future networks with increased capacities, leading to several proposals for alter-
nate congestion control algorithms intended to coexist with (or replace) standard TCP. MesoNet includes
models for seven congestion control algorithms, as shown in Table 4 (consult Mills et al. 2010 for the de-
tails of each algorithm). The variables listed in col. 3 can be set to specify the probability that a source
implements the related congestion control algorithm. Model parameter X15 comprises this list of proba-
bilities (which must sum to 1). We validated our model for each congestion control algorithm against em-
pirical results (Li, Leith and Shorten 2007 and Leith et al. 2008) from measured behavior of long-lived
flows in a small topology of Linux nodes. The empirical results plotted congestion window (cwnd) vs.
time for competing flows transiting a bottleneck link under various combinations of transmission capaci-
ty, buffer size and propagation delay. We simulated the same parameter combinations and generated plots
matching the empirical plots.

The six alternate congestion control algorithms listed in Table 4 only alter the TCP congestion avoid-
ance process, for initial rate probing they use the standard TCP initial slow start process. Upon connecting
to a receiver, a source first sends a specified number of packets, known as the initial congestion window.
As acknowledgments arrive from the receiver, the source increases the cwnd exponentially. Upon the first
lost packet, the source switches to congestion avoidance and adopts the procedures associated with the

Mills, Schwartz and Yuan

congestion control algorithm implemented by the source. Absent any losses, a source switches to conges-
tion avoidance once the congestion window reaches an initial slow start threshold (sst). Model parameter
X16 specifies the initial cwnd and X17 defines the initial sst.

3.5 Simulation Measurement and Control

MesoNet measures numerous aspects of each simulation run. Most measurements are time series, which
sample system state at periodic intervals of size M (parameter X18). Model parameter X19 is the number
(MI) of intervals to be recorded, so simulation duration is M x MI.

Model parameter X20 comprises a set of three variables: (1) probability a source starts in the Sending
state (prON), (2) probability (prONsecond) a source exits from an initial Thinking state after a random
time with mean 33 % of X9 and (2) probability (prONthird) a source exits from initial Thinking after a
random time with mean 66 % of X9. Sources exit initial Thinking after a random time with mean X9
with probability 1 – (prON + prONsecond + prONthird). Accelerating source startup helps a system to
reach equilibrium more quickly than would otherwise occur.

4 TWO SAMPLE EXPERIMENTS

To demonstrate the utility of our model, we describe two related experiments. We simulated a fixed to-
pology based on the Abilene network, explained elsewhere (Mills et al. 2010), operating for 60 minutes
with sources transferring a mix of Web objects, documents, software downloads and movies. Sources use
either standard TCP or one of seven (we added a second variant of FAST) alternate congestion control al-
gorithms. In one experiment, we simulated a modest sized network with up to 26,085 sources running at
moderate speed (up to 1600 packets/ms). In the second experiment, we increased network size and speed
by a factor of 10.

Based on earlier sensitivity analyses (Mills et al. 2010), we identified nine of the 20 model parameters
to vary and selected two values for each, which created (29 =) 512 parameter configurations. Comparing
seven congestion control algorithms under all configurations would require 3584 simulations, giving a to-
tal of 7168 for both experiments. Our facilities and available time allowed us to execute < 256 runs per
experiment. For this reason, we constructed a 29-4 OFF design, yielding 32 configurations against which
to run each of the congestion control algorithms. This required (32 x 7 =) 224 simulations per experiment.
Fig. 6 shows the 32 configurations used for experiment #1, where baseSources = 100. We adopted the
router speed relationships and values shown in Table 2. We fixed the buffer-sizing algorithm to RTT x C,
equating parameter X4 with Qfactor, which we varied. Since X11 leads to variation in file sizes, we fixed
multipliers for larger files (Fx = 10, Sx = 1000 and Mx =10000) and equated factor X12 with the probabil-
ities of transferring files of each size. We set Hbase = 8 and Hfast = 80. We used parameter X15 to speci-
fy the probability a source implements the designated alternate congestion control algorithm in place of
TCP. For the second experiment, we increased baseSources to 1000 and multiplied settings for network
speed (X3) by 10 to yield 32 additional conditions, requiring another 224 simulations. Table 5 reports the
values we fixed across all simulations for the remaining 11 model parameters.

5 MODEL IMPLEMENTATION & RESOURCE REQUIREMENTS

For each sample experiment, Table 6 reports the aggregate number of flows completed and data packets
sent, as well as the per run average, minimum and maximum. Table 7 recounts the processing (CPU)
hours required for both experiments, as well as the average memory usage. Table 6 shows that an order of
magnitude increase in network size and speed leads to a tenfold increase in flows completed and packets
sent. Table 7 shows a twelvefold increase in memory requirements, while processing time increased about
16 times. These resource increases must be understood in the context of SLX, which comes in two ver-
sions, requiring either 32-bit or 64-bit address space. Simulating the larger, faster network required SLX-
64, while the smaller, slower network could be simulated with SLX-32. In SLX-64, address references
require more memory. This accounts for the extra increase in memory usage. In addition, 64-bit opera-

Mills, Schwartz and Yuan

tions run more slowly than 32-bit operations and the large, fast model has larger event lists, which require
SLX additional time to manage.

Figure 6: 32 Parameter Configurations used to Simulate a Modest Size, Moderate Speed Network (red
values for X3 multiplied by 10 and baseSources increased to 1000 to Simulate a Larger, Faster Network)

Table 5: Fixed Values Assigned to 11 Model Parameters for All Simulation Runs Reported Here
Parameter Assigned Value

X1 Abilene Topology (Backbone: 11 routers and 14 links; 22 PoP and 139 Access routers)
X6 probNs = 0.1, probNsf = 0.6
X7 probNr = 0.6, probNrf = 0.2

X10 0 (all users have infinite patience)
X13 Jon = 1; Joff = 1; Jx = 1 (no explicit spatiotemporal congestion)
X14 no long-lived flows
X16 initial cwnd = 2 (default Microsoft WindowsTM value)
X17 initial sst = 231/2 (arbitrary large value)
X18 M = 200 ms
X19 MI = 18,000 (x .2 M =) 3600 s
X20 prON = 0.25, prONsecond = 0.08, prONthird = 0.17

Experiment #1 required 35 weeks of processor time, which we completed in only one week by run-

ning the 224 sequential simulations in parallel on 48 processors. Had we had 224 processors available, we
could have completed the simulations in just under two days (i.e., the maximum run required 44 processor
hours). Similarly, experiment #2 required 131 months (about 11 years) of processor time, which we com-
pleted in three months, again by running the 224 sequential simulations in parallel. Full parallelization
would have enabled us to complete these simulations in about 31 days (i.e., 739 hours).

Factor-> X2 X3 X4 X5 X7 X9 X11 X12 X15
Condition -- -- -- -- -- -- -- -- --

1 1 800 0.5 3 0.7 5000 100 0.04/0.004/0.0004 0.7
2 1 1600 0.5 2 0.3 5000 100 0.04/0.004/0.0004 0.3
3 2 800 0.5 2 0.7 5000 100 0.02/0.002/0.0002 0.3
4 2 1600 0.5 3 0.3 5000 100 0.02/0.002/0.0002 0.7
5 1 800 1 2 0.3 5000 100 0.02/0.002/0.0002 0.7
6 1 1600 1 3 0.7 5000 100 0.02/0.002/0.0002 0.3
7 2 800 1 3 0.3 5000 100 0.04/0.004/0.0004 0.3
8 2 1600 1 2 0.7 5000 100 0.04/0.004/0.0004 0.7
9 1 800 0.5 3 0.3 7500 100 0.02/0.002/0.0002 0.3
10 1 1600 0.5 2 0.7 7500 100 0.02/0.002/0.0002 0.7
11 2 800 0.5 2 0.3 7500 100 0.04/0.004/0.0004 0.7
12 2 1600 0.5 3 0.7 7500 100 0.04/0.004/0.0004 0.3
13 1 800 1 2 0.7 7500 100 0.04/0.004/0.0004 0.3
14 1 1600 1 3 0.3 7500 100 0.04/0.004/0.0004 0.7
15 2 800 1 3 0.7 7500 100 0.02/0.002/0.0002 0.7
16 2 1600 1 2 0.3 7500 100 0.02/0.002/0.0002 0.3
17 1 800 0.5 2 0.3 5000 150 0.02/0.002/0.0002 0.3
18 1 1600 0.5 3 0.7 5000 150 0.02/0.002/0.0002 0.7
19 2 800 0.5 3 0.3 5000 150 0.04/0.004/0.0004 0.7
20 2 1600 0.5 2 0.7 5000 150 0.04/0.004/0.0004 0.3
21 1 800 1 3 0.7 5000 150 0.04/0.004/0.0004 0.3
22 1 1600 1 2 0.3 5000 150 0.04/0.004/0.0004 0.7
23 2 800 1 2 0.7 5000 150 0.02/0.002/0.0002 0.7
24 2 1600 1 3 0.3 5000 150 0.02/0.002/0.0002 0.3
25 1 800 0.5 2 0.7 7500 150 0.04/0.004/0.0004 0.7
26 1 1600 0.5 3 0.3 7500 150 0.04/0.004/0.0004 0.3
27 2 800 0.5 3 0.7 7500 150 0.02/0.002/0.0002 0.3
28 2 1600 0.5 2 0.3 7500 150 0.02/0.002/0.0002 0.7
29 1 800 1 3 0.3 7500 150 0.02/0.002/0.0002 0.7
30 1 1600 1 2 0.7 7500 150 0.02/0.002/0.0002 0.3
31 2 800 1 2 0.3 7500 150 0.04/0.004/0.0004 0.3
32 2 1600 1 3 0.7 7500 150 0.04/0.004/0.0004 0.7

Mills, Schwartz and Yuan

Table 6: Flows Completed and Data Packets Sent in Simulation Runs Reported Here
 Experiment #1 – Slow, Small Network Experiment #2 – Large, Fast Network
Statistic Flows Data Packets Flows Data Packets
Avg./Run 11,466,429 3,414,017,482 116,317,093 33,351,040,358
Min./Run 7,258,056 2,138,998,764 72,944,797 21,069,357,409
Max./Run 17,390,781 5,048,119,166 175,947,632 50,932,067,100
Total All Runs 2,568,480,122 764,739,915,978 26,055,028,851 7,470,633,040,199

Table 7: Resource Requirements for Simulation Runs Reported Here

 Experiment #1 Experiment #2
CPU hours (224 runs) 5,857.18 94,355.28
Avg. CPU hours/Run 26.15 421.23
Min. CPU hours/Run 12.58 203.04
Max. CPU hours/Run 43.97 739.04
Avg. Memory Usage (Mbytes) 196.56 2,392.41

To compute the event rate at which SLX processes the simulations, we need to estimate the number

of events per packet. First, since every data packet receives an acknowledgment, the number of packets
must be doubled. Average source-to-receiver path length is 9.43 hops for the Abilene topology. Using
these figures, we estimate the number of events processed in all simulation runs for experiment #1 as
1.5E+13, which divided by the number of CPU seconds used becomes about 725,359 events/second. Tak-
ing a similar approach for experiment #2 yields an estimate of 439,864 events/second, where the cost of
64-bit processing and larger event lists causes MesoNet to run about 40% slower. These event rates can
be compared with those reported (Yaun et al. 2003) for RossNet, a parallel simulator for large networks.
Simulating synthetic topologies of 4 to 32 nodes on one, two or four instruction streams, RossNet aver-
aged 256,244 events/second. Simulating a larger network, based on an AT&T topology, RossNet aver-
aged 150,720 events/second. From this, we surmise that MesoNet, when implemented as a sequential
SLX simulation and used to run parameter configurations in parallel, can provide event rates competitive
with (perhaps superior to) approaches that execute individual network simulations using parallel
processing. For example, given 48 processors, a sequential simulator can execute 48 configurations in pa-
rallel, while a parallel simulator using 4 processors per simulation could run only 12 configurations in pa-
rallel. This implies that the parallel simulator would need a speedup of 4 to obtain the same throughput as
the sequential simulator. The RossNet results report average speedup just under 1.7 (maximum 3.2) for
synthetic topologies when using 4 instruction streams. For the larger topology, RossNet achieved a spee-
dup just under 1.3. On the other hand, if a sequential simulator has sufficient processors to simulate all
configurations in parallel, the run requiring maximum processing time will determine the simulation la-
tency. Under similar assumptions, the speedup achieved by a 4-processor parallel simulator would reduce
the simulation latency, but at the cost of requiring four times more processors than sequential simulations.

6 RELATED WORK

Providing feasible simulation of large, fast communication networks remains an active area of research.
Several researchers (e.g., Riley et al. 2004, Yaun et al. 2003, Zeng et al. 1998) investigate the use of pa-
rallel processing to simulate TCP/IP networks. For example, RossNet (Yaun et al. 2003) can simulate
large, fast networks with hundreds of thousands of simultaneous flows. Unfortunately, parallel simulation
alone does not reduce the parameter space required to explore a wide range of conditions. We demon-
strate an approach to reduce the parameter search space. In addition, as discussed above, the sequential
nature of data communication inhibits the ability of parallel simulators to achieve speedup matching the
number of processors employed. We describe an alternate approach using sequential simulations to ex-
plore multiple parameter configurations in parallel, where careful scheduling of runs achieves efficient

Mills, Schwartz and Yuan

speedup. Even so, parallel simulators deserve continued research because multi-core, multichip technolo-
gy promises substantial increase in the availability of cost-effective processors, which could significantly
reduce simulation latencies.

As an alternative to parallel simulators, several researchers (e.g., Towsley, Misra and Gong 2000, Yi
and Shakkottai 2007) propose to model communication networks as topologies where router behavior is
described approximately as fluid-flows, using differential equations. Such models may be solved effi-
ciently using numerical methods. While promising, fluid approximation currently exhibits two main
shortcomings: (1) inaccuracy (Geurts, Khayat and Leduc 2006) arising from an inability to satisfactorily
describe packet loss processes (Genin and Marbukh 2009) and (2) limited dynamics, capturing only
steady-state behaviors averaged over long time intervals (Lee et al. 2007). Genin and Marbukh (2009)
suggest one means to address these limitations. As another alternative to parallel simulators, Lee and col-
leagues (2007) propose a hybrid modeling framework that continuously approximates discrete variables
by averaging over short intervals of time. Constraining the averaging interval allows generation of signif-
icant events, such as packet drops and related adjustments in congestion windows. The approach yields
accurate results that can be produced with only about 20 % of the processing resources required by se-
quential discrete-event simulators. Further work remains to extend Lee’s hybrid model to have all the fea-
tures necessary to conduct experiments such as those we describe in Sec. 4. Regardless of the underlying
modeling approach adopted, the parameter and experiment reduction techniques we describe in this paper
should enable researchers to produce models that are easier to understand, parameterize and investigate.

7 CONCLUSIONS

We defined a concise TCP/IP network model that can be configured using only 20 parameters. Further,
we showed how the model can be combined with two-level orthogonal fractional factorial techniques to
design efficient experiments to investigate behavior under a wide range of conditions. Using SLX, we
implemented the model as a sequential process capable of simulating large (hundreds of thousands of si-
multaneously active flows), fast (hundreds of Gigabits/second) networks under a variety of congestion
control algorithms. We described how to carefully explore a parameter space using parallel instances of a
sequential simulator. We discussed resource requirements for the model and related performance proper-
ties of SLX. We found our approach competitive in throughput with a parallel simulator, but showed that
parallel simulators should achieve superior simulation latency at the cost of extra processors.

REFERENCES

Appenzeller G., I. Keslassy and N. McKeown. 2004. Sizing Router Buffers. In Proceedings of ACM
SIGCOMM, 34:4, 281-292.

Box, G., Hunter, J. and Hunter, W. 2005. Statistics for Experimenters. 2nd ed. Hoboken, New Jersey: Wi-
ley.

Bush R. and D. Meyer. 2003. Some Internet Architectural Guidelines and Philosophy. RFC 3439.
Crovella M., M. Taqqu and A Bestavros. 1998. Heavy-tailed probability distributions in the World Wide

Web. Chapter 1 in A Practical Guide to Heavy Tails, Chapman & Hall, 3-26.
Fall, K. and K. Varadhan, eds. 2009. The ns Manual. Available via

<http://www.isi.edu/nsnam/ns/doc/ ns_doc.pdf> [accessed December 2, 2009].
Henriksen, J.O. 2000. SLX: the X is for extensibility. In Proceedings of the 32nd Winter Simulation Con-

ference,183-190.
Genin, D. and V. Marbukh. 2009. Bursty fluid approximation of TCP for modeling Internet congestion at

the flow level. In Proceedings of the 47th Annual Allerton Conference on Communication, Control
and Computing, Paper ThD4.3.

Geurts, P., I. El Khayat and G. Leduc. 2006 On the accuracy of analytical models of TCP throughput. vo-
lume 3976 Springer.

Mills, Schwartz and Yuan

Lee, J., S. Bohacek, J. Hespanha and K. Obraczka. 2007. Modeling Communication Networks with Hybr-
id Systems. In IEEE/ACM Transactions on Networking, 15:3, 630-643.

Leith, D., L. Andrew, T. Quetchenbach, R. Shorten and K. Lavi. 2008. Experimental Evaluation of De-
lay/Loss-based TCP Congestion Control Algorithms. In Proceedings of the 6th International Work-
shop on Protocols for Fast Long-Distance Networks, 6 pages.

Li, Y.-T., D. Leith and R. Shorten. 2007. Experimental Evaluation of TCP Protocols for High-Speed
Networks. In IEEE/ACM Transactions on Networking, 15:5, 1109-1122.

Mills, K., J. Filliben, D. Cho, E. Schwartz and D. Genin. 2010. Study of Proposed Internet Congestion-
Control Mechanisms. NIST Special Publication 500-TBD.

Paxson, V. and S. Floyd. 1997. Why we don’t know how to simulate the Internet. In Proceedings of the
1997 Winter Simulation Conference, ed. S. Andradottir, K. J. Healy, D. H. Withers, and B. L. Nelson,
1037-1044.

Riley, G., M. Ammar, F. Fujimoto, A. Park, K. Perumalla and D. Xu. 2004. A Federated Approach to
Distributed Network Simulation. In ACM Transactions on Modeling and Computer Simulation, 14:2,
116-148.

SSFNet. 2009. How to use SSFNet. Available via
<http://www.ssfnet.org/internetPage.html> [accessed December 2, 2009]

Towsley, D., V. Misra and W. Gong. 2000. Fluid-based analysis of a network of AQM routers supporting
TCP flows with an application to RED. In Proceedings of SIGCOMM, 30:4, 151,160.

Tyan, H-Y., A. Sobeih and J. Hou. 2009. Design, Realization and Evaluation of a Component-based,
Compositional Network Simulation Environment. In Simulation, 85:3, 159-181.

Yaun, G., D. Bauer, H. Bhutada, C. Carothers, M. Yukel and S. Kalyanaraman. 2003. Large-Scale Net-
work Simulation Techniques: Examples of TCP and OSFP Models. In SIGCOM Computer Commu-
nications Review, 33:3, 27-41.

Yi, Y. and S. Shakkottai. 2007. FluNet: A hybrid internet simulator for fast queue regimes, In Computer
Networks: The International Journal of Computer and Telecommunications Networking, 51:18, 4919-
4937.

Zeng. X., R. Bagrodia and M. Gerla. 1998. GloMoSim: a Library for Parallel Simulation of Large-scale
Wireless Networks. In Proceedings of the 12th Workshop on Parallel and Distributed Simulations,
154-161.

AUTHOR BIOGRAPHIES

KEVIN L. MILLS is a Senior Research Scientist at the U.S. National Institute of Standards and Tech-
nology (NIST). He received his Ph.D. in information technology from George Mason University (GMU).
From 1996 to 2006 he served on the adjunct faculty of the department of computer science at GMU. From
1996 to 1999 he was a program manager at the Defense Advanced Research Projects Agency (DARPA).
His research interests include complex distributed systems. His email is <kmills@nist.gov>.

EDWARD J. SCHWARTZ is a Ph.D. student in the department of electrical and computer engineering
at Carnegie Mellon University. He contributed to this work at NIST as a summer university research fel-
low of the National Science Foundation. His B.S. in computer science is from Millersville University in
2007. His research interests include cyber security. His email is <edmcman@gmail.com>.

JIAN YUAN is an Associate Professor in the department of electronic engineering at Tsinghua Universi-
ty. He received his Ph.D. in communication and electronic systems from the University of Electronic
Science and Technology of China. Formerly, he contributed to this work at NIST as a guest scientist be-
tween 2000 and 2004. His research interests include complex distributed systems. His email address is
<jyuan@tsinghua.edu.cn>.

