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Abstract 
 
Several companies offer computation on demand for a fee. More companies are expected to enter this 
business over the next decade, leading to a marketplace for computation resources. Resources will be 
allocated through economic mechanisms that establish the relative values of providers and customers. 
Society at large should benefit from discoveries obtained through the vast computing power that will 
become available. Given such a computation marketplace, can economics-based resource allocation 
provide benefits for providers, customers and society? To investigate this question, we simulate a grid 
economy where individual providers and customers pursue their own ends and we measure resulting 
effects on system welfare. In our experiments, customers attempt to maximize their individual utilities, 
while providers pursue strategies chosen from three classes: information-free, utilization-based and 
economics-based. We find that, during periods of excess demand, economics-based strategies yield 
overall resource allocation that benefits system welfare. Further, economics-based strategies respond well 
to sudden overloads caused by temporary provider failures. During periods of moderate demand, we find 
that economics-based strategies provide ample system welfare, comparable with that of utilization-based 
strategies. We also identify and discuss key factors that arise when using economic mechanisms to 
allocate resources in a computation marketplace.  
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1. Introduction 
 
Several companies [1-3] offer computation on demand for a fee. More companies [4] are expected to 
enter this business over the next decade, leading to a marketplace for computation. Society at large should 
benefit from discoveries obtained through the vast computing power that will become available for tasks 
such as discovering drugs, designing engines and analyzing financial risks. Successful operation of a 
computation market requires some means to allocate resources among competing demands. Given the 
global scale expected in such a marketplace, centralized allocation schemes will prove infeasible; thus, 
some form of decentralized resource allocation must be used. Economic mechanisms, usually based on 
individual self-interest, have successfully allocated resources in many markets [5,6]. 

Can economics-based resource allocation in a computation marketplace prove effective at yielding 
benefits for providers, customers and society? To investigate this question, we simulate a grid economy 
where individual providers and consumers pursue their own ends and we measure resulting effects on 
system welfare. We build our grid simulation [7] on emerging industry standards for web services [8] and 
grid services [9], which are prerequisite to construct interoperable, large-scale computational grids that 
span the globe. We extend our simulated grid by introducing behaviors that allow consumers and 
providers to enter into service-level agreements, modeled after the WS-Agreement specification [10]. In 
our simulated grid, computation resources are supplied for prices that change dynamically based on 
supply and demand. Our simulated consumers strive to maximize their individual utilities while 
completing assigned computing tasks. Our simulated providers adopt strategies for admission control 
(deciding which jobs to admit) and task selection (deciding execution order for admitted jobs). We 
investigate provider-decision strategies chosen from three classes: information-free, utilization-based and 
economics-based (as described in Sec. 4.1). Our experiments compare how system performance differs 
with provider-decision strategy given varying customer demands. We find that, during periods of excess 
demand, economics-based strategies yield overall resource allocation that benefits system welfare. 
Further, economics-based strategies respond well to sudden overloads caused by temporary provider 
failures. During periods of moderate demand, we find that economics-based strategies provide ample 
system welfare, comparable with that of utilization-based strategies. 

The findings reported in this paper expand significantly on the scope and realism of previously 
reported research [11-18] into the use of economic mechanisms to allocate computation resources. First, 
we model a distributed marketplace through interactions of competing providers and consumers with 
realistic differences. Prices offered by providers vary based on individual experiences of supply and 
demand. Providers have differing cost bases and profit targets. Consumers have differing budgets and 
profit targets. Previous research either: (a) considered economic mechanisms to allocate the resources of 
only a single provider among multiple customers or (b) investigated centralized application of economic 
mechanisms for allocating resources across a collection of providers and consumers. Second, we define a 
metric for system welfare, conceived as aggregate utility across all providers, consumers and society (as 
indirect stakeholders). Most previous research considered welfare of an individual provider and did not 
include indirect stakeholders in a computation marketplace. Third, we adopt scenarios congruent with 
likely requirements of commercial operations. We relate deadlines of competing jobs to a defined 
workday and we consider demand ranges consistent with existing commercial experience [19]. Fourth, we 
investigate market robustness in the face of sudden, temporary failures among providers. Such failures 
may arise in computation marketplaces due to problems in the power distribution grid [20] or to attacks 
on selected provider sites [21]. 

  The remainder of the paper is organized as six sections (2-7). Section 2 outlines related work on 
allocating computation resources using economic mechanisms. Section 3 gives a brief overview of our 
model for a grid economy and defines key metrics used to measure and compare system performance. 
Section 4 describes our experiment design. Section 5 presents our simulation results and discusses our 
findings. Section 6 outlines future work. We close in Sec. 7 with conclusions.  
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2. Related Work 
 
The emergence of cluster and grid computing has stimulated significant interest in finding effective 
methods to allocate computation resources. Several researchers have investigated how economic and 
market-based mechanisms could be used to allocate computation among competing users. After surveying 
the work of other researchers, we distinguish our contributions.  

Chun and Culler [11] compare value-based scheduling against traditional alternatives (e.g., first-in, 
first-out and priority scheduling) for ordering job executions in a cluster of processors. Job value is 
expressed as a piecewise linear utility function where jobs have a given value until a deadline and then 
decay at a defined rate until becoming valueless. Chun and Culler assume a job mix where 20% of jobs 
have a high value and also high decay rates (100 times steeper than for low-value jobs) and then compare 
how well various scheduling algorithms perform when jobs are submitted in batches to a simulated 
compute cluster. Job arrival times and job lengths are drawn from a normal distribution and job widths 
(i.e., number of required processors) are sampled from a uniform distribution. The paper by Chun and 
Culler is notable because it sets out some assumptions adopted by subsequent researchers. First, the paper 
defines the notion of a piecewise linear utility function for job values (though subsequent researchers 
extend the function to allow negative utility). Second, the paper defines the notion of low-value vs. high-
value jobs and low-urgency vs. high-urgency jobs and then defines an 80/20 mix of jobs by value and 
urgency. Subsequent researchers also adopt this job mix. 

  Yeo and Buyya [12] investigate how economic reasoning can be used to control job admission in a 
single compute cluster when arriving jobs have varying deadlines, values and decay functions – but where 
decay is unbounded and utility may become negative. They adopt the same 80/20 mix of job values as 
Chen and Culler, but divide jobs into two classes: hard deadlines and soft deadlines. For jobs with soft 
deadlines, 20% have high urgency. An arriving job that enhances the aggregate value of the cluster’s 
schedule is admitted. Admitted jobs are scheduled using a proportional share algorithm. Yeo and Buyya 
vary the proportion of jobs with hard vs. soft deadlines and quantify the improvement of allowing soft 
deadlines with decreasing utility functions against insisting that all jobs have hard deadlines. 

Irwin and colleagues [13] investigate admission control and scheduling in a single cluster where 
arriving jobs have varying deadlines, values and decay functions (with either bounded or unbounded 
penalties). An arriving job is provisionally admitted to the schedule and then a resulting reward and risk 
are computed. Reward is the increase in schedule value from accepting the new job and risk estimates the 
effects of accepting the job on the ability to accept future jobs. The admission function computes a score 
based on relative weights assigned to reward vs. risk and then admits the job if the score exceeds a 
threshold. Irwin et al. adopt an 80/20 mix of job values and urgencies but experiment with various skews 
for high value (up to 9 times) and urgency (3 to 7 times) and with various admission thresholds. 

 Popovici and Wilkes [14] investigate a single service provider where admission decisions are made 
based on whether an arriving job is likely to increase provider profit given that jobs are executed 
according to a schedule chosen from among various economic and traditional (e.g., shortest-job first or 
longest-job first) criteria. The service provider rents processors from multiple resource providers in a 
secondary market in order to serve arriving jobs. The secondary market enables provider costs to vary 
with time; however, a single provider is unable to reflect price changes due to competition with other 
providers. Popvici and Wilkes model jobs that can be spread across a variable number of processors, 
depending upon resource availability. Such jobs run faster when more processors are available and more 
slowly otherwise. Job values have a piecewise utility function with unbounded penalties. 

AuYoung et al. [15] extend the work of Popovici and Wilkes by relating submitted jobs into a larger 
framework of contracts negotiated between clients and service provider. The framework allows clients to 
specify the overall value of a set of jobs in addition to the value of individual jobs. The service provider 
makes admission decisions on contracts and then considers the contract along with job value in deciding 
individual job admissions. AuYoung and colleagues experiment with various contract admission 
functions, such as always accepting contracts, accepting contracts when utilization remains below a 
desired level and accepting contracts when the added value exceeds some threshold. Previously accepted 
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contracts may be cancelled in order to accept more lucrative contracts. Maximum cancellation penalty is 
the value of a job. Provider costs may vary over time (through a secondary market for resources). The job 
mix consists of the usual 80/20 proportion of low vs. high value and urgency. AuYoung et al. introduce a 
delay of 1.5 times job length before a job begins to decay in value. The service provider is assigned a 
target profit margin of 50%. 

Wolski et al. [16] allocate computation (and disk storage) resources among multiple providers and 
clients using a centralized marketplace: either a commodity market or an auction. Jobs are injected in 
batches at the beginning of each simulated workday and also arrive sporadically over the course of each 
day. Wolski and colleagues simulate a commodity market based on an engineering approximation of 
Smale’s algorithm [22] and compare resource allocation under that regime against an optimal 
implementation of Smale’s algorithm and against allocation decided through an auction clearinghouse. 
They demonstrate that auctioning leads to lower resource utilization given situations where supply 
exceeds demand. In other results, they demonstrate that auctioning performs more competitively during 
overload. 

Gomoluch and Schroeder [17] compare continuous double auctions, proportional share and round-
robin resource-allocation algorithms to determine conditions under which market-based resource 
allocation proves superior. They simulate multiple clients and service providers interacting through a 
centralized clearinghouse that matches client requests with available provider capacities. As in Wolski et 
al., service providers and clients are given no possibility to reject matches assigned by the market. 
Gomoluch and Schroeder experiment with a restricted set of characteristics including identical job size, 
identical server capacity, identical prices and loads that never exceed 90%. 

Vengerov [18] investigates tractable algorithms that a server could use to schedule jobs that may be 
repackaged during run time to use more or fewer processors in tradeoff for faster or slower execution 
time. He uses a piecewise linear utility function without penalty but allows job value to begin decaying 
only after twice the shortest feasible run length. Run lengths and maximum job widths are sampled from 
uniform distributions. All jobs have the same basic value and decay rate. Vengerov experiments with 
three clusters each with 24 processors, where each cluster appears to have been given an independent 
stream of job arrivals. 

As we describe in our survey, most of the related research considers multiple jobs arriving at a single 
server or considers a centralized market when clients are matched up with a service from among those 
available. Examining a single provider reveals nothing about the effects of competing customers and 
providers interacting in a marketplace. The use of centralized markets is probably unrealistic for 
computation economies of global size. The spatiotemporal demands of a global market make it unlikely 
that a central clearinghouse could capture all available providers and serve all available customers. 
Further, most real economies allow customers and providers to negotiate, rather than to accept assigned 
matches. More likely, indices will be deployed and customers will search independently for providers 
with which to conduct negotiations. In such a distributed market, most customers will be unable to find 
and process information from all providers; thus, customers will adopt heuristics for finding and selecting 
providers for negotiation and providers will use heuristics for admitting and scheduling customers and 
will also be free to adjust prices based on such interactions. This, then, is one key contribution of our 
paper – we represent a plausible distributed market where multiple customers and providers interact over 
space and time while pursuing their self-interests. 

Our survey of related work also reveals that most researchers measure system performance through 
observing effects on the value or profit generated by a single provider. In a system with competing 
providers and customers a broader measure is required. The interests of the providers must be aggregated 
but the interests of the customers must also be assessed. Further, customers are running computations for 
some perceived social benefit; thus, society at large must be represented. This, then, is a second 
contribution of our paper – we define a metric to represent aggregate system welfare and we compare our 
candidate admission and task selection algorithms using this metric. 

Most of the work we surveyed represents jobs (or batches of jobs) as a continuous stream where inter-
arrival times are modulated to vary system load. This abstract approach causes job deadlines to vary so as 
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to mask real-world effects that appear when jobs arrive in batches early within a workday and must be 
completed before day’s end. Most extant research also considers system operation under conditions where 
capacity remains unchanged during experiments. This does not allow investigation of system performance 
when power outages or cyber attacks cause temporary disruptions. Our paper adopts realistic scenarios 
where jobs arrive in a concentrated period at the beginning of a workday and thus compete to finish by 
similar deadlines. We also investigate how a computation marketplace behaves under sudden, temporary 
disruptions.   

The bulk of the simulations we surveyed use abstract mathematical representations of component 
behaviors, which enable reasonable evaluation of algorithms for admitting jobs and for orchestrating their 
execution. Using abstract representations does not, however, enable consideration of the influence of 
system configuration details or allow one to evaluate whether emerging standards for web services and 
grid services can support proposed algorithms. Our models simulate underlying web services and grid 
services in significant detail, which allows us to formulate admission control and execution control 
schemes consistent with emerging standards. Elsewhere [23], we provide an in-depth investigation of the 
ability of web services and grid standards to support a computation marketplace. 
 
3. Overview of Model and Metrics 
 
We model a computation marketplace as a collection of components (clients, service providers and 
directory servers) interacting via messages across a communications network. Details of the fundamental 
components can be found elsewhere [7]. Here, we provide an overview of the model and then discuss task 
characteristics (Sec. 3.1), provider behaviors (Sec. 3.2) and client behaviors (Sec. 3.3). In Sec. 3.4, we 
define metrics relevant for the experiments reported in this paper, especially a metric for system welfare, 
conceived as aggregate utility across all providers, consumers and society (as indirect stakeholders). 

  Our model represents a marketplace in which providers sell computation resources for a profit while 
clients seek to maximize their utility while obtaining resources on which to execute tasks under budget 
and time constraints. The average market price is chosen initially to balance provider costs with client 
budgets; we define behaviors to vary price in response to supply and demand. Model components are 
distributed over a simulated topology of sites, where relative distances among sites influence 
communication delays experienced by messages exchanged among components. Clients, service 
providers and directory servers are constructed from simulated web services [24-26]. The directory 
servers, modeled after the Globus Toolkit 4 [27], also rely on service groups [28], which are linked 
together through simulated query aggregators to form a global directory.  

Service providers insert descriptions of offered computation resources into local directory servers and 
those descriptions propagate throughout the global directory. Clients query selected directory servers for a 
bounded list of providers with resources matching their needs and then query each of those providers for 
pricing and availability. Using this additional information, a client prioritizes providers based on some 
criteria and then negotiates with the highest priority provider to establish a contract, or service-level 
agreement (SLA) [29], to execute a task under specified terms and conditions. A SLA allows clients and 
providers to understand exactly what each party is expected to provide in order to complete a task and 
resolve payment. 

Our model implements the concepts that underlie SLAs as expressed in the WS-Agreement 
specification [10]. An agreement identifies relevant parties involved in a contract and describes the terms 
that each party is expected to fulfill. The agreement also specifies rewards each party is to receive upon 
fulfilling terms and penalties incurred in the event of failure to do so. In our model, agreement terms 
include: expected task duration, number of cycles needed, number of processors needed, task deadlines, 
fee to be paid to provider if target deadline is met, rate at which fees decay if tasks are delayed beyond the 
deadline, penalty fees to be paid if terms are violated, and network addresses where input data can be 
retrieved and where output is to be sent. We map SLA terms into data structures reflecting the structure of 
agreements as specified in WS-Agreement [10]. Once task execution completes or is aborted or otherwise 
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terminated, agreement terms are used to determine the fee or penalty to be paid, and then funds are 
exchanged electronically. 

As specified by WS-Agreement [10], providers in our model make available a downloadable template 
that provides an outline of proposed agreement terms and creation constraints, i.e., bounds on the values 
terms may assume. In our model, creation constraints include the provider’s current level of resource 
utilization and an associated fee schedule. The level of resource utilization allows clients to estimate the 
likelihood of task completion by a particular time. Clients download the template and instantiate it with 
specific values, using the creation constraints to determine appropriate ranges for deadlines and fees. An 
instantiated template is forwarded as an offer to the associated provider. Our model follows the 
negotiation protocol employed in WS-Agreement: a provider immediately acknowledges receipt of an 
offer and subsequently determines whether to accept or reject an offer. (Determination procedures 
implemented in our model are described below in Sec. 4.1.) The provider then sends the client an 
acceptance or rejection, which concludes the negotiation. (In WS-Agreement, further counteroffers by 
client or provider are not allowed; thus, renegotiations are viewed as new negotiations.) Upon acceptance, 
a client submits the accepted task to the provider. After a rejection, the client negotiates with the next 
highest priority provider and so on. If all providers reject offers, the client waits for some time and then 
queries the directory server again. Each client continuously repeats this cycle of discovery and negotiation 
until its tasks are completed or overtaken by other events.    
 
3.1 Task Model 
 
Each client is assigned a set of independent tasks and a budget. Each task has a pFtsk (number of 
processors required in parallel) and pLtsk (duration for which the processors are required), where pFtsk ×  
pLtsk ×  pCcyc = pCtsk (total processor cycles required for a task). Once selected, a task’s pFtsk and pLtsk 
remain unchanged. Each task also has an associated (piecewise linear) value function (see Fig. 1) 
describing its revenue (rtsk) if completed by a target deadline (Dtsk) and a rate of decay in revenue (ktsk) if 
the task is completed after Dtsk. If a task completes at Etsk > Dtsk, then rtsk is reduced. In general, a client 
receives revenue for a task according to the following function: 
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Figure 1. Piecewise linear decay over time in the value of a task. 
 
If a task does not complete before its maximum deadline, then the client receives no revenue. In our 
simulation the target (Dtsk) and maximum (Mtsk) deadlines for a task are drawn from distributions 
(discussed in Sec. 4.2) that provide a cushion of about 3 to 3.5 times the typical run length before a task 
begins to decay in value. Once Dtsk and Mtsk are known, ktsk can be determined as follows: 
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In order to make a profit, a client must obtain computation resources that cost less than the revenue 

gained from completing its tasks. Each client is assigned a target profit margin mtrg that represents the 
percentage of its budget that should be profit. A minimum profit margin mmin constrains spending on 
tasks. To establish task budgets, we first determine a system-wide per cycle average base price pCAvg , by 
averaging individual provider per cycle base prices bbase across the set of all providers, where (6) below 
defines how each provider computes a bbase. Given pCAvg a task’s cost can then be estimated initially as 
 
                                                              ctsk = pCAvg ×  pCtsk.                                                                       (3) 
 
From this, the maximum revenue for a task (rtsk) can be calculated as 
 
                                                                rtsk = ctsk / (1 – mtrg).                                                                     (4) 
 
The maximum task budget (i.e., the most a client is willing to pay) is set to rtsk – (rtsk ×  mmin), while the 
minimum task budget is set to rtsk – (rtsk ×  mtrg). When the potential revenue for a task begins to decay 
(Etsk > Dtsk), client willingness to pay decays at the same rate (ktsk). If a provider accepts a task but does 
not complete the task prior to Mtsk, then the task is canceled and the client is reimbursed a penalty equal to 
ptsk ×  rtsk, where ptsk is the penalty rate established in the agreement between client and provider. 

 
3.2 Provider Model 
 
We model each provider as a set of compute resources, where each resource offers some number of 
parallel processing elements that can supply computation cycles to execute application code uploaded by 
clients with which the provider establishes agreements. Each provider admits and executes jobs 
independently of other providers. A provider’s processing resources are not accessible directly to clients. 
Instead, each provider implements a front-end process to advertise characteristics of the processors, to 
accept requests from clients for current pricing and availability, and to spawn client proxies to process 
client offers and to monitor execution of client tasks. Advertisements from a provider for each of its 
processing resources include: number of parallel processing elements (pF), speed of each processing 
element (pS cycles/second) and a price schedule (pCcyc cents per compute cycle). For the experiments 
conducted in this paper, we limited each provider to manage a single resource, which here represents a 
compute cluster. We adopted this restriction to enable us to better analyze our results. We varied pCcyc 
among providers to represent differences in operating costs for the providers. We adopted the same pS for 
all processing elements under the assumption that our providers were in a competitive market where they 
maintained their processing elements at the forefront of the price-performance curve available from chip 
manufacturers.   

The client proxies spawned by a provider interact with its compute resources through a simulated job 
manager modeled after the Distributed Resource Management System [30]. Our model adopts a queuing-
based resource management system, which is the class used most widely among high-performance 
computers today [31]. A proxy submits a client offer to an admission controller that makes acceptance 
decisions. If an offer is accepted, then the admitted task is placed on a queue of pending tasks until a 
sufficient number of processors become available to execute the task. A task selector decides when 
queued tasks may execute. Multiple tasks may execute simultaneously, provided their combined pFtsk 
requirements do not exceed the pF of a provider’s processing resource. When a provider’s processing 
resource does not have sufficient free processors to execute a task then the task is delayed until some 
executing tasks finish (i.e., our model does not include preemption). When a task at the head of the queue 
must be delayed, a task selector may backfill with tasks from deeper in the queue – provided those tasks 
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fit within the free processors. The job manager monitors task status on behalf of the client proxies 
associated with executing tasks. 

The provider architecture in our model separates activities of the admission controller, the task 
selector and the job manager into logically distinct processes. The admission controller has access to the 
entire queue of accepted tasks (both pending and executing) and the characteristics of those tasks. The 
admission controller can use task characteristics when making an admission decision; however, the 
admission controller in our model cannot be certain about the precise time remaining for executing tasks. 
This uncertainty arises because the task run-time estimates might prove inaccurate and because task 
execution times might be perturbed by checkpointing overhead and by overhead associated with 
overcoming failures in processing elements. For this reason, when considering admission decisions, the 
admission controller uses heuristics to estimate the run-time remaining for currently executing tasks. 

Each provider has a price monitor that adjusts its price schedule to reflect resource utilization and 
clients’ willingness to pay. In our model, the price schedule is set initially based on provider cost and 
desired profit margin. Each provider is assigned a cost for executing a compute cycle, pCcyc, and a 
minimum profit margin, mmin. Knowing the pF, pCcyc, and pS associated with a provider resource, one can 
calculate total system cost for the provider (cprv) over a given system lifetime (Lsys) as   
 
                                                      cprv = pF ×  pS ×  pCcyc ×  Lsys                                                               (5) 
 
Knowing cost pCcyc, and the minimum profit margin mmin, and having an estimate of the expected load, 
uexp, the provider can determine a base price bbase for a compute cycle, which the provider must minimally 
charge to obtain an acceptable profit,   
                      

                             bbase = pCcyc / uexp ×  (1 + mmin),                                                           (6) 
 
where pCcyc / uexp represents a breakeven cost. 

The provider forms a price schedule, in which Lsys is divided into a set of n intervals, i = 1...n, with the 
asking price i

askb  listed for each interval. Initially, each i
askb  is set to bbase.  To adjust the price schedule, the 

price monitor periodically computes the average per cycle price i
avgb from fees for jobs pending in each 

future interval i, calculates the processor utilization ui for each future interval, and updates i
askb  

 
                                                             i

askb = i
avgb  + (ui/uexp - 1)1/2.                                                               (7)            

 
In this scheme, asking prices fluctuate to reflect expressed willingness to pay (demand) by clients and 
provider utilization (supply). Higher willingness to pay and higher utilization lead to higher asking prices. 
The model implements a policy that providers will not advertise prices that yield profit margins below 
mmin; therefore, if i

askb < bbase, the provider advertises bbase. As providers enter into agreements and 
complete tasks, they accumulate revenue (rprv) from which they calculate their profit, pprv = (rprv - cprv). 
Recall that any task delayed beyond an agreed time (Dtsk) decays in revenue at an agreed rate (ktsk), so 
providers receive decreased revenue for delayed tasks. Further, a task that is not completed by an agreed 
deadline (Mtsk) incurs a penalty that is subtracted from provider revenue (and added to client revenue). 

Each provider strives to maximize its profit (pprv) over system lifetime (Lsys).  To do this, a provider 
must be selective about which offers to accept and about the order in which accepted tasks are executed. 
To that end, each provider executes an admission algorithm to determine which offers to accept and 
which to reject. Each provider also employs a task-selection procedure to decide which task (if any) to 
run when processors become available. In this paper, we compare various admission algorithms and task-
selection procedures that consider economic as well as other criteria. We postpone describing these 
algorithms and procedures until Sec. 4. 
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3.3 Client Model 
 

We model each client as a set of independent tasks that proceed in parallel. Here, we describe the actions 
of the client on behalf of each task. The client discovers a subset of providers that each has a sufficient 
number of processors (pFtsk  < pF) to execute the task. The client then iterates over the price schedule of 
each discovered provider to find the interval where the provider yields maximum utility, defined as r’tsk - 
ctsk, where r’tsk is determined by (1) and ctsk for each interval i is computed by i

askb ×  pCtsk. The client then 
orders providers on the basis of decreasing maximum utility and sends an offer to the provider that 
promises greatest utility. An offer includes a target deadline (Dtsk), maximum deadline (Mtsk), rate of 
decay (ktsk), and proposed fee. The proposed fee is a minimum of ctsk and the client’s maximum budget for 
the task. This prevents the client from overspending. If ctsk is less than the minimum budget, then the 
proposed fee is the minimum budget. This gives enhanced incentive for the provider to accept and 
execute the task. If the provider accepts the offer, then the client submits any required data and monitors 
execution progress. If negotiation fails, then the client makes an offer to the provider promising next 
greatest utility, and so on down the list until all discovered providers are exhausted. If no offer is 
accepted, then the client waits some time before restarting the discovery process. 
 
3.4 Metrics 
 
We instrumented our simulation to collect various measurements, divided into two general categories: 
system-related metrics and causal metrics. We formally define our system-related metrics and we 
informally describe the others. 

System-related Metrics. We devised an overall measure of system welfare to reflect (a) aggregate 
monetary benefits to clients (Bcli) and providers (Bprv) within a computation marketplace and (b) indirect 
benefits (Pfin) to a larger community who benefit from completed computations. We combine client 
benefit, provider benefit and social benefit to compute system welfare (S) as  
 
                                                                 S = (Bcli + Bprv) ×  Pfin.                                                                 (8) 
      

Indirect benefits to the larger community are generally difficult to quantify because some 
computations may result in discoveries that lead to greater societal value than others. Absent specific 
information about the ultimate social value of individual computations, we assume that a higher rate of 
task completions will yield a higher social benefit in aggregate; thus, we measure indirect benefits 
through the proportion of completed tasks, regardless of revenue or profit realized by clients or providers. 
Let V be the set of all tasks submitted by all clients during Lsys and let W be the set of tasks completed by 
all providers during Lsys. The proportion of tasks that are finished by Lsys is defined as Pfin =  |W|/|V|.  

We estimated aggregate client and provider benefits more directly. Aggregate client benefit (Bcli) is 
defined as the ratio of client profit (revenue minus cost) to potential revenue for all tasks 
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Note that aggregate client benefit might decline at high load levels as available processors become harder 
to find, causing tasks to cost more and to incur higher delays (leading to lower client revenue). 

Similarly to client benefit, aggregate provider benefit (Bprv) is defined as the ratio of profit ( prvp ) 
obtained by all providers P to the potential of revenue available from all clients U during Lsys, i.e., 
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The denominator defines all revenue that could possibly be available to providers. This is the revenue 
available to clients less the minimum profit amount that clients are willing to accept. In our model, 
individual clients may have different minimum profit margins and so we compute an average profit 
margin from the individual profit margins and use that average to determine the aggregate amount of 
client revenue that will be reserved to the clients, and thus unavailable to the providers. 

Omitted from system welfare (8) are communication costs for clients to discover and negotiate with 
providers. We decided to account for communication costs as system overhead, measured in terms of a 
normalized number of messages transmitted to discover providers and negotiate for task admissions. 

We measured discovery overhead in terms of normalized messages transmitted to complete 
discovery. As a normalizing constant, we estimated an expected number, Xdis = 56, of query and response 
messages needed for a typical task to complete one round of discovery by retrieving service descriptions 
from all directory servers for an average number of relevant providers. We measured the actual number of 
discovery messages (Mdis) for each task in V. The ratio of Mdis over Xdis defines relative discovery 
overhead (in units of Xdis) for a task. We computed the average discovery overhead ( disO ) across all tasks 
in V as 
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∑
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                                                                  (11) 

disO  denotes disO  averaged over all experiment repetitions for a given load. 
We measured negotiation overhead in terms of normalized messages transmitted to complete a 

successful negotiation. As a normalizing constant, we estimated an expected number, Xngt = 23, of 
inquiry, offer, decision, and response messages exchanged between a client and an average number of 
providers for a typical task to conclude a successful negotiation. We measured the actual number of 
negotiation messages (Mngt) for each task in V. The ratio of Mngt over Xngt defines relative negotiation 
overhead (in units of Xngt) for a task. We computed the average negotiation overhead ( ngtO ) across all 
tasks in V as 
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∑
=
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                                                              (12) 

 
ngtO denotes ngtO  averaged over all experiment repetitions for a given load. Summing discovery and 

negotiation overhead provides a measure of the communication cost (C = 
disO +

ngtO ) incurred to achieve 
the corresponding system welfare. 

Causal Metrics. We computed PAdm, the probability a task was admitted, PCan, the probability a task 
was canceled, and PAcc, the likelihood that providers accepted offers. Further, we categorized task types 
based on relative potential value (high or low) and recorded the proportion of task completions in each 
category. 
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4. EXPERIMENT DESCRIPTION 

Our model consists of about 40 factors that might justifiably be investigated for influence on the behavior 
of a computation marketplace. Even limiting each factor to two levels would require at least 240 
simulation runs, which would be computationally infeasible. For this reason, we limited our experiments 
to a computationally feasible set that we believed would yield significant insights. In this regard, we 
focused our current investigation on the influence of provider decision strategy over system welfare under 
selected mixes of provider types. We also investigated whether the effects of site outages would change 
our observed results. To accomplish our aims, we defined three experiments to compare up to eight 
provider strategies; each strategy paired an admission algorithm with a task-selection procedure. For a 
given experiment, we instantiated topologies (each consisting of a fixed number of sites for providers, 
clients and directory servers that were placed at random locations) and subjected those topologies to 
varied system workload from low levels (5% to 45%) through normal operating ranges (50% to 100%) 
and finally into overload (105% to 200%). Each experiment considered a different scenario: (a) 
homogeneous, (b) heterogeneous or (c) failures-prone. In this section, we first describe our provider 
strategies for deciding admission and task-execution order and then specify experiment topologies and 
workload generation. We close the section by outlining the experiment scenarios. 
 
4.1 Provider-Decision Strategies 
 
Our simulated providers adopted paired strategies for admission control (deciding which tasks to admit) 
and task selection (deciding execution order for admitted tasks). We investigated provider-decision 
strategies chosen to represent three classes: information-free, utilization-based and economics-based. 
Information-free decision strategies are easy to implement, requiring no information and little provider 
processing cost. Such strategies serve as a baseline for experiments because any provider-decision 
strategy that requires information and significant calculation should yield improved system performance 
over that obtained when using information-free strategies. Utilization-based strategies represent the state-
of-practice for admission control and task selection in computational grids. Such strategies restrict 
admission only after a provider reaches a specified threshold for a selected measure of utilization (e.g., 
number of tasks queued or percentage of resources committed). Utilization-based admission-control 
algorithms can be combined with a variety of well-known task-selection algorithms (e.g., shortest-job 
first, priority or first-come-first-served). Economics-based strategies consider the effects of admitting a 
task on the overall value or profits of previously admitted tasks. Economics-based strategies also consider 
relative values or profits of admitted tasks when selecting the order in which tasks will execute. To limit 
our study, we chose six (paired) strategies. 

We defined two information-free strategies: no control (NoCon) and random (Rand). Providers using 
the NoCon strategy admitted all offered tasks (except those that could not be completed by their 
maximum end time) and executed admitted tasks in the order they were admitted (first-come-first-served). 
Providers using the random strategy flipped a fair coin to decide whether or not to admit each offered 
task. Subsequently, when resources become available Rand providers also flipped a fair coin to select 
which of the queued tasks to execute, where each eligible task had an equal chance of being selected. 

We defined two utilization-based strategies: shortest-job first (SJF) and first-come-first-served 
(FCFS). Both strategies applied the same admission criteria, based on the percentage of resources 
committed over the period during which a task could execute. Resource commitment was computed using 
a straightforward procedure: the pF requirements and run times of the proposed task and previously 
admitted tasks were used to calculate potential utilization within the period delineated by the maximum 
end time (Mtsk) of the proposed task. If the calculated utilization exceeded a predetermined threshold, then 
the task was rejected. Otherwise, it was admitted. We chose a threshold of 95% utilization, which yielded 
the best performance among a variety of thresholds (ranging from 70% to 105%) that we tested. The two 
utilization-based strategies were distinguished by the procedure used to order tasks for execution. SJF 
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ordered tasks by increasing run length (pLtsk), allowing short tasks to run earlier. FCFS attempted to run 
tasks in the order they were admitted. 

A number of researchers have proposed economics-based strategies for admission and execution of 
computational tasks [e.g., 11-18]. We defined two such strategies: net-profit increase (NetPro) and net-
value increase (NetVal). The NetPro strategy, motivated by proposals from Popovici and Wilkes [14], 
admits a proposed task only when the potential profit of the task exceeds the lost value due to decay, ktsk 
×  (Etsk – Dtsk), in revenue that would accrue if the proposed task were admitted. Thus, when using the 
NetPro strategy a provider may choose to delay less valuable tasks to admit or execute profitable tasks. 
Prior to admitting a proposed task, jnew, the set of previously admitted tasks, {j1,…jn}, ordered by 
decreasing profit (i.e., revenue minus cost), which denotes the predicted execution order of the tasks, has 
an aggregate value, R, which is the sum of r’tsk over all admitted tasks. Integrating a proposed task into the 
existing set, {j1,…jnew, jk…jn}, yields an adjusted value R’, which may reflect revenue decrease due to 
delay in executing {jk,…jn}, previously accepted tasks ranked behind jnew. A proposed task is admitted 
only if the task’s profit (including any decay caused by tasks ranked ahead, i.e., j1,…jnew-1) exceeds the 
revenue decrease (R – R’); otherwise, the task is rejected. In the NetVal strategy, motivated by Yeo and 
Buyya [12], tasks are executed in order of decreasing revenue. NetVal admits a proposed task using the 
same decision mechanism as NetPro, except that only a task’s revenue (not profit) must exceed R – R’. 
Once admitted, pending tasks are executed in order of decreasing profit (NetPro strategy) or revenue 
(NetVal strategy). 

No matter which strategy (FCFS, SJF, random, decreasing value or decreasing profit) was used to 
order task executions, all providers adopted a first-fit backfill algorithm to increase resource utilization. 
Each provider invoked its task-selection procedure upon admission of an arriving task and upon 
completion of an executing task. The Rand strategy selected randomly from among only those tasks for 
which sufficient processors were available. For the other strategies, if insufficient processors were 
available to run the first task in an ordered set, then the provider moved down the set to select the first 
task with a pFtsk requirement small enough to fit within the available processors. If no task would fit, then 
the provider deferred selecting a task.  
 
4.2 Experiment Topologies and Workload Generation 

We defined each simulated configuration to consist of a selected topology of sites for directory servers, 
clients and providers, where all providers in a given configuration adopted identical provider-decision 
strategies. We subjected each configuration to varying workloads; thus, a configuration and a workload 
comprise one data point. (Failure-related experiments also defined a pattern of outages.) To provide 
statistically significant comparisons among provider strategies, we replicated each data point at least 100 
times, using a different stream of random numbers for each repetition. The random numbers provided 
differences in distance between nodes, location of providers with various capabilities, task workloads, and 
where applicable, failure start times and durations. To ensure that provider strategies experienced the 
same set of conditions, we repeated the same stream of random numbers for each repetition of each 
simulated configuration. Executing these experiments required around 50000 simulation runs that took 
about two months of processing time when spread across 16 processors. The remainder of this section 
defines the conditions (i.e., parameters and associated values or value ranges) we used across all 
experiment scenarios. 

For each experiment repetition, we generated a random topology by varying (uniformly on an 8000 ×  
8000 grid) the x-y coordinates defining the location of each site, which limited maximum inter-site 
distance to 16 router hops. Each topology consisted of 43 sites: 30 provider sites, 10 client sites and three 
directory sites. Table 1 denotes global constants used across all repetitions. We simulated operation of a 
typical 8-hour workday (Lsys = 28800 s). Table 2 defines statistical distributions from which various 
experiment parameters (discussed below) were selected. 

Each provider managed a single cluster of processors, where each processor operated at the same 
simulated speed but with varying costs. For homogeneous scenarios, all clusters had the same number of 
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processors. For heterogeneous scenarios, clusters had varying numbers of processors, as described below 
(Sec. 4.3). Each provider site contained local directory servers, which injected service descriptions into 
three higher-level directory servers, accessible to clients. For each provider, we randomly selected (see 
Table 2) a cycle cost pCcyc and minimum profit margin mmin. We assumed all providers (see Table 1) had 
an expected utilization uexp of 70%. After using (5) to compute the provider cost cprv, we used (6) to 
determine the provider’s base price bbase and initial price schedule. The price monitor then periodically 
adjusted asking price as described above (Sec. 3.2).  

 
Table 1. Global experiment constants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Definition and parameters for key distributions. 
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task, we randomly selected task lengths (pLtsk) and widths (pFtsk) and then transformed them into the 
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required number of cycles (pCtsk). The system was calibrated so that, for the homogeneous scenario, 
allotting one average task per client (10 tasks total) generated an average system load of 5%. Thus, for 
every 5% increase in system load, each client created an additional task. For heterogeneous scenarios, a 
comparable workload required three times as many tasks (e.g., 30 tasks for each 5% load) because the 
addition of larger providers increased the number of available processors. To simulate a workday, we 
allowed clients to submit their tasks at an exponentially distributed random time (Stsk) within the first 
three hours of the day. We chose this approach to simulate the arrival of a competing workload of tasks 
early in a workday. 

Prior to task arrivals, each client conducted an initial round of discovery to obtain a set of available 
providers. The discovery process iterated throughout a workday to detect changes in availability of 
provider resources. Upon arrival, a task used the client’s list of available providers to determine which 
providers seemed suitable for negotiation and then requested more detailed information from those 
providers. Based upon this more detailed information, the task selected providers with which to negotiate. 
If the task concluded successful negotiation with a provider, then the task awaited the outcome of its 
execution. If task execution failed or if the task was unable to conclude successful negotiation, then the 
task found another set of suitable providers and iterated the negotiation process. This iterative negotiation 
continued until the task was completed successfully or failed to meet its maximum deadline (Mtsk) or until 
the simulation ended.  

Each task also had a set of other associated characteristics. The task cost (ctsk) was calculated from 
(3). Having randomly selected the target (mtrg) and minimum (mmin) profit for each client, we used (4) to 
calculate the maximum task revenue (rtsk) and to derive the maximum and minimum task budgets. We 
included a penalty rate in order to use penalty terms concepts from WS-Agreement. For all tasks, we set a 
small fixed value (ptsk = 0.05 ×  rtsk) because in our experiments we chose not to examine the effect of 
penalty rate, which is a separate area of investigation that we leave for future work. Following previous 
studies of computational grid economies [11-15], we randomly designated 20% of tasks to have high 
value and increased their maximum revenues by a factor of five. By increasing budgets by a 
corresponding factor, clients were allowed to offer more money in hopes of completing high-value tasks 
sooner. For each task, we randomly chose a task target end time (Dtsk) using an average global task 
deadline, Davg = 21960 s, representing the time by which all tasks could complete under optimal 
conditions assuming uexp = 0.7. Similar to previous studies [11-15], we designated a subset (20%) of tasks 
as high-urgency; their target and maximum deadlines were made an average of 20% earlier (with an 
equivalent number of other tasks equally delayed). Finally, for each task, we computed a decay rate ktsk 
from (2). The value of ktsk was proportionally increased by a factor of five for high-value tasks. Using 
these techniques to generate workload ensured a mix of four distinct task types: 4% high-value, high-
urgency, 16% high-value, low-urgency, 16% low-value, high-urgency and 64% low-value, low-urgency. 
 
4.3. Experiment Scenarios 
 
We defined three experiment scenarios (homogeneous, heterogeneous and failures-prone), where each 
scenario compared six (or eight) provider strategies under increasing workload (in 5% increments up to 
200%). In the homogeneous scenario, every provider offered a 500-processor cluster (i.e., pF = 500) and 
every client task required 500 processors (i.e., pFtsk = 500). In the heterogeneous scenario, we varied the 
size of provider clusters as well as the number of processors required for each task; however, we chose to 
limit the amount of heterogeneity in this study in order to produce results that could be analyzed and 
verified reasonably. Guided by previous research [34], we selected 20% of the providers as large clusters 
with 5500 processors each; the remaining clusters had 500 processors each. Consistent with our choice of 
cluster capacities, we defined four task sizes: 50% of tasks required 250 processors, 30% of tasks required 
500 processors, 10% of tasks required 750 processors and 10% of tasks required 1500 processors.  

For the failures-prone scenario, we aimed to investigate how well various task admission and 
selection strategies would perform in the face of large failures, such as distributed denial of service 
attacks and power outages, which cause entire provider sites to fail. We selected such scenarios because 
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power outages and denial of service attacks are increasing threats [20,21]. For the failures-prone scenario, 
we repeated the conditions of the heterogeneous scenario but introduced the possibility that providers 
could fail and then recover. As specified in Table 2, we randomly failed providers with a probability of 
0.25 (uniformly distributed) for an average duration of 3600 s (exponentially distributed) – but each 
failure lasted at least 1800 s. Each failure began at a random (exponentially distributed) time with a mean 
of 3600 s from the start of each simulated day; however, no failures began in the first 1800 s or after the 
first 7200 s of a simulated day. For tasks already accepted on nodes that suffered a failure, clients were 
notified of the failure and were thus able to seek other service providers. We chose to delay the start of 
failures in order to allow time for some tasks to have concluded successful negotiations and entered 
execution. We chose to limit the period during which failures occurred in order to allow time for affected 
tasks to locate and negotiate with alternate providers. The results of our three scenarios are discussed 
next.  
 
5. Results and Discussion 
 
For purposes of analysis, we compared simulation results in three load ranges: 5-45% (insufficient 
demand), 50-100% (expected demand) and 105-200% (excessive demand). Reflecting this comparison, 
results shown in each table (Tables 3 through 8) are divided accordingly; results for expected demand are 
highlighted in gray. A pair of tables gives results for each scenario: homogeneous (Tables 3-4), 
heterogeneous (Tables 5-6) and failures-prone (Tables 7-8). In each pair of tables, the first table presents 
system-related metrics and the second shows causal metrics. For each load range in each table, results 
compare the performance of various provider-decision strategies for admission and task selection. To 
highlight relative differences in overall performance, we plot system welfare (Figures 2-4) achieved by 
the provider-decision strategies for each scenario; however, we graph only the 50-200% load range, 
which covers expected and excessive demand. 
 
5.1 General Findings  
 
System welfare curves have the same general shape across all scenarios and provider strategies. System 
welfare (S) rises through the range of insufficient demand (not shown in Figures 2-4), reaching a peak 
somewhere within the range of expected demand (usually between 70% and 80%) and then declines with 
excessive demand. Under insufficient demand, average system welfare was negative because there was 
insufficient work to allow providers to cover their costs (Bprv is negative). Nearly all jobs were completed 
(Pfin), communication costs (C) were low and clients received a significant proportion of their possible 
benefits (Bcli). What sets the strategies apart is the peak value achieved for system welfare under expected 
demand and the rate of decline with increasing excess demand.  

Within the expected range of demand, the utilization-based and economics-based strategies achieved 
similar peak system welfare (S). Among the strategies discussed in Sec. 4.1, the FCFS strategy achieved 
highest peak performance, followed by NetPro. Providers using FCFS accepted all offers until resources 
were fully committed and then accepted no further offers. This ensured a high rate of task completions 
(Pfin) and few cancellations (PCan), but gave no special priority to high-value tasks. NetPro allowed 
providers to reject offers (low PAcc) that did not appear profitable, which enabled acceptance and 
completion of more high-value tasks at the cost of finishing fewer low-value tasks. Accepting fewer 
offers also increased communication costs (C) for NetPro. The NetVal and SJF strategies did not fair 
quite as well due to lower task-completion rates (Pfin), arising from a higher rate of cancellations (PCan). 
SJF prioritized shorter tasks over longer tasks, which increased the probability of cancellations (PCan) for 
longer tasks and thus lowered the provider benefits (Bprv) available from more expensive jobs. NetVal 
aggressively accepted higher-value tasks, which led to an over commitment of resources, and subsequent 
cancellations. As expected, the two information-free strategies yielded the worst peak system welfare. 

The economics-based strategies (described in Sec. 4.1) excelled under increasing excessive demand – 
yielding higher benefits for both providers (Bprv) and clients (Bcli) and completing almost as many tasks 
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(Pfin) as the utilization-based strategies and for comparable communication costs. The two utilization-
based strategies declined most steeply with increasing excess demand. In fact, when demand became 
sufficiently high, system welfare provided by the utilization-based strategies converged with that 
achieved by the information-free strategies. Overall, the utilization-based strategies failed to adapt to an 
increasing number of high-value tasks. 

Despite achieving similar system welfare under excess demand, the NetPro and NetVal strategies 
showed quite different behaviors. NetPro providers refused to accept new tasks unless the profits gained 
by the tasks more than offset revenue lost from delaying already accepted tasks. This appeared as a lower 
task-admission rate (PAdm) coupled with a lower cancellation rate (PCan). On the other hand, NetVal 
providers accepted tasks whenever the revenue gained more than offset revenue lost from delaying 
currently pending tasks. Thus, NetVal providers both admitted and canceled significantly more tasks than 
NetPro providers. By admitting more tasks, NetVal providers also reduced the system-wide 
communication costs. 
 
5.2 Homogeneous Scenario 
  
The homogeneous scenario was unrealistic because all tasks required the same number of processors, 
which exactly matched the number of processors offered by each provider. We considered this scenario 
because it was easy to analyze and illustrated the main behavioral differences among provider-decision 
strategies. Fig. 2 reveals that the economics-based strategies are able to extract higher system welfare 
during periods of excessive demand. This occurs because NetVal and NetPro are both able to complete a 
higher proportion of high-value tasks at the expense of completing fewer low-value tasks, which yields 
substantially larger benefits for both providers and clients. This is illustrated in Table 4, where the 
utilization-based and information-free strategies complete a balanced proportion of high-value and low-
value tasks throughout all ranges of demand, while the economics-based strategies complete nearly all 
high-value tasks regardless of demand. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. System welfare (S) for six resource-allocation strategies during periods of expected (50-
100) and excessive (105-200) load under a homogeneous scenario. 
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completed more tasks overall (Pfin) and substantially more low-value tasks (see Table 4). FCFS ensured 
that processor resources were never over allocated; thus, tasks were not canceled no matter what the 
demand. Instead, the task-admission rate (PAdm) dropped, along with the probability of accepting offers 
(PAcc) (see Table 4). Though SJF uses an identical strategy for admission, cancellations rose for longer 
tasks because shorter tasks were executed first; thus, both the completion rate (Pfin) and provider benefit 
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(Bprv) for SJF fell below that for FCFS. Economics-based providers admitted (PAdm) more tasks, because 
higher-value tasks could be substituted for lower-value tasks, which led to an increased rate of 
cancellations (PCan) for low-value tasks (which exhibited a lower completion rate). The increased rate of 
cancellations was compensated for by an increased rate of completion for high-value tasks, which enabled 
the economics-based strategies to achieve better provider benefits (Bprv) than FCFS. Unfortunately, 
increased cancellations lowered the completion rate for the economics-based strategies. Given excess 
demand, acceptance rate (PAcc) among economics-based and utilization-based providers achieved 
comparability, which indicates that most of the communication costs arose from tasks that were not 
accepted by any provider. 

 
Table 3. System-related metrics for the homogeneous scenario. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beyond an overall similarity in system welfare, the behavior of NetPro and NetVal were quite 

different in one aspect. NetPro admitted fewer tasks (PAdm) than NetVal, which led NetPro to cancel fewer 
tasks (PCan). Since task revenues were much larger than task profits, NetVal was more likely to accept an 
offer than NetPro. Consequently, more previously admitted tasks had to be cancelled. When NetPro 
rejected offers those tasks were free to seek other providers. Of course, the increased rejection rate by 
NetPro increased communication costs (C), as rejected tasks worked harder to find appropriate, available 
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real marketplace. A better outcome might be achieved if NetVal were modified to accept fewer low-value 
tasks in any given time period, which would allow those tasks to seek other (less loaded) providers in the 
same time period, or to return to rejecting providers in a future time period when more resources might be 
available. This insight formed the basis for variants of NetVal and NetPro. We introduce these variants 
below, as we discuss the heterogeneous scenario. 
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Table 4. Causal metrics for the homogeneous scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3 Heterogeneous Scenario 
 
The heterogeneous scenario introduced variation into workloads (tasks required varying numbers of 
processors) and resource availability (20% of service providers offered large clusters with 5500 
processors). In addition, we considered variants of NetPro and NetVal that included an additional level of 
filtering before accepting a low-value task that would otherwise be accepted under the normal procedures. 
The filter accepted a low-value task only when the existing queue of low-value tasks did not require all of 
the processors available at the provider. This filter had the effect of deflecting some low-value tasks to 
other, less-loaded providers or until some later time. The intended result of this filter was to reduce the 
number of low-value tasks that were accepted and then canceled. We denote these variants as NetPro/D 
and NetVal/D. 

In the main (see Fig. 3), the heterogeneous scenario exhibited the same relationships among the 
strategies previously compared in the homogeneous scenario. The NetPro and NetVal strategies extracted 
higher system welfare under excessive demand because they gave priority to high-value tasks. The 
utilization-based strategies achieved good system welfare within the range of expected demand and then 
declined under excessive demand to the point where they achieved no better results than the information-
free strategies, which perform worst overall. The FCFS strategy achieved higher peak system welfare than 
either NetPro or NetVal, and SJF remains less competitive. The reasons for these relative differences 
were the same as discussed for the homogeneous scenario. Note, however, that the heterogeneous 
scenario led to overall lower system welfare across all strategies than was measured under the 
homogeneous scenario. This lower performance stemmed from a combination of varying tasks sizes and 
the use of first-fit backfilling. 
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Figure 3. System welfare (S) for eight resource-allocation strategies during periods of expected 

(50-100) and excessive (105-200) load under a heterogeneous scenario. 
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tasks were available in a provider’s queue. A 250-processor task would then be elevated to run ahead of 
the blocked 500-processor task and the delay would be perpetuated as each executing 250-processor task 
finished and the queue contained additional 250-processor tasks. This led 500-processor tasks to be 
canceled more frequently than tasks with other sizes, which lowered provider benefits (compare Tables 3 
and 5). 

Table 5. System-related metrics for the heterogeneous scenario. 
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Table 6. Causal metrics for the heterogeneous scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two new variants (NetPro/D and NetVal/D) of the economics-based strategies yielded significant 

improvement in system welfare, most particularly under excessive demand. In fact, NetVal/D achieved 
the highest peak system welfare, besting FCFS. The NetPro/D variant showed significant improvement 
over NetPro when the system experienced excess demand. Neither NetVal/D nor NetPro/D changed the 
fundamental nature of their corresponding base strategy (NetVal and NetPro). As a result, NetVal/D 
showed a higher admission rate (PAdm) and also a higher rate of offer acceptance (PAcc) than NetPro/D. 
The key to the success of NetPro/D and NetVal/D was their refusal to accept too many low-value tasks, 
which composed the highest proportion of the workload. This forced tasks to try other providers, or to 
return to rejecting providers later when those providers might have more resource availability. As a result, 
tasks had a lower chance of being cancelled (PCan). These factors increased the probability of job 
completion (Pfin) and the provider benefit (Bprv), which together raised system welfare (S). Of course, 
NetPro/D and NetVal/D incurred higher communication cost (C) because the increased rate of rejections 
stimulated more tasks to continue discovering and negotiating with providers for a longer time. 

The most notable difference between NetVal/D and NetPro/D appeared in the form of task 
completions (Pfin), included as a measure of social welfare. NetVal/D completed a significantly higher 
portion of tasks than did NetPro/D. These additional tasks were taken from the set of low-value tasks that 
remained unaccepted near the end of a typical workday. Such tasks might still have time to meet their 
maximum deadlines, if some provider would accept them – and many providers could be idle near the end 
of a workday. Of course, late tasks would decay in revenue substantially because time was running short. 
When NetPro/D computed the profit (decayed revenue minus cost) for a late task, the net was negative; 
thus, the task was not accepted. On the other hand, NetVal/D would accept such tasks whenever they 
could be completed in time to garner revenue. As a result, NetVal/D accepted low-value tasks late in the 
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day and ran them at a loss (i.e., the decayed revenue did not cover the provider’s cost). Running these late 
tasks at a loss substantially boosted the rate of task completions; thus, NetVal/D produced an increased 
social benefit.       
 
5.4 Failures-Prone Scenario 
 
The failures-prone scenario created a challenging environment for all provider-decision strategies. Sudden 
outages led to an increase in task cancellations (compare Tables 6 and 8). The occurrence of outages early 
in the workday created an effective drop in resource availability and increased relative demand. As a 
result (see Fig. 4), peak system welfare was left-shifted by between 0.1 and 0.2. For the expected range of 
demand, average system welfare dropped by about 0.05 for economics-based strategies and 0.08 for 
utilization-based strategies. Comparing Tables 5 and 7 reveals that this decrease was due largely to 
declines in client benefit (Bcli) and completion probability (Pfin), which both showed greater decline for 
utilization-based strategies than for economics-based strategies. On the other hand, provider benefit (Bprv) 
actually increased slightly. Providers that were unaffected by failures could absorb some of the additional 
demand at higher average prices. Economics-based strategies were able to discriminate in favor of higher-
valued tasks and thus were able to realize a larger price increase (16-18%) than the 5% increase realized 
by utilization-based strategies. Under excess demand, average system welfare decreased by about 0.10 for 
economics-based strategies and between 0.11 and 0.12 for utilization-based strategies. Since the range of 
demand exceeded provider capacity, all three components of system welfare (Bprv, Bcli, and Pfin) declined. 
Despite the general deterioration in global performance, relative rankings and behaviors of all strategies 
remained the same as seen in the heterogeneous scenario. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. System welfare (S) for eight resource-allocation strategies during periods of expected (50-
100) and excessive (105-200) load under a failures-prone scenario. 

 
Why does system welfare decline less for economics-based strategies? Recall from Table 2 that 

failures occur early – between 30 and 120 minutes after the beginning of the workday. Careful analysis of 
the distribution of task admission times (not given here) shows that utilization-based providers admit (on 
average) about 95% of tasks within the first 117 minutes of the workday. In contrast, economics-based 
providers admit fewer tasks within this period. The strategies with deflection filters, NetPro/D and 
NetVal/D, admit around 80% and 70% of tasks, respectively, while NetPro admits about 85% and NetVal 
admits about 90%. In addition, economics-based strategies can potentially admit higher-value tasks even 
when a provider’s capacity is saturated. Thus, in the failures-prone scenario, economics-based strategies 
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have advantages when clients need to reschedule tasks aborted by failed providers. First, economics-
based providers that do not fail are likely to be less loaded than utilization-based providers during the first 
few hours of the day and hence in better position to accept new tasks. Second, even when saturated, 
economics-based providers are able to give priority to high-value tasks. These advantages mitigate the 
decline in provider benefit (Bprv), client benefit (Bcli) and probability of task completion (Pfin). This 
suggests economics-based decision strategies can significantly improve system welfare when some 
providers experience outages during key periods. Further, experiments are needed, using a variety of 
failure scenarios, to confirm whether economics-based decision strategies could yield widespread 
improvement in fault-tolerance.     
  

Table 7. System-related metrics for the failures-prone scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.5 Discussion of Key Factors in Economics-based Strategies  
 
While all the economics-based strategies proved adept at prioritizing high-value tasks, treatment of low-
value tasks (80% of the workload) differed markedly. Our results showed that the NetPro and NetVal 
strategies provided similar completion rates for low-value tasks; however, this similarity arose from 
differing behaviors. NetPro was less likely to accept offers; thus, fewer tasks were admitted. This led to 
fewer cancellations and drove up communication costs, as tasks that could not gain acceptance continued 
to search for providers until task deadlines could not be satisfied. NetVal was more likely to accept offers; 
thus, more tasks were admitted. This led to more cancellations and also reduced communication costs, as 
accepted tasks sat in provider queues until they could be executed or their deadlines expired. This 
suggests that one might try to modulate acceptance and cancellations for low-value tasks by tuning some 
key parameters. For example, one might require that profit (or revenue) increase from a task exceed 
revenue loss by some factor before accepting a task – or one might increase the cancellation penalty in 
order to reduce the task acceptance probability. We found that tuning these parameters of the economics-
based strategies did not alter temporal behavior. Instead, algorithm changes were required.    
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Table 8. Causal metrics for the failures-prone scenario. 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The use (in NetPro/D and NetVal/D) of a deflection filter for low-value tasks mitigated the 

consequences of a provider accepting too many low-value tasks within a given time period. Given that 
NetVal was more likely to accept low-value tasks, the deflection filter proved more helpful than was the 
case for NetPro. Further, temporal deflection had an amplifying effect in the case of NetVal, which was 
more likely to admit previously unaccepted jobs near the end of a workday. These jobs, which were run at 
a loss, improved the societal (completion rate) component of the system welfare metric. This suggests that 
deferring some decisions may prove helpful in regimes where agreements are binding. This also suggests 
that willingness to run some tasks at a loss could improve benefits to society. 

   In the task model used in this paper, client and provider benefits were related quite closely. Client 
revenues were subjected to the same piecewise linear utility function as provider revenues; thus, clients 
and providers had a joint stake in completing tasks in a timely manner. Within this framework, clients and 
providers struggled over who extracted more profits from the tasks. In general, clients extracted higher 
profit when there was an excess supply and providers extracted higher profit under excess demand. This 
cooperative-competitive model likely has a key influence on the global behavior of the system under 
economics-based resource allocation. One could investigate alternate models where the fortunes of the 
clients and providers were not so tightly coupled.    
 
6. Future Work 
 
Future work remains to extend investigation of computational economies using our model. One area of 
interest is increasing the variety of provider types and the mix of task characteristics (including lengths, 
widths, values and urgencies) to ensure that our findings hold broadly. Of additional interest is assessing 
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influence of provider penalty rate on system welfare under economics-based decision strategies. 
Conceived more generally, future work might investigate the sensitivity of our model to a wide range of 
factors, including also choice of backfilling algorithm and variations in processor speeds. Advanced 
methods of experiment design using orthogonal fractional factorial approaches [35] suggest, given 
sufficient processor availability to conduct 216 simulation runs, sensitivity analysis using a 240-24 design 
seems feasible. With insights gained from such an analysis, one might be able to reduce the simulation 
model to a smaller set of key factors and then to recast those key factors into an analytical model. 

Given either our current model or a simpler model derived from sensitivity analysis, selected 
parameter values should be motivated by data collected from real systems. In our study, we adopted such 
values where available. Additional work remains to collect a wider range of measurement data, especially 
from systems that use economic bases to allocate resources. The characteristics of input parameters from 
such systems could be used to establish reasonable values for model factors, such as penalty rates. 
Behavioral and performance measures from such systems could also be used to validate model behavior 
against empirical data. 

Another area for future work is motivated by growing interest in workflows [36] and related co-
allocation [37] of resources, which suggests that our experiments should be extended to consider how 
well economics-based strategies apply in these more complex situations. Additionally, future work is 
needed to investigate the properties of economics-based resource allocation as system size expands to 
hundreds and thousands of competing providers serving a suitably large client population.  

 
7. Conclusions 
 
We simulated a computational economy where individual providers and consumers pursued their own 
interests and where providers used alternate admission and task selection strategies chosen from three 
classes: information-free, utilization-based and economics-based. Our experiments compared how system 
welfare differs with provider-decision strategy given varying customer demands. We found that, during 
periods of excess demand, economics-based strategies yield overall resource allocation that benefits 
system welfare. Further, economics-based strategies responded well to sudden overloads caused by 
temporary provider failures. During periods of moderate demand, we found that economics-based 
strategies provided ample system welfare, comparable with that of utilization-based strategies. 

The findings reported in this paper expand significantly on the scope and realism of previously 
reported research into the use of economic mechanisms to allocate computation resources. We modeled a 
distributed marketplace through interactions of competing providers and consumers. We defined a metric 
for system welfare that aggregates the interests of all consumers and providers together with the interest 
of society at large. We employed scenarios inspired by the likely requirements of commercial operations. 
We investigated market robustness in the face of sudden, temporary outages among selected providers. 
We demonstrated that emerging standards for web services and grid services could support a computation 
marketplace. 
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