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Markov Chain Analysis for Large-Scale Grid Systems 
 

Christopher Dabrowski and Fern Hunt 
 
Abstract: In large-scale grid systems with decentralized control, the interactions of many 
service providers and consumers will likely lead to emergent global system behaviors that 
result in unpredictable, often detrimental, outcomes. This possibility argues for 
developing analytical tools to allow understanding, and prediction, of complex system 
behavior in order to ensure availability and reliability of grid computing services. This 
paper presents an approach for using piece-wise homogeneous Discrete Time Markov 
chains to provide rapid, potentially scalable, simulation of large-scale grid systems. This 
approach, previously used in other domains, is used here to model dynamics of large-
scale grid systems. A Markov chain model of a grid system is first represented in a 
reduced, compact form. This model can then be perturbed to produce alternative system 
execution paths and identify scenarios in which system performance is likely to degrade 
or anomalous behaviors occur. The expeditious generation of these scenarios allows 
prediction of how a larger system will react to failures or high stress conditions. Though 
computational effort increases in proportion to the number of paths modelled, this cost is 
shown to be far less than the cost of using detailed simulation or testbeds. Moreover, cost 
is unaffected by size of system being modelled, expressed in terms of workload and 
number of computational resources, and is adaptable to systems that are non-homogenous 
with respect to time.  The paper provides detailed examples of the application of this 
approach and discusses future work. 
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1. Introduction 
 
The long-term continued commercial success of grid technology will likely depend on the 
emergence of large-scale, decentralized grid systems in which large numbers of service 
providers and consumer clients enter into service-level agreements (SLAs) [Andr2007] to 
allocate grid resources. Here, as in other large-scale systems with decentralized control, 
the interactions of many consumers and providers, can lead to emergent global system 
behaviors that result in unpredictable, often detrimental, outcomes [Mill2006]. The 
movement toward realization of large-scale grid systems is evident in developments such 
as commercial cloud computing, in which mass computing services are being made 
available for sale. Clouds and other commercially-related developments likely 
foreshadow eventual creation of grid compute economies that operate on market 
principles. Having in place analytical tools to allow understanding, and prediction, of 
complex system behavior will be necessary to ensure availability and reliability of grid 
computing services in economic settings.  

For these reasons, the development of analytical tools that take into account complex 
systems behaviors is even now seen as a priority. In particular, tools that can predict the 
impact on overall system performance of changes to key system parameters are of 
particular importance. Previous researchers have used simulation to study behavior of 
grid systems that utilize different economic strategies [Chun2002], [Yeo2005], 
[Mill2008]. Studies of failure scenarios in grid system such as [Mills2006] have shown 
that small variations in key variables can lead to alternative execution paths that yield 
large differences in overall system performance. Although more practical than using 
operational grid systems as testbeds, detailed, large-scale simulation that attempts to 
accurately reproduce system structure and component behavior is often a computationally 
expensive proposition when large numbers of alternative execution paths must be 
considered.  Moreover, computational expense increases dramatically with increase in 
model size, a critical factor for analysis of large-scale grid systems which, even now, can 
exceed 105 computing resources [Carr2006, Raff2006].  

To remedy this situation, this paper presents an approach in which discrete time 
Markov chain analysis is combined with a form of rapid, scalable, simulation. This 
approach, previously used in other areas, is used here to model dynamics of large-scale 
grid systems. In this approach, a state model of the system is first derived by observing 
system operation and then converted into a succinct Markov chain representation in 
which model scale is reduced by taking advantage of the stochastic characteristics of this 
model. The resulting model is expressed as a set of transition probability matrices 
(TPMs) that succinctly summarize system dynamics over different time periods. The 
TPMs represent an execution path that can be changed by altering, or perturbing, the 
values of individual transition probabilities in the TPM. By systematically perturbing 
combinations of transition probabilities, it is possible to model alternative execution 
paths, each of which lead to a different evolution of a grid system over time. Among 
these are execution paths where failure to meet fundamental guarantees of service causes 
system performance to significantly degrade.  

The approach presented in this paper allows expeditious investigation of a large 
number of alternative system execution paths and identification of paths, or scenarios, in 
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which failure to meet service guarantees adversely affects overall system performance. In 
this way, the Markov chain analysis can be used to predict how a larger system will react 
when key service guarantees are not met. Though computational effort increases in 
proportion to the number of paths modeled, the cost of using Markov chains is far less 
than the cost of searching the same problem space through detailed simulation or use of 
testbeds. Moreover, computational cost is unaffected by size of system being modeled, 
where size is expressed in terms of workload and number of computational resources. 
The approach can also be adapted for cases in which transition probabilities change with 
(e.g. are non-homogenous with respect to) time and workload.  The paper concludes with 
thoughts on evolving this approach to serve as a concrete tool for analysis of system 
complexity in large-scale grid systems. 

The plan of this paper is as follows. Section 2 summarizes previous work on using 
Markov chain analysis and related techniques in distributed computer systems.  Section 3 
more precisely describes the problem being investigated through Markov chain analysis. 
The section defines fundamental guarantees of service that large-scale grid systems will 
need to provide to their customer base and which are the basis for analysis in this paper. 
Section 4 describes the process of creating a state model of a grid system, extending this 
model to be a Markov chain model, and its use in modeling system evolution. This 
section describes how the model is reduced in size and adapted for situations where the 
Markov chain is non-homogenous with respect to time. Section 5 describes the method of 
perturbing the Markov chain TPM to simulate alternative execution paths that violate 
service guarantees defined in section 3. Section 6 presents results of using the methods 
described in sections 4 and 5 to predict system evolution and compares these results with 
those produced by more detailed simulation. Section 7 presents conclusions and future 
work. 
 
2. Related Previous Work 
 

Markov Chain analysis is well established analytical tool for understanding dynamic 
systems behavior [Keme1976]. This section briefly reviews work on use of Markov 
chains, focusing on two outstanding problems relevant to a Markov model of a grid 
system: methods to reduce model size and perturbation analysis techniques that reduce 
perturbation space size.  

Discrete Time Markov Chains (DTMCs) have been applied to a variety of practical 
problems in real-world domains. Markov chain analysis has long been used in 
manufacturing [Dall1992] for problems such as transient analysis of dependability of 
manufacturing systems [Nara1994], [Zaka1997] and deadlock analysis [Nara1990]. Li et 
al. [Li2008] describes recent uses of Markov chains to model split and merge production 
line processes [Helb2000], [Tan2000], [Helb2003], [Li2005], [Diam2006], [Liu2008]. 
Similarly, Li describes use of Markov chains to model part quality defects [Kim2005], 
[Coll2005a], [Coll2005b]. In communications networks, [Cass1990] has used Markov 
approaches to model mean time to failure of network components, while [Bala1994] used 
Markov chain analysis to model link reliability. Markov chains have been used for multi-
processor computer architectures to examine fault-tolerance [Aupp1991] and 
performance [Chio1993], in parallel systems to investigate performance in queuing 
networks [Jonk1994], in real-time process control systems to model fault tolerance and 
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performance [Triv2004], and software systems reliability measurement [Lapr1992] 
[Gose2001]. In grid computing, Markov chains have been used to model workload for 
scheduling [Song2004] and load balancing [Akio2003]. However, unlike these efforts or 
those that quantitatively estimate performance or reliability, this work uses Markov chain 
modelling to understand alternative system behaviors that may occur as a consequence of 
significant system-wide events or decisions: in this case, the failure to meet fundamental 
service guarantees for grid systems. 

The combinatorial increase of the number of states in DTMC models for large 
problems has long been widely recognized as a barrier to practical use of Markov Chain 
analysis. To solve this problem, the concept of lumping states with similar characteristics 
into larger aggregated units was first introduced by Kemeny and Snell [Keme1976]. The 
problem has been worked on extensively since. [Sieg1992] and [Nico2004] surveyed 
lumping approaches that rely on model structure symmetry that can be exploited to 
reduce size. Among these, [Buch1992] [Buch1995] reduced size by exploiting state 
hierarchies in Markov models to combine states. Model structure was also leveraged to 
reduce Markov chain size by using group-theoretic concepts [Aupp1991], Stochastic 
Activity Nets [Sand1991], stochastic colored nets [Chio1993], generation of lumped 
models that approximate Markov properties [Bala1994], and by using a reward variable 
structure to identify symmetries that can lead to generation of models of reduced size 
[Obal2001]. In [Jaco2007], a method is proposed for using equivalence classes of 
eigenvectors to partition a Markov state space into lumps. Work on this problem 
continues. Fortunately, in the model we present, the number of states is readily reducible 
using the stochastic characteristics of Markov chains or the basic theorem provided in 
[Keme1976] that is described in section 4. While the number of states in our model did 
not prove to be a barrier, the size of the perturbation analysis problem did.  

Perturbation analysis of discrete time Markov chains has been the topic of theoretical 
work in the last three decades [Schw1968]. Like the problem of model size, the size of a 
typical perturbation space may quickly become computationally intractable, if there are 
many combinations of alternative system variable values to consider. To attack this 
problem, [Ho1985], [Suri1987] [Suri1989] [Ho1991] and others advanced the idea of 
perturbation analysis of discrete event systems by calculating system performance 
gradients based on key decision parameters. This approach estimated the sensitivity of 
changes to decision parameters in order to optimize system performance. Gradient-based 
approaches had the potential to reduce the perturbation space because they needed to 
observe as few as one execution path of a system. This approach was adapted for Markov 
chains in [Ho1988] by estimating gradients for alternative execution paths. However, this 
method still required some way of determining performance estimate vectors 
(performance potentials) for state spaces in various problem domains, which usually 
necessitate extensive sampling and data gathering. In addition, questions remained about 
the computational complexity of gradient calculation algorithms [Suri1989]. 

Methods for estimating performance gradients on the basis of limited sample system 
executions that are applicable to subsets of Markov chain that use control policies were 
also explored by [Cao1998][Baxt2001], and others. In [Baxt2001], a brief summary of 
some of these works is provided. Most recently in Cao [Cao2005] [Cao2008], the 
gradient-based approach was extended to reduce problem size in Markov chain models 
by grouping state transitions on the basis of events to evaluate control policies. In this 
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event-based approach, gradients were calculated by aggregating estimates of performance 
for alternative execution paths taken under different policies. The gradients could then be 
used to evaluate different control policies. The approach was thought to scale with the 
number of events and system size, but the issues of determining performance vectors and 
efficient gradient calculation still remained, and, in addition, policy iteration algorithms 
need to be developed. Further, not all problems were reducible to a form which allowed 
tractable calculation of gradients for individual policies.  In sum, while gradient-based 
perturbation algorithms have the potential of reducing the state space, they also introduce 
not inconsiderable computational issues and apparently are not applicable to all Markov 
problems. In other words, the “no free lunch” theorem applies [Wolp1997]. Moreover, 
the gradient-based approach appears more immediately applicable to specifically-defined 
optimization problems that depend on relatively few system parameters, rather than the 
more general problem of assessing alternative execution paths. Yet, the potential of 
gradient-based approach cannot be completely ruled out and may be a factor in future 
work. 

Instead, the approach presented in this paper avoids the computational difficulties of 
gradient-based methods to allow examination. The potential problem of size in Markov 
models of grid system dynamics is mitigated through a straightforward, readily lumpable 
problem representation and an intuitive, limited search strategy. While this approach does 
not completely solve the issue of problem size (e.g., there is no free lunch), the resulting 
analysis yields comparable results to more detailed simulation at a small fraction of the 
computational cost. It therefore constitutes a viable analytical tool for study of large-scale 
dynamic systems. 

3. Questions to be Answered Through Perturbation of Markov Chains. 
 

It is convenient to organize analysis of grid computing systems on the basis of certain 
guarantees of service that grid systems must provide to their users in order to successfully 
support economic activity. These guarantees constitute basic requirements for grid 
computing systems, which if not met, would render a grid system useless. The extent to 
which a grid system fulfills, or does not fulfill, these guarantees impacts system 
performance. The ability of Markov chain analysis to accurately model and predict how 
the system behaves if these guarantees are not met is an interesting and relevant question. 
Three guarantees may be described.  
 

• First, a grid system must guarantee that current information about what grid 
computing services exist is available to users. In grid systems, this guarantee is 
fulfilled through service discovery mechanisms that locate needed services and 
make information about them available to users. The service discovery guarantee 
refers to the ability of a grid system to provide necessary information about grid 
computing services, including relevant updates, which users require to make 
decisions.  

• Second, if a user has found a needed service, the service is available (not reserved 
for other tasks), and the user is qualified to use the service, then the grid system 
should allow the user to engage that service. This is referred to as the service 
engagement guarantee. To be qualified, the user must possess security and 
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administrative access, and must also have the economic means to afford the 
service. The service engagement guarantee is meant to ensure that users and 
providers of services who should logically cooperate, in fact do so. In most cases, 
engagement of a service is signified by the formation of a service level agreement 
(SLA), which reserves the service for the user and specifies a fee to be paid.   

• The third guarantee is the service fulfillment guarantee, which simply states that 
once a user has engaged a service, e.g. and SLA has been formed, the terms of the 
related agreement should be fulfilled by both provider and user. 

 
Understanding and predicting the consequences of not fulfilling these guarantees is an 
important analysis problem. Particularly important is understanding of how performance 
of a grid compute economy degrades as the extent of guarantee fulfillment decreases 
incrementally. Administrators of grid systems as well as providers and users need to 
understand how a different level of non-fulfillment of each guarantee is likely to affect a 
system. At what point of incremental increase does system performance begin to degrade 
rapidly? What specific actions by providers or consumers affect non-fulfillment of a 
particular guarantee? Answering questions like these by taking an actual production 
system offline to use as a testbed is impractical for obvious reasons. Simulation is a 
plausible alternative, and has been used successfully to estimate impacts of failure 
scenarios in grid systems [Mill2006, Mill2008].  However, simulation may require 
executing many repetitions using a detailed compute-intensive model. If there are a 
substantial number of system parameters to vary, then analysis may either take 
considerable time, be limited to a restricted number of alternative execution paths, or 
both. Both testbeds and simulation thus have limitations in answering these questions. 
Markov chain analysis provides a viable alternative for obtaining more detailed 
understanding of effects of not fulfilling grid service guarantees. The remainder of the 
paper illustrates the basic approach and shows preliminary results. 

4. The Markov Chain Model 
 
The behavior of a large-scale grid system can be modeled in terms of the computing tasks 
executing in the system at any time. Each task progresses through a life cycle in which it 
is first submitted by a user, service providers are discovered to run the task, an SLA is 
negotiated with selected provider(s), and the task is either executed to completion or fails 
to complete. The state of the grid system can be described by the states of all the tasks 
that are in the system at some particular time. This section first describes the state 
transition model for an individual task and then shows how the aggregate of many tasks 
states are represented in a Markov chain model. This potentially very large model can be 
compacted, or lumped, into a more concise representation in which the dynamics of the 
grid system can be studied in a meaningful way. 
 
4.1 Representing the Lifecycle of a Task as a State Model 
 
The lifecycle of an individual task can be represented in seven states, shown in Figure 1. 
This model is derived from a large-scale model of a grid system [Mill2008, Dabr2008] 
that simulates the system operation over an 8-hour day. Three of these states in this 
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model—Discovering, Negotiating, and Monitoring, or the task execution phase—can be 
further decomposed into sub-states. These decompositions constitute a hierarchy of 27 
additional states, for total of 34 states. The interested reader is referred to Appendix A for 
a description of the larger model and its logical correspondence to the seven-state model. 
Appendix A also provides a brief analysis of this decomposition and suggests some 
directions for future work. Because the 34-state model directly corresponds to, and can be 
transformed to and from, to the simpler seven-state model, the latter is retained for the 
remainder of the paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. State model of grid compute economy simulation model described in [Mill2008]. 

 
The high-level model representation may be described as follows. In the Initial state, a 

task has not yet entered the grid system. Each task is assigned an arrival time and 
deadline from exponential distributions [Mill2008]. At the arrival time, the task 
automatically transitions to a Discovering state. In Discovering, the task client attempts to 
discover eligible providers with sufficient computing resources to execute the task. After 
discovery actions conclude, the task may either transition to Negotiating or Waiting. 
Tasks enter the Negotiating state at regular intervals. A task that has completed 
Discovering and found at least one provider enters Negotiating if the interval has elapsed; 
otherwise it goes into the Waiting state. In Negotiating, clients order discovered providers 
they are qualified to use, e.g., can afford, on the basis of anticipated cost. They contact 
each provider, one at a time, and offer an SLA to execute the task for a fee. Once a 
provider accepts, negotiation ceases and the task enters the Monitoring state, during 
which the task is either blocked on an execution queue or executing. If negotiations fail 
(i.e., no provider can be found to accept an SLA), the task goes from the Negotiating state 
to either Discovering or Waiting. As in Negotiating, a task enters Discovering at regular 
intervals. If negotiations fail, a task transitions from Negotiating to Discovering if the 
start time has arrived. Otherwise it transitions to Waiting and remains until the next 
Discovering, or Negotiating, start time. 

Negotiating

Task Failed

Task Completed
Waiting
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[t=next negotiation
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[No] 
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A task that has obtained an SLA and transitioned from Negotiating to Monitoring 
enters the Completed state, if task execution is successful. If execution fails, the task falls 
re-enters the Negotiating state. Tasks may also transition into the Failed terminal state 
from either the Negotiating or Waiting states. This occurs when it becomes impossible to 
complete the task by its deadline, as explained in [Mill2008, Dabr2008]. Both Completed 
and Failed are terminal states from which tasks cannot leave once they enter.  
 
4.2 Evolving the State Model to a Markov Chain Model 
 
A Markov chain has the property that the probability of transition between any two states 
depends entirely on circumstances in the state from which the transition originates and 
not on the previous history of the process. More formally, given a sequence of states X1, 
X2, …… Xn, the Markov Property is given as: 
 
                                                                                                                                (1) 
    
The state model depicted in Figure 1 satisfies the Markov property. Careful review of the 
preceding description shows that the decision to transition to another state depends only 
on circumstances of the state the task is currently in. These circumstances include 
whether a time interval has elapsed, an SLA has been secured, task execution has 
succeeded or failed, etc. 
    In a Markov chain, probabilities are associated with transitions between states. To 
calculate state-to-state transition probabilities, transition frequencies are first summed 
over a simulated eight-hour day using the model described in [Mill2008, Dabr2008]. This 
is done by determining where state transitions occur in executing model code and 
inserting counters at those places. In our experiments, frequencies were summed for all 
state transitions over 50 repetitions at a 75% load level over 36000 s (10 hours: 8 hours + 
two extra hours for late tasks). State transition probabilities were derived as follows. 
Given states si, sj, i, j = 1…n where n=7, pij, is the probability of transitioning for state i 
to state j, written as si  sj.  This probability is estimated by calculating the frequency of 
si  sj, or fij, divided by the sum of the frequencies of si to all other states sk, or 
 

                                                    
∑ ≤≤

= n

nk ik

ij
ij f

f
p

1

                                                          (2) 

 
Here i and j may be equal, to allow for transition of a state to itself, or self-transition. A 
self-transition occurs when a task remains in a state longer than a specified interval (equal 
to a Markov simulation discrete time step, dts, described below). The resulting TPM is a 7 
× 7 stochastic matrix, shown in Figure 2. Here rows stand for the state the transition 
originates from, or from state, and columns represent states the transition goes to, or to 
state. Each cell in a TPM represents a pij, where i and j are from and to states, 
respectively. As in any stochastic TPM, the transition values of all columns in a row must 
sum to 1.0. The only exception to this procedure involved arrival times of tasks into the 
grid system, described above. Here, the Markov chain process was altered to reproduce 
exactly the exponential arrival times of the large-scale simulation. 

( ) ( )nnnnnn xXxXxXxXxX ====== ++ |Pr,,|Pr 1111 
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Figure 2. Summary stochastic transition probability matrix (TPM). This is a summary TPM that is weighted 
average on the basis of separate TPMs for five equal time period divisions over the 36000 s duration.  
Individual pij for each of the five time periods are weighted on the basis of relative number of transitions in 
their respective periods. Matrices for the five time periods appear in Appendix B. 
 

The Markov chain and related TPM can be further classified. Careful analysis of the 
description of the state model in section 4.1 and the structure of the matrix in Figure 2 
shows that tasks can enter the Discovering, Waiting, Negotiating, and Monitoring states 
multiple times, but always remain temporarily. At some point they enter either the 
Completed or Failed state, where they remain permanently, or are absorbed (These states 
are considered absorbing states, in which only self-transitions are possible). A Markov 
chain with these characteristics is called an absorbing chain [Keme1976] that can be 
divided into a transient part (the Discovering, Waiting, Negotiating, and Monitoring 
states), and an absorbing part (with two absorbing states, Completed and Failed). This 
characterization is born out in the Markov chain simulation described below while the 
summary TPM in Figure 2 is useful for illustrating concepts and for certain analytical 
studies of the system, it requires further elaboration to model non-homogeneity. 
 
4.3 Reducing Problem Size and Handling Time Non-Homogeneity 
 
In the large-scale simulation [Mill2008, Dabr2008] loaded at 75%, there are typically 
over 400 tasks, each of which progresses through the seven states. If all are modeled 
simultaneously, this means there are 7400+ possible combinations of states for all the 
tasks. This number is clearly too large for easy analysis. However, the stochastic nature 
of Markov Chains allows one to consider the distribution of the 400+ tasks among the 
seven states. It is easy to see that a system-wide state can be represented in terms of the 
proportion of the 400+ tasks allotted to particular states. In this way, it is possible to 
represent the system state as a seven-element vector in which the value of each vector 
element represents the proportion of tasks {0, 1.0} in one of the seven states. This 
method of representing the system state is a simplification that can be performed in 
addition to combining 34 states into seven, described in Section 4.1 and Appendix A. 

In the large-scale simulation [Mill2008, Dabr2008], task submission times varied 
exponentially over the simulated day, with mean task start time at t=3600 s (end of the 
first hour). This distribution resulted in different workload levels at different times in the 
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day and caused transition probabilities over the 36000s-period to vary. Therefore, 
different TPMs were actually in force at different times, making the system non-
homogenous with respect to time. For this reason, more accurate simulation results for 
the transient behavior of the system were obtained by creating time-period partitions and 
computing a separate TPM for each period. In this experiment, frequencies were summed 
separately for five time periods of 7200 s each1. These matrices, shown in Appendix B, 
allow a representation of our model as a piece-wise homogenous Markov chain having a 
bounded number of pieces [Rose2004] corresponding to the time periods. The individual 
transition probabilities in the TPMs for these five periods can be weight averaged on 
basis of relative transition frequencies in each period to reproduce the summary 
stochastic TPM, shown in Figure 2. In the summary matrix, each probability of transition, 

nper
ij

nper
iijiijiij pwpwpwp ....2211 ++=

, is computed as follows:  
 
                                                                            (3) 
 
in which each wl

i represents the weight for a row i in time period l, l ∈ {1.. nper}where 
nper=5. Each wl

i is computed by 
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where each ftp

ij is the frequency of transition from state i to state j in  time period tp and n 
is the dimension of the matrix (n = 7). While this summary matrix is useful for illustrative 
purposes and for computing certain theorems, the Markov simulations described below 
used the five time period matrices.  
  
4.4 Using A Sequence of Markov Chain TPMs to Simulate a Dynamic System 
 
A well-known use of stochastic TPMs in a Discrete Time Markov Chain is to describe 
how a dynamic system changes over time in discrete time steps each, where each step 
represents a fixed amount of time. In this experiment, a discrete time step is chosen to 
represent 85 s, or dts = 85 (which also determines length of time for identifying frequency 
of self-transitions above)2. Hence, if a time period covers a duration of dperiod = 7200 s, 
each of the five time-period matrices represent S= dperiod /h steps or 85 steps. 

As indicated above, the system state can be summarized in a vector v having seven 
elements, where each element represents the proportion of tasks in one of the seven 
states. Using equation (5), a vector , which represents the system state at time step m, is 
multiplied by the TPM  for the applicable time period tp to produce a new system state 
+1

 
                                                                                                                                (5) 

, to evolve the system over a single discrete time step. 

                                                 
1 Different numbers of time periods were attempted, including three, 10, and 15; however, five provided the 
most accurate results.  Devising a method of selecting an optimal number of time periods is a problem left 
for future work. 
2 Different values for dts were tried, ranging from 50s to 100s, with dts= 85 s providing the best results. As 
with the number of time periods, devising a method of selecting dts is left for future work. 

(Qtp)T * vm= vm+1, where tp = integral value (m/S) + 1 
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where T indicates a matrix transpose. Starting with v0, which represents a system state 
with a value of 1.0 for the Initial state and 0 for all others, equation (3) is repeated for 
339 time steps (representing 28,800 s or a simulated 8-hour day). This results in a system 
state vector, v339, in which the sum of the proportion of tasks in the Completed and Failed 
states approaches 1, while other states are at 0. A goal of Markov chain analysis is to 
execute this procedure with a set of time period TPMs derived from a real-world system 
(or, in this case, the large-scale simulation) in order to approximate the operation of that 
system. Figure 3 compares the proportion of tasks in the Completed and Failed states 
after executing the large-scale simulation in [Mill2008, Dabr2008] for 28,800 s with the 
values for these states in the Markov chain simulation over 339 steps (28,800 s).  
This paper argues that a piecewise homogenous Markov chain can approximate the 
transient behavior of a real-world grid system (for which the large-scale simulation is a 
proxy). By applying (5) to a set of perturbed TPMs to simulate alternative evolutions of a 
grid system, one can model, or predict, the effects of changed system capabilities, 
undesirable behaviors, and events of interest. In this study, we are interested in perturbing 
selected rows of the TPM set to represent changes in the ability of the system to fulfill the 
three grid system guarantees described in section 3, and then to predict the impact of 
these changes on the final system state (proportion of tasks in Completed or Failed states. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison of system evolution of Completed and Failed states over time for the large-scale 
and Markov chain simulations. TPMs for 5 time periods in Appendix B were used. 

5. Method of Perturbation 
 
The algorithm for incrementally perturbing selected rows is intended to predict broad 
trends rather than precise outcomes. It is a limited, brute-force search that is restricted in 
order to conserve resources, while exploring a reasonable range of alternatives. The 
algorithm permits simultaneous perturbation of combinations of two rows in order to 
capture situations where inter-row dependencies exist. In each perturbed row, each row 
element, corresponding to a column, with a probability of transition greater than zero is 
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selected in turn for incremental increase. At the same time, the transition probabilities of 
one or more other row elements with non-zero values are decreased by a total equal to the 
increase, so that all elements in the perturbed row continue to sum to one. For a set of 
time-period matrices, these changes are applied to each matrix in the set. Each 
combination of altered transition probabilities represents a different execution path that 
the system may take. 

The algorithm requires that a user first select a primary row, r, to perturb. The 
secondary rows, s, to be perturbed are then automatically determined, as described below. 
The user also must select a perturbation limit L, on how far transition probabilities can be 
perturbed and also select the incremental amounts by which primary and secondary rows 
will be perturbed. These decisions define the extent and granularity of the perturbation 
that will take place. An overview of the procedure is provided below. For more detail, see 
Appendix C which describes the algorithm in detail and provides a summary table of 
term definitions. This section also discusses the computational effort required to apply 
the perturbation algorithm to the Markov chain simulation. This effort is a small fraction 
of what would be necessary to explore the same set of alternative behaviors using the 
large-scale simulation. The next section, Section 6, then presents results of applying the 
perturbation algorithm and compares these results with those produced by the large-scale 
simulation. 
 
5.1 Overview of Perturbation Algorithm 
  
In the primary row, starting from numerically lowest row element, each element having a 
positive transition probability is used in turn to determine as the primary increase 
column, c↑. In this column, the transition probability is raised by a gradually increasing 
amount, mprim up to the limit L. These increases occur in increments defined by a primary 
increase amount, vprim. At the same time, the other elements in the primary row are 
reduced by proportions of mprim determined by weight factors, as follows. Each non-
increase column in turn is selected as the primary column to decrement, termed a primary 
sink column, c↓. For the primary sink column, a sink weight, w, is selected from a 
predetermined set of sink weights called the sinkWeightSet. In the experiments reported 
here, the sinkWeightSet consisted of {0.2, 0.4, 0.6, 0.8, 1.0}. The probability of transition 
for c↓ is reduced by the amount w ⋅ mprim. The remainder of the weighted reduction, or 
(1.0 – w)⋅ mprim, is distributed to the other non-sink columns. A perturbation of primary 
row r may be summarized by 

 
 
                                  
                                                                                                                     (6) 
 
 
 

for p(old)
rj > 0 where [a]+=a if a>0 and [a]+=0 otherwise. Similarly perturbation of the 

primary increase column c↑ ceases if the perturbed value would exceed 1.0. Of course, if 
w is 1.0, or if the primary increase column c↑ and primary sink column c↓ are the only 
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columns with non-zero transition probabilities, the primary sink column bears the entire 
reduction. (Please see Appendix C for further details.) 

The secondary row s can be selected on the basis of either: (a) the numeric value of the 
primary increase column c↑, if it is not equal to the number of the primary row, or c↑ ≠ s 
(otherwise no secondary row is selected); and (b) by strength of association, using the 
total value of transition probabilities between the two states the rows represent and (if 
known) the number of transitions that occur between these states. The default method is 
(a); and this was used for the results reported below. Thus in the primary row r, as each 
primary increase column, c↑, is selected, a different secondary row is also selected. As in 
the primary row r, each positive row element in the secondary row, s, is selected in turn 
for increase, and the corresponding column is designated as the secondary increase 
column, d↑. However, in the secondary row, the perturbation is simpler--the transition 
probability of a secondary increase column, d↑, is raised by a secondary increment 
amount, , in 5 equal steps to produce successively perturbation amounts, 

 
 

 
 
                                                                                                                           (7) 
 
 

Each combination of variable assignments for the primary increase column, primary 
sink column, and sink weight in the primary row and the secondary increase column and 
secondary increase amount in the secondary row (if any) is considered a unique 
perturbation combination, labelled {r, c

, up to L. As in 
the primary row r, transition probabilities in the remaining columns of the secondary row 
are decreased by an equal amount; though here the amount of decrease for each column is 
assigned in proportion to the relative value of its transition probability (similar to non-
sink columns in the primary row). To summarize,  

↑, c↓, w, s, d↑, }. For each perturbation 
combination, a separate perturbation sequence of [L/ ] steps is carried out in the primary 
row. In each element of the perturbation sequence, the value of the primary increase 
column, c↑, is successively raised by  while the primary sink column, c↓, and non-sink 
columns, if any, are decremented as described above. For a set of time period matrices, 
this perturbation sequence is applied simultaneously in each matrix in the set. For each 
assignment of incremental values in the perturbation sequence, the Markov chain 
simulation procedure described in section 4.4 is carried out for a time-period matrix set. 
Each such execution represents a potentially different execution path for the system. The 
incremental increases in the perturbation sequence continue until the transition 
probability in the primary increase column, c↑, reaches L or 1.0 in each time-period 
matrix. Thus if L=0.25 and 
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 = 0.01, there are 25 Markov chain simulations in a 
perturbation sequence for each perturbation combination of column assignments in the 
primary and secondary rows.  
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5.2 Implementing this Approach to Perturb the TPM 
 

In this way, the effects of a reasonably wide range of perturbation combinations can be 
explored. Carrying out the sequence of perturbations for each perturbation combination 
can yield potentially interesting alternative behaviors, though only a subset can be 
relevant. The perturbation method was used to predict the result of failing to fulfill the 
three service guarantees described in section 3. To do this, we used the time-period 
matrix set in Appendix B (summarized by the weight-averaged matrix in Figure 2), 
together with the default method (a) for secondary row selection. The sink weight set and 
parameters values for L, vprim, and vsec described above were also used. Applying the 
perturbation method resulted in generation of 2805 perturbation combinations and 
perturbation sequences consisting of 89,750 simulations, which required 3354 s (56 
minutes) of computation time using an Intel Xeon MP processor. This is a substantial 
amount, but less than 0.5% of the time (205 hours) that the large-scale simulation needed 
to show behaviors described below in which the service guarantees were violated.  Table 
1 shows the total number of perturbation combinations for the rows of this matrix set. 
Details of perturbation combinations are provided in Appendix D. Analysis of the results 
of these Markov chain simulations and the execution of corresponding perturbations in 
the large-scale simulation is provided in the next section. 
 
Table 1. CPU resources used for perturbing of rows of the Markov chain matrix, with secondary row 
selected using method (a). Primary rows perturbed to maximum value in increments as specified. 
Secondary rows perturbed to a maximum value of 0.25 in 0.0625 increments. The details of calculating the 
number of perturbation combinations and perturbation sequences is provided in Appendix D. Actual 
number of perturbation sequences carried out is in parenthesis.  
 

 
 
 
 
 
 
 
 
 
 
 

6. Comparing Perturbations of the Markov Chain and Large-Scale Simulation 
 
This section presents the results of using the perturbation method described in the 
previous section to predict system performance when the service guarantees described in 
section 3 are violated. The section provides a detailed analytic comparison of these 
results with the results produced by the large-scale simulation.  

The systematic perturbation of the TPMs revealed a wide range of behaviors. A subset 
of these behaviors, corresponding to a subset of the total perturbation combinations 
discussed above show what might occur if the service guarantees were violated. These 
perturbation combinations correspond to service guarantee violation scenarios of interest. 
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In the Markov chain model, violation of the Discovery Guarantee corresponded to a 
subset of perturbation combinations for rows 1-4 of the TPMs in which tasks were 
prevented from transitioning to the Discovering state. Two of these combinations are 
presented here.  

Failure to fulfil the Service Engagement Guarantee was enacted by reducing 
probability of transition from the Negotiating state to the Monitoring state in row 4. 
Perturbation combinations that reduced this probability represented a violation scenario 
in which SLAs were not granted even though users and providers might be eligible for, 
and should be able to enter into, agreements.  Violation of the Service Fulfilment 
Guarantee was enacted by reducing the probability of transition from the Monitoring state 
to the Completed state in row 5, while increasing the probability of transitioning from 
Monitoring to another state. This violation scenario corresponded to aborting a task that 
was either executing, or in a waiting queue. The results of these perturbations of the 
Markov chain are shown in graphs of perturbation sequences for relevant perturbation 
combinations. 

To compare the results of the perturbations to the Markov chain with similar changes 
to the behavior of the large-scale simulation, the original model [Mill2008] was altered to 
simulate the effects of not fulfilling the three service guarantees. These changes to the 
large-scale model are described below and their effect on performance is also graphed. In 
what follows, the results of perturbing both the Markov chain and large-scale simulation 
to emulate violation of the three service guarantees are described. These results are 
compared in terms of how well the Markov chain simulation predicts the result of the 
large-scale simulation and the relative computational effort required by each method. 
 
6.1. Discovery Guarantee 
 
The Discovery guarantee is violated when discovery of information about grid resources 
is prevented by such events as widespread network transmission failures or directory 
malfunctions. The effects of not fulfilling the Discovery guarantee can be emulated by 
lowering the transition probability values from the Initial State to the Discovering state 
(row 1), from the Waiting state (row 2) to the Discovering state, from the Negotiating 
state to the Discovering state (row 4), and by increasing the probability of self-transition 
to the Discovering state (row 3). These perturbations constitute four separate scenarios 
for violating the Discovery guarantee. We examine each in turn. 
 
6.1.1 Perturbation of Transition to the Discovery state in Row 1 
 
Row 1, column 3 of the unperturbed weight-averaged matrix shows the probability of 
transition from the Initial state to the Discovering state. The five-period matrix set in the 
Appendix shows this transition occurs entirely in the first time period of the simulated 
day.  The transition from Initial to Discovering marks the arrival of a task in the grid 
system and is followed immediately by an attempt to discover providers to execute the 
task. This case describes a situation where, for instance, incoming tasks are prevented 
from executing the initial discovery phase due to network attack, outage, or similar such 
reason. Although relatively straightforward, the case is included to show the 
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correspondence of the Markov simulation to the large-scale simulation over a larger set 
of cases.   

Figure 4 shows the effect of systematically lowering the probability of the transition 
from Initial to Discovering in the Markov chain simulation and the equivalent operation 
in the large-scale simulation3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Proportion tasks complete in large-scale and Markov chain simulations in response to reduction in 
the probability of transition from Initial to Discovering (column 3 of row 1 is the sink column), while 
raising self-transition of Initial (column 1). Because values could not be obtained for all data points, a two-
percent moving average trend line was generated using Microsoft Excel to draw the curve for proportion of 
tasks complete for the large-scale simulation. 

 
In the large-scale simulation, the equivalent of reducing the probability of transition to 

the Discovering state was achieved by systematically increasing the amount of time each 
task remains in the Initial state, thus in effect delaying arrival of tasks into the grid 
system. This perturbation had the effect of right-shifting the arrival time distribution 
described above (Mills and Dabrowski 2008) and caused tasks to fail to meet their 
deadlines. When column 1 of row 1 was selected as the primary increase column in the 
Markov chain simulation, the same right shift was simulated, because recall that the 
Markov chain process was modified to allow task arrival to take place using the 
distribution derived from the large-scale simulation (Section 4.1). Right-shifting this 
distribution delayed transition from the Initial to Discovering state, producing the same 
result. 

. To perturb the Markov chain simulation, column 1 of row 
1 is selected as the primary increase column, while column 3, Discovering, is designated 
as the primary sink column.  Since there are no other columns in row 1 that have 
transition probabilities greater than 0, the sink weight is 1.0. Using the default secondary 
column selection method, no secondary row is perturbed, since the number of the primary 
row and increase column are the same.  

                                                 
3 Please note that in Figure 4 and some subsequent figures, decreasing values are used on the horizontal 
axis. This is done to show the impact of lowering probability of transition on proportion of tasks complete. 
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In Figure 4, curves for both large-scale and Markov chain simulations show that 
proportion of tasks complete decreases relatively little as the probability of transition 
from Initial to Discovering state is reduced from 0.03 to 0.01.  Below 0.01, the proportion 
complete drops sharply in both cases. This reflects the effect of increasing delay of tasks 
leaving the Initial state to progress through the Discovering, Negotiating, and Monitoring 
states, so that they do not have sufficient time to execute and reach Completed. Although 
the Markov chain curve declines more steeply, it is similar to the curve for the large-scale 
simulation. Both show that performance will decline little until the probability of 
transition to Discovering falls below 0.01. In our experiments, the Markov chain 
simulation completely perturbed row 1 in 82.39 s, while, the large-scale simulation 
required 21.18 hours to capture the similar guarantee violation behavior.  
 
6.1.2. Perturbation of Transition to the Discovery state in Rows 2, 3, and 4 
 
In row 2 the probability of transition from the Waiting state to the Discovering state is 
shown in column 3, while in row 4, the probability of transition from Negotiating to 
Discovering, which occurs less frequently in the large-scale simulation, is also shown in 
column 3.  These state transitions reflect subsequent attempts to initiate discovery 
operations by task clients after the first round of discovery which occurs when a task first 
arrives. Failure to initiate subsequent rounds of discovery constitutes violation of the 
Discovery guarantee which, as before, reflects events such as faults in service discovery 
directories or communications failures. Row 3, column 3 shows the probability of self-
transition to Discovering, which if increased, indicates that tasks remain in the 
Discovering state for longer periods for reasons such as those listed above. This could 
result in prolonging the discovery state to a degree that constitutes a violation scenario for 
the Discovery guarantee. 

In the Markov chain simulation, the first violation scenario was produced by reducing 
the probability of transition from Waiting to Discovering (selecting column 3 as the 
primary sink column with a primary sink weight of 1) while raising the probability of 
transition from Waiting to Negotiating (selecting column 4 as the primary increase 
column). In this case, row 4 (Negotiating) was perturbed as the secondary row since the 
Negotiating state corresponds to column 4. Equivalent behavioral changes were made to 
the large-scale simulation by altering the code to prevent the task client from initiating 
subsequent rounds of discovery. The large-scale model was iteratively executed. On each 
iteration, the probability of delaying the start of a subsequent discovery phase was 
incrementally raised. TPMs were generated for this perturbed behavior and compared 
with the Markov chain process. 

Figure 5 shows the impact of these alterations on the large-scale simulation together 
with the Markov chain perturbation sequences for 15 perturbation combinations of row 2 
that best captured this violation scenario. Exploring all 425 perturbation combinations for 
row 2 required 373.44 s of computational time, while the large-scale simulation required 
12.17 hours to capture the perturbed behavior.  

Figure 5 shows the proportion of tasks complete for both the Markov chain and large-
scale simulations as the probability of transition from the Waiting to the Discovery state--
e.g., initiation of subsequent discovery actions--decreases along the horizontal axis. In 
Figure 5, both the curves for the Markov chain and large-scale simulation show 
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essentially no reduction in task completion as the probability of initiating subsequent 
discovery actions goes to zero. In the large-scale simulation, failing to initiate subsequent 
discovery does not affect task completion, because the discovery process is sufficiently 
efficient so that all eligible providers are found on the first discovery attempt (see Section 
6.1.1). Hence, subsequent discovery actions are not actually needed, and the absence of 
these actions does not impact performance. The curves for the related Markov chain 
perturbation combinations shown in Figure 5 agree well with the large-scale simulation. 
If the Markov chain curves were used to make predictions, they would accurately predict 
the result of the large-scale simulation with relatively minor differences in value of tasks 
completed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

Figure 5. Proportion tasks complete in the large-scale and Markov chain simulations (shown using linear 
trend lines) in response to reduction in the probability of transition from Waiting to Discovering (column 3 
of row 2 is the primary sink column) while raising the transition probability of Waiting to Negotiating 
(column 4 is the primary increase column). A linear trend line is used to draw the curve for proportion of 
tasks complete for the large-scale simulation. 

 
The second of the three violation scenarios involves row 4. Here, a similar set of 

perturbations also may be performed to predict the result of reducing the probability of 
transition from Negotiating to Discovering (column 3) while raising the probabilities of 
transitioning from Negotiating to Waiting (column 2), Negotiating to Monitoring (column 
5), and Negotiating self-transition (column 4).  Secondary row perturbations are applied 
to row 2 Waiting, row 3 Discovery, and row 6 Monitoring to produce additional 
perturbation combinations that capture this violation scenario. In this case, as in the 
preceding case, Markov chain simulation also agrees with the large-scale simulation. 
Performance is not impacted by reducing probability of transition to Discovering, for the 
same reasons given above. A similar graph to Figure 5 showing this could be provided 
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but is omitted, because the probability of transition from Negotiating to Discovery is very 
low (see five time-period matrix set in Appendix B). Perturbing such low values to 0 
involved no more than 3 steps. 

In the third violation scenario involving perturbation of row 3, Figure 6 shows that the 
Markov chain also predicts that increasing the probability of self-transition to the 
Discovering state (making column 3 the primary increase column) will have little impact 
on the number of tasks completed.  The Markov chain predicts this result regardless of 
whether increases in self-transition to Discovering are offset by decreasing probability of 
transition to either the Waiting or Negotiating states (i.e., making either the primary sink 
column) and regardless of what sink weight is assigned. In these perturbation 
combinations, no secondary row perturbation occurs since the row number (3) and 
primary increase column number (3) are the same. In the large-scale simulation, the 
increase of the probability of self-transition to Discovering is emulated by artificially 
delaying the times when task clients conclude discovery operations.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
`  
 
 
 
Figure 6. Proportion tasks complete in the large-scale and Markov chain simulations in response to 
increasing the probability of self-transition in row 3 of the Discovering state (column 3 becomes the 
primary increase column) while decreasing in probability of transition to Waiting and Negotiating states 
(columns 2 and 4 become sink columns with sink weights of 1.0). A linear trend line is used to draw the 
curve for proportion of tasks complete for the large-scale simulation. 
 

Figure 6 shows the curves for the perturbation sequences of two Markov chain 
perturbation combinations for row 3. Figure 6 shows the impact on tasks complete of 
increasing the probability of Discovery self-transition and the resulting prolongation of 
the Discovery state that may occur as a result of faults. In these two perturbation 
sequences, the probability of transition from Discovering to Waiting (column 2) and from 
Discovering to Negotiating (column 4) is decreased. In the first sequence, sink weights of 
0.4 and 0.6 are assigned to the two columns, while in the second sequence, weights of 0.6 
and 0.4 are assigned (though other values were equally predictive). Again, the Markov 
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chain and large-scale simulation agree. Regardless of which perturbation combination is 
chosen or which perturbation sequence is carried out, the proportion tasks complete 
remains at a high level. This again is because all necessary providers have already 
discovered in the initial round of discovery. The perturbed Markov chain simulation were 
accomplished in 369.69 s, while the large-scale simulation required 8.3 hours. 
 
6.2. Service Engagement Guarantee 
 
The act of engaging a service to execute a task is represented in the Markov chain by the 
transition from the Negotiating state to the Monitoring state. In row 4 of the TPM, the 
effects of non-fulfilment of the Service Engagement Guarantee can be illustrated by 
reducing the probability of transition. This perturbation is meant to predict the effect of 
reducing acceptance of agreements because users or providers fail to conclude SLAs they 
should enter into. Such failures could occur because either users or providers employ 
poor decision algorithms or communications failures. Along with decreasing the 
probability of transition from Negotiating to Monitoring (making column 5 of row 4 the 
sink column), the time-period TPM set is perturbed by increasing the probability of 
transition from Negotiating to either Waiting, Discovering, or Negotiating, i.e., choosing 
columns 2, 3, or 4 of row 3 as the primary increase columns. Choosing columns 2 or 3 
involves selecting corresponding rows (rows 2 and 3) for secondary perturbation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Proportion of tasks complete in the large-scale and Markov chain simulations in response to reducing 
the probability of transition from Negotiating to Monitoring (column 5 of row 4 is the primary sink column) 
while the transition probability to Waiting increases (column 2 is the primary increase column). A two-percent 
moving average trend line is used to draw the curve for proportion of large-scale simulation tasks complete. 
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Figure 7 shows curves for perturbation sequences of 15 relevant perturbation 
combinations for row 4 (out the 785 total) in which the probability of transition from 
Negotiating to Waiting is raised (column 2 is the primary increase column) while the 
transition probability from Negotiating to Monitoring is lowered (column 5 is the sink 
column, with a sink weight of 1). Row 2, Waiting, is chosen for secondary perturbation. 
In the large-scale simulation, the equivalent perturbation was accomplished by 
systematically increasing the probability that a provider rejects an agreement, the result 
of which is also shown in Figure 7. This figure shows that the perturbation of the Markov 
chain simulation is generally predictive of the large-scale simulation result. The Markov 
chain curves correctly predict that as the probability of transition to Monitoring falls to 
zero, i.e., users and providers fail to conclude SLAs, the proportion of tasks completed 
also falls to zero.      
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Figure 8. Proportion tasks complete in the large-scale and Markov chain simulations in response to 
reduction in the probability of transition from the Negotiating to the Monitoring state (column 5 in row 4 is 
the sink column with a sink weight of 1) while the transition probability to Discovery increases (column 3 
is the primary increase column). A two-percent moving average trend line is used to draw the curve for 
proportion of tasks complete for the large-scale simulation. 
 

In the case where secondary row perturbation of row 2 increased Waiting self-
transition and simulated still more delay, the Markov chain curves in Figure 7 show that 
system performance would degrade still further. When secondary row perturbations of 
row 2 increased the probability of going from Waiting to Negotiating rather than 
increasing Waiting self-transition or Waiting to Discovering, the Markov chain process 
predicted improved system performance. This is so because, logically, transitioning to 
Negotiating increases the chances of then transitioning to Monitoring and then 
completing (i.e., the Negotiating state is a more direct path to completion than is Waiting 
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or Discovering). Here secondary row perturbations also affected predictions because 
values of transition probabilities in row 2 of the unperturbed TPMs were close to 0 or 1, 
i.e. they were near extreme limits (see Figure 2 or Appendix B). 

In two additional instances of this violation scenario, Markov chain perturbations of 
row 4, while also being generally predictive, proved to be less accurate predictors of 
large-scale simulation behavior—for reasons explained below. In the first, the Markov 
chain simulation predicts decline in tasks completed if a decrease in the probability of 
transitioning from Negotiating to Monitoring is offset by an increase in the transition 
probability from Negotiating to Discovering, rather than Waiting. This is shown in Figure 
8. Here, column 3 of row 4 (Discovering) is made the primary increase column while 
column 5 (Monitoring) remains the sink column. While the Markov chain family of 
curves exhibits a lower task completion percentage than the large-scale simulation as 
probability of transition to Negotiating falls from 0.13 and 0.01, there is again a distinct 
downward trend to zero tasks completed in both cases. Here, the Markov chain curve 
predicts lower task completion percentage because, unlike the large scale simulation, it 
increases the probability of transition to Discovering. The immediate transition to 
Discovering simulates delay of subsequent negotiation attempts which also delayed 
transition to Monitoring and decreased chances of task completion (i.e., transition to 
Discovering is on a less direct path to completion than is transition to Negotiating). 
Further, additional rounds of discovery do not improve chances of task completion, 
because, as discussed in section 6.1.2, clients generally discover all providers on the first 
round of negotiation. Hence, increasing transition to Discovering either through primary 
row or secondary row perturbation does not improve performance.   

In the second version of this violation scenario, the Markov chain is perturbed to 
decrease in the probability of transitioning from Negotiating to Monitoring and increase 
in probability of Negotiating self-transition (i.e. column 4 in row 4 is made the primary 
increase column). In this case, the Markov chain simulation also predicts a performance 
decline in Figure 9. Like the previous case, this violation scenario is less accurate with 
respect to the behavior of the large-scale simulation. As in the previous case, the Markov 
chain simulation shows a reduced level of performance in comparison to the large-scale 
simulation. This is again because the Markov chain simulation simulates prolonging the 
task in the Negotiating state with no progress to Monitoring and Completed states.  

The cases shown in figures 8 and 9 illustrate situations where the accuracy of the 
Markov chain simulation is reduced because the choice of secondary row perturbations 
does not accurately model the behavior of the large-scale simulation. These cases show 
the importance of choosing perturbation combinations that closely correspond to the 
behavior of the target system. The predictiveness of the Markov chain approach is 
improved by focusing on the perturbation combinations known to be most accurate, if 
that knowledge is available. Such information may prove useful for developing a 
methodology of Markov chains in which the number of perturbations is kept to a 
minimum. Nevertheless, in all three cases discussed above, in which the probability of 
transition from Negotiating to Monitoring is decreased in the Markov chain simulation, 
the Markov chain predicts a performance decline. 

The computational cost for the entire 785 perturbation combinations required to 
perturb all of row 4 in the Markov chain simulation was 789.17 s. Raising the 
perturbation limit, L, to 0.5 to obtain a additional perturbation sequences needed to 
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increase range in this case required another 1480.46 s. Here, the large-scale simulation 
required 41.57 hours. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Proportion of tasks complete in the large-scale and Markov chain simulations in response to 
reduction in the probability of transition from the Negotiating to the Monitoring state (column 5 in row 4 is 
the sink column with a sink weight of 1) while the probability of Negotiating self-transition increases 
(column 4 is the primary increase column). Since there is no secondary row perturbation, only one curve is 
shown.  A two-percent moving average trend line is used to draw the curve for proportion of tasks complete 
for the large-scale simulation. 
 
6.3. Agreement Fulfillment Guarantee 
 
The Monitoring state is entered once an SLA is concluded. Failure to fulfill an SLA can 
occur for many reasons: widespread network communications failures, network-wide 
cyber attacks and viruses, faults or failures of computing resources that are executing user 
tasks, of crashes of host operating system software. In the Markov chain, failure to fulfill 
an agreement may be modeled by increasing the probability of transition from 
Monitoring to states other than the Completed state; namely, either increasing the 
probability of transition to the Negotiating state (representing a task abort) or increasing 
the probability of self-transition in the Monitoring state (representing an extended delay). 
In the former violation scenario, a task that transitions from Monitoring to Negotiating 
(aborts) may recover from this setback by later obtaining another SLA, returning to the 
Monitoring state, and then completing. In this section, this violation scenario is simulated 
in the Markov chain by making Negotiating, column 4 of row 5, the primary increase 
column, while making Completed, column 6, the sink column. In the resulting 
perturbation combinations, secondary row perturbation is applied to the Negotiating row 
(row 4). In the large-scale simulation, the equivalent behavior change was enabled by 
systematically increasing the rate at which a provider aborts a queued or executing task. 
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As before, the large-scale simulation iterated, with the abort rate increasing on each 
iteration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 10. Proportion tasks complete in large-scale and Markov chain simulation in response to reduction 
in the probability of transition from Monitoring to Completed (row 5, column 6 is the sink column) while 
increasing the probability of transition from Monitoring to Negotiating (column 4 is the primary increase 
column). A two-percent moving average trend line is used to draw the curve for proportion of tasks 
complete for the large-scale simulation.  
 

Figure 10 shows the resulting curves for Markov chain perturbation sequences in 
which the probability of transition to the Negotiating state is raised (i.e., column 4 is the 
primary increase column) as the probability of transition to Completed (sink column 5) 
falls from a weighted average of 0.008 to zero. The figure shows that this perturbation 
causes the proportion of tasks completed to fall dramatically. This figure shows 20 of the 
most relevant perturbation combinations (out of a total of 270) for the case where the 
Completed state has a sink weight of 0.2. Alternative perturbations using Monitoring as 
the sink column (not shown) produce a similar result. In all cases, the Markov chain 
curves show a pronounced reduction in proportion of tasks completed that is substantially 
predictive of the curve for the large-scale simulation, also shown in Figure 10. The figure 
shows that 5 of the 20 curves represent accurate approximations of the large-scale 
simulation result. The remainder show the distinct downward trend in tasks completed, 
though at markedly different slopes.  In the 5 curves closest to the large-scale simulation 
result, the secondary row, Negotiating (row 4), is perturbed to raise the probability of 
transition to the Monitoring state (column 5). This effectively models a situation where 
tasks that fail to transition from Monitoring to Completed (abort) are later able to 
negotiate new SLAs, return to the Monitoring state, and complete—as might be expected 
in the real world. While only a relatively small proportion of the curves produced through 
Markov chain simulation are this accurate, all curves predict that if the probability of 
transition from Monitoring to Negotiating is raised sufficiently (i.e., the probability of 
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task abort is high enough), system performance will drastically degrade. The Markov 
chain simulation required 260.2 s of execution time to process the 270 perturbation 
combinations for row 5. The large-scale simulation required a lengthy 122.6 hours to 
carry out the equivalent perturbation behavior, because repeated task aborts entailed 
extensive delays.  
 
6.4 Summary of Analysis and Outstanding Issues 
 
The preceding sections showed that perturbation of TPMs carried out through application 
of the method described in sections 4 and 5 does indeed generally predict how the large-
scale grid system will perform when key service guarantees are violated. In the case of 
the Discovery guarantee, the Markov chain was found to accurately correspond to the 
large-scale simulation in both cases shown. For the Engagement guarantee, perturbations 
of the Markov chain were found to generally correspond to the results produced by the 
large-scale simulation in one violation scenario shown here. For the violation of the 
Service Fulfillment Guarantee, the perturbation of the Markov chain accurately captured 
the behavior exhibited in the large-scale simulation. Thus perturbation of the Markov 
chain was shown to be an effective predictor for all cases shown in this paper. In no case, 
did the Markov chain simulation produce results that contradicted the large-scale 
simulation. Moreover, as we have seen, the Markov chain approach achieved these 
results at less than 0.5% of the computational cost of the large-scale simulation. If the 
required data was obtained from a real-world system to create a Markov model and 
related TPMs, it is reasonable to believe that comparable results could be achieved. 

Despite this success, important issues still remain to be resolved. The most important is 
scalability, which has three aspects. First is whether the approach scales with respect to 
the size of the system being modelled, as expressed in terms of such variables as number 
of entities being modelled, number of transitions taken, and workload.  As section 4 has 
shown, the method of counting state transitions and generating transition probabilities is a 
straightforward arithmetic process that clearly does not depend on number of transitions. 
Here, scale does not hinder analysis. Second, there is the all-important issue of the size of 
the state model, that is, the number of states and the corresponding size of the TPM. 
Here, further work incorporating lumping techniques described in Section 2 will be 
needed.  Finally, it is important to consider scalability with respect to the number of 
perturbations, or alternative execution paths, investigated. Despite the dramatic reduction 
in execution time seen for Markov chain method (< 1% of the execution time used by 
large-scale simulation), scalability may not be good for very large matrices or if many 
perturbations are needed.  Follow-on research will be needed to examine this issue and to 
develop a methodology for systematic perturbation of Markov chains. Here, there is the 
possibility of extending non-linear algebra techniques and matrix methods (Stewart and 
Sun 1990) to generate eigensystems that can be analysed to determine what parts of the 
matrix are most sensitive to perturbation and thus where investigation should be focused. 
Despite these issues, use of the Markov chain approach entails dramatically less 
computational effort than large-scale simulation. 
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7. Conclusions 
 
Section 6 showed that perturbation of TPMs and Markov chain simulation was generally 
predictive of changes to performance arising from failure to fulfill basic service 
guarantees provided by grid computing systems.  While Markov chain analysis did not 
reproduce the exact performance curves generated by a detailed simulation, a carefully 
limited brute-force perturbation of TPMs produced a family of related curves which 
approximated the impact of not fulfilling service guarantees. Perturbed TPMs produced 
by Markov chain analysis were predictive both in cases where changes to the behavior of 
the large-scale simulation resulted in severe performance degradation as well as cases 
where changes to the large-scale simulation did not significantly impact results. Thus, it 
is possible to conclude that the approach to perturbing Markov chains described in this 
paper did indeed answer the questions posed in section 3; namely, how non-fulfillment of 
the three service guarantees affects performance of a large scale grid system. Moreover, 
the Markov chain procedure was able to perform the analysis necessary to answer this 
question using a small fraction of the computational resources (less than 1%, or two 
orders of magnitude) that was necessary for the large-scale simulation. If, instead of the 
large-scale simulation, a real-world system could be used as a testbed in which conditions 
are sufficiently controlled to allow execution of repeated trials, the contrast in time (and 
resource) expenditure could be much greater. The study thus shows that Markov chain 
analysis is a valuable tool for understanding complex system behavior in large-scale grid 
systems and can be used to predict performance changes that result when fundamental 
guarantees of service are not met.  
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APPENDIX A. Decomposition of Selected States 
 
This appendix is provided for readers who want to obtain additional detail about the state 
model. Future work may entail investigating the effects of perturbing lower-level Markov 
chain models for these three states.  This appendix describes the decomposition of the 
Discovering, Negotiating, and Monitoring states into lower-level substates and shows the 
related substate decomposition diagrams. The decomposition of these three states is 
strictly hierarchical. In each case, transition into the containing higher-level state denotes 
simultaneous transition in the related substate decomposition diagram from the initial 
state to another substate. Similarly, in each decomposition diagram, transition to the 
terminal state denotes simultaneous transition out of the containing higher-level state.  In 
each case, particular substates that are shaded identify states in which errors occur or 
tasks complete either properly or improperly. These substates provide a basis for 
diagnosing errant behaviors. All three substate diagrams have the Markov property for 
which stochastic TPMs can be formed. Similarly, as in the case of the higher-level state 
Markov chain, a global system state vector representing the lumped states of all tasks in 
the system can be created for each substate Markov chain. A brief analysis of the 
decomposition concludes the section. 
 
A.1 Decomposition of the Discovering State 
 
These substates describe in detail the discovery process by which a set of grid service 
providers are located that have the potential to execute a user task. The process described 
here follows the Globus Monitoring and Discovery System (MDS) [Glob2008]. In this 
process, a transition is taken from the initial state to the Processing GIIS state. In this 
state, the user first queries a Grid Index Information Service (GIIS) to obtain addresses of 
any Grid Resource Information Services (GRIS) that may have information about service 
providers which are capable of executing the user task. The Processing GIIS state 
encompasses the activities involved in querying one or more GIIS and processing the 
related responses. Inability to obtain a response from a GIIS results in transition to a 
Failed GIIS State in which the failure is recorded. A negative response from a GIIS 
results in transition to the Discarding GRIS state in which all service provider 
information in the GRIS is discarded and no longer available. A GIIS may return 
information about one or more GRIS that can be queried to obtain information about 
relevant service providers. In this case, a transition is taken to the Processing GRIS state. 
Here, as in the case of the GIIS, attempts to contact GRIS directories may also fail or 
produce perceived irrelevant responses. If a GRIS returns information about service 
providers that are potentially capable of running the user task, the Storing Discovery state 
is entered to record the discovery. Once all GRIS are queried and discoveries are 
recorded, the Processing GRIS substate, and the containing Discovery state, are exited 
simultaneously. This process is illustrated in Figure A.1. In this figure (and in subsequent 
figures in this appendix), yellow shading signifies a state that has been added to the 
diagram to allow tracking of failure conditions. 

Two states may be further decomposed. The Processing GIIS state consists of four 
substates detailing elementary steps for sending queries to the GIIS and processing 
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responses. The Processing GRIS state may be similarly decomposed into three more 
detailed states for querying GRIS. Both decompositions are strictly hierarchical. In total, 
the Discovering state consists of 14 substates in two lower-level hierarchical 
decompositions. 
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Figure A.1. Decomposition of the Discovering state into a substate diagram. Black circles without rings 
refer to initial states or entry points. Black circles with rings refer to termination or end points. 
 
 
A.2 Decomposition of the Negotiating State 
 
The substates shown in Figure A.2 identify critical aspects of the negotiation process. 
This process is executed independently by a client user for each service provider that was 
discovered during the Discovering phase. Upon entry into the containing Negotiating 
state, the Processing SLA Offer substate is simultaneously entered. In this substate, the 
client user carries out the actions involved in preparing an SLA offer to a provider, 
sending the offer, and awaiting the response. The substate may be further decomposed 
into another five straightforward, procedural states. These actions follow the SLA 
negotiation protocol required by the WS-Agreement standard specification [Andr2007]. 

More importantly perhaps, the remaining three states in Figure A.2 are intended to 
facilitate understanding behavior of the grid system as a whole. The Failed Negotiation 
State indicates that either the provider rejected the SLA offer or the negotiation process 
could not be completed due to error. The Record Provider Rejection state indicates the 
client user decided that the provider was inappropriate and terminated the procedure. The 
SLA Accepted state indicates an agreement was reached. If included in a system state 
vector using the procedure described in section 4.2, these three substates could be used to 
diagnose causes of degradation in system performance in the more detailed model. In 
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total, the Negotiating state consists of 9 substates, including the further decomposition of 
the Processing SLA Offer substate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                Figure A.2. Decomposition of the Negotiating state into a substate diagram. 
 
A.3 Decomposition of the Monitoring State 
 
From the point of view of the user, the Monitoring state decomposes into four states that 
describe substates that are entered once an SLA for the task has been agreed to and the 
task has been submitted to the provider for execution. This is shown in figure A.3 on the 
next page. In this figure, none of these states are further decomposed. The first, 
Requesting Registration, represents a request by the user to be notified of changes to the 
status of the user’s task, or job. This is followed by transition to a local Waiting state 
specific to the Monitoring state machine (not to be confused with the Waiting state in the 
high-level state diagram in figure 1), duringwhich self-transitions may be taken when 
either notice of registration decision arrives. If the registration is accepted, the task 
returns to the Waiting state, where it remains until the task has begun execution. If the 
task completes, a transition occurs from the Waiting state to the Completion Actions state 
(which signifies transition to the Task Completed state in the high-level state diagram in 
figure 1). If the task is aborted or the registration request is rejected, a transition to the 
Task Aborted state occurs (which signifies transition to the Task Failed state in the high-
level state diagram). 
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Figure A.3. Decomposition of the Monitoring state into a substate diagram. 
 
A.4 Analysis of Decomposition of High-Level Model 
 
As shown above, three states in the high-level model can be further decomposed into 27 
states. There are 14 states in the decomposition of Discovering, nine in the decomposition 
of Negotiating, and four in the decomposition of Monitoring. Each of these constitutes a 
hierarchy of states. Discovering decomposes directly into seven states with two states 
(Processing GIIS and Processing GIIS) decomposing into 3 and 4 states respectively. If 
flattened, this becomes a single diagram with 12 states. Negotiating decomposes into four 
states, one of which (Processing Offer) decomposes into five. If flattened, this yields 
eight states. Monitoring decomposes simply into four states, none of which are further 
decomposed. If the entire 34-state structure (seven at the high level and 27 at the lower 
levels) were flattened, it would yield a single 28-state model. Detailed analysis of the 
larger model and the individual substate Markov chains may be a direction for future 
work. This would have two areas of interest. First, a number of more detailed states 
describe error situations, which if entered into by a high proportion of tasks in the system, 
could be predictive drastic changes at the system level. Second, the larger 28-state model 
could be converted into a larger TPM and used to test the scalability of methods 
described in this paper.  
 

Requesting Registration

Waiting

Actions complete 

Task completes 
Completion Actions

Actions complete 

Task Aborted State
Actions complete 

Task execution started  

Task aborted notification 

Registration rejected 

Registration accepted 

Registration 
decision
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APPENDIX B. Five Time-Period Transition Matrices  
 
These matrices, referred to in section 4, allow a representation of the model as a piece-
wise homogenous Markov chain having a bounded number of pieces [Rose2004], where 
each piece corresponds to a different time period. The five matrices, shown below, were 
used as a basis for the perturbation experiments described in section 6. The summary 
matrix shown in figure 2 was produced by weight averaging these matrices on the basis 
of number of transitions in each time period. 
 
Time Period 1, 0-7200 s 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 Time Period 2, 7201-14400 s 
  
  
  
 
 
 
 
 
 
 
 
 
 

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

0000000Fail

01.000000Comp

00.00390.99610000Mon

000.34420.29200.01320.35060Ngt

0000.33560.60130.06310Disc

0000.13780.05500.80720Waiting

00000.0303 00.9697Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.00710.99280.0001000Mon

000.04480.37700.03160.54660Ngt

0000.50120.498800Disc

0.0002000.07490.07220.85270Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial
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 Time Period 3, 14401-21600s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Time Period 4, 21601-28800s 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Time Period 5, 28801-36000s 
 
 

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.01620.98280.0010000Mon

0.000100.01570.18540.01430.78450Ngt

0000.35930.640700Disc

0.0074000.07020.07300.84940Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

00.0670.93170.0013000Mon

0.010100000.98990Ngt

0000.00090.999100Disc

0.0249000.06890.07220.83400Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial

1.0000000Fail

01.000000Comp

0.06700.93170.0013000Mon

0.010100000.98990Ngt

0.00090.999100Disc

0.0435000.07340.07200.81110Waiting

00000 00Initial

FailCompMonNgtDiscWaitInitial
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APPENDIX C. Algorithm to Perturb Row of Transition Probability Matrix 
 
This section provides pseudo-code for the perturbation algorithm overviewed in section 5.1. The 
main algorithm on the next page details the steps in determining perturbation combinations, while 
subsequent pseudo-code procedures describe (1) the default method of selecting secondary rows, 
(2) the method for evaluating perturbation sequences, and (3) the steps in multiplying matrices to 
carry out the Markov chain simulation. Table C.1 defines the major variables used in these 
procedures and discussed in the main body of this report.  
 
 
 

Table C.1. List of term used to describe perturbation algorithm 

Term Symbol 
(if any)

Definition

Non-sink column --- The column in the primary row in which pij values are decreased by an amount proportional 
to 1 – (w * vprim,), where w is the sink weight. See Appendix C for further details.

Primary increase 
amount

vprim The amount by which the value of pij in the primary row is successively raised during a 
perturbation sequence.

Primary increase 
column

c↑ The column in the primary row in which pij values are increased by an amount vprim..

Primary row r The TPM row selected by the analyst in which columns in the transient portion of the 
matrix will be perturbed.  

Primary sink 
column

c↓ The column in the primary row in which pij values are decreased by an amount equal to w * 
vprim,, where w is the sink weight.

Perturbation 
combination

--- A combination of value assignments for a primary increase column, primary sink column, 
and sink weight in the primary row and a secondary increase column and secondary 
perturbation amount in the secondary row (if any).

Perturbation 
Limit

L The maximum amount by which the pij values of primary and increase columns can be 
raised by.

Perturbation 
sequence

--- A sequence carried out for a single perturbation combination in which the value of the 
primary row, increase column is successively raised by vprim while the sink column and 
non-sink columns, if any, are decremented.

Secondary 
increase column

d↑ The column in the primary row in which pij values are increased by an amount vprim..

Secondary 
increase amount

vsec A value, 0 ≤ 1.0, by which the secondary increase column is incrementally increased.

Secondary row s The TPM row in which column for which pij values are perturbed in addition to the primary 
row. By default, the secondary row is the number of the increase column.

Sink weight w The variable w whose value, 0 ≤ 1.0, determines the amount, w * vprim,, that the primary 
sink column pij should be reduced by.

Sink weight set --- A set of sink weights, w, iteratively used to produce alternative values by which the primary 
sink column is reduced by in a perturbation combination.
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Procedure Determine Perturbation Combinations 
// Initially, 
• Let np be the number of time periods in a non-homogenous Markov chain. 
• Let Q = {Q1….Qnp} as unperturbed set of np n × n TPMs for np time periods, where qtp

ij is 
the probability of transition from state i to state j in time period tp, 1 ≤ tp ≤ np. 

• Let P be the set of np matrices to be perturbed. 
• Let perturbable be an n × n Boolean matrix where perturbable (i, j) = TRUE if for any Qtp in 

Q, qtp
ij > 0. If perturbable (i, j) = TRUE, the jth column in row i can be perturbed. 

• Select row, r, as primary row to perturb in all matrices in Q, where r corresponds to a 
transient state in the Markov chain  

• Select range and granularity of perturbation  
o Set perturbation limit L (ex. L = 0.25) 
o Set primary row perturbation increment amount vp (ex. vprim = L/25 = 0.01 
o Set primary row sinkWeightSet, e.g.{0.2, 0.4, 0.6, 0.8, 1.0} 
o Set secondary row perturbation increment amount vsec (ex. vsec = L/5 = 0.625) 
o Set numSteps equal to number of discrete steps to execute Markov chain (ex. 339) 

 
BEGIN // Define perturbation combinations and evaluate perturbation sequence for each  
FOR each column x in row r, where perturbable (r, x): 

1. Set primary increase column c↑= x. 
2. FOR each column y in row r, y ≠ c↑ and perturbable (r, y): 

a. Set sink column c↓= y. // This is the primary sink column  
b. Set secondary row s = DetermineSecondaryRow (r, c↑)   // Find secondary row   
c. FOR each sink weight w in sinkWeightSet 

DO 
       // Check if there is secondary perturbation. If not evaluate immediately, 
       // otherwise iterate through secondary perturbation combinations and evaluate each. 

IF s = NULL    //  
THEN EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps) 
ELSE for each column d in secondary row s, s.t. perturbable (s, d): 

i. Set d↑ = d.                   // Vary and iterate over columns of secondary row  
ii. Set msec = 0 

iii. Reset P = Q, 
iv. WHILE msec ≤ L,        // Vary and iterate over different values  of  msec  

a. Set msec = msec + vsec` 
b. FOR Ptp in P, 1 ≤ tp ≤ np     // Perturb matrices ptp in P 
    DO                                         // according to equation (7) 

1. Set ptp
sd

↑ = qtp
sd

↑+  msec. 
2. IF ptp

sd
↑ ≥ 1.0, CONTINUE. 

3. FOR each column c in  row s, s.t. c ≠ d↑,   
    DO 

                                                      ptp
sc = qtp

sc- msec •               for each column j in row s 
 

      
        c. EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps) 

END 

∑
↑≠ds

tp
sj

tp
sc

q
q
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Procedure DetermineSecondaryRow (r, c↑) 
// Accepts primary row r, and primary column c↑. Uses default method described in Section 5 to determine 
if there is secondary row to perturb  
BEGIN 
IF r= c↑ RETURN NULL 
ELSE RETURN c↑ 
END 
 
Procedure EvaluatePerturbationSequence (P, r, c↑, c↓, w, L, vprim, numSteps) 
// Accepts a defined perturbation combination including primary row r, primary increase  
// column c↑, primary sink row c↓, primary sink weight w, and secondary row perturbation 
// if any embedded in P. Iterates through perturbation sequence in P, perturbing P by  
// incrementing mprim on every iteration according to equation (6) and executes Markov  
// chain for each. The matrix Q assumes the role of P(old) in equation (6). The procedure 
// also contains detail on border conditions not described in main body of report. 
BEGIN 
1. Set primary increment amount mp = 0 
2. Set Q = P,                                                      // To be reset on each iteration   
3. WHILE mp ≤ L                                              // Execute perturbation sequence up to L 

DO                                                                 // Increment perturbed value, perturb matrix     
a. Set mprim = mprim + vprim.                   // Set and do one execution of Markov chain      
b. Reset P = Q 
c. FOR Ptp in P, 1 ≤  tp ≤ np,               // Perturb matrix set by next mp      

DO    
1. IF (qtp

rc
↑ + mprim  ) > 1, CONTINUE   // Go to next  matrix if perturbed value ≥  1 

2. Set ptp
rc

↑ = qtp
rc

↑ + mprim                       // Otherwise, set primary increase column   
 

                      // Border condition #1!  If no non-sink columns in this time period matrix,  
                      // set Let sink column bear the entire decrease. Otherwise, re-distribute 

3. IF NOT (∃ c, s.t. qtp
rc > 0, and c ≠ c↑, c ≠ c↓)   

THEN ptp
rc

↓ = qtp
rc

↓ – mprim                               
       ELSE  

i. Set ptp
rc

↓ = qtp
rc

↓ – w • mprim                          // Decrease primary sink column     
ii. FOR each column c in row r, c ≠ c↑, c↓       // Distribute 1-w to non-sink columns  

DO  
        ptp

rc = ptp
rc – (1-w) • mprim •  

                                                                   for columns j in row r 
 

                            // Border condition #2!  Check for pij values that may have been driven below zero. If  
                               // found, redistribute difference proportionally to sink and non-sink columns with pij >0    

iii. FOR each column c in row r, c ≠ c↑ 
IF ptp

rc
 < 0,                         

      THEN                                
1. Set redistDiff = | 0 - ptp

rc | 
2. Set ptp

rc=0. 
3. FOR each column d in row r, d ≠ c↑ 

DO  
   IF ptp

rd > 0 
        THEN ptp

rd = ptp
rd -  redistDiff  •                 

                                          for columns j in row r 
d. ExecuteMarkovChain (P, numSteps).       

END 

∑
↑≠cj

tp
rj

tp
rd

q
q

∑
↓↑≠ ccc

tp
rc

tp
rc

q
q

,
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ExecuteMarkovChain (P, numSteps) 
// Executes Markov chain for numSteps with perturbed matrix P using procedure in section 4.4.  
BEGIN 
            Set state vector v to initial state 
           StepsInPeriod= dperiod / dts     // Assume dperiod is the duration of a time period while 
                                                            dts is the duration of  time step. //                             

FOR step = 1 to numSteps 
    k = trunc (step / StepsInPeriod) + 1                                                
    v = Pk • v 

                Write results (v) 
END 
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APPENDIX D. Details of Perturbation Combinations 
 
This appendix shows the result of the method of perturbation, applied to rows 1 through 5 
of the summary TPM in figure 2. The summary TPM is used because it records all 
transition probabilities greater than 0.  The description of the application of the method 
results in the following perturbation combinations, of which a subset corresponds to the 
violation scenarios of interest. These perturbation combinations were used in the 
experiments described in section 6. 

In row 1, there are 2 combinations of primary increase columns and sink columns. 
When column 1 is the increase column, there are 5 sink weights and no secondary row. 
Therefore, there are only 5 combinations to consider.  When column 3 is the increase 
column, row 3 is the secondary row with 15 secondary row perturbations (three 
secondary increase rows times five secondary increase amounts). Column 3 as the 
increase column thus entails 5 x 15 = 75 perturbation combinations. The total number of 
perturbation combinations for row 3 is 5 + 75 = 80. If =0.25 and L = 0.25, each 
perturbation combination has a perturbation sequence consisting of a maximum of 25 
Markov chain simulations. Thus, there would be a maximum of 80 x 25, or 2000 
simulations. However, to get more precise results that better corresponded to the actual 
observed values in row 1, 

• When column 2 is the increase column, columns 3 and 4 are sink columns. No 
secondary row may be selected, because the number of the primary and secondary 
rows would be the same. Since columns 3 and 4 entail five sink weights each, 
there are 10 combinations to consider.  

 was changed to 0.001 and L was changed to 0.031. This 
meant that each of the 80 perturbation sequences now had 31 simulations. This yielded 
80 × 31, or 2480 simulations in 82.39 s. 

In row 2, there are 9 combinations of increase columns and sink columns alone for 
columns 2, 3, 4, and 8. Column 8 is discounted as a sink column because of its already 
low value. There were a total of 425 perturbation combinations with secondary row 
perturbation. 
  

• When column 3 is the increase column, columns 2 and 4 are sink columns with 
row 3 selected as the secondary row. Columns 2 and 4 entail five sink weights 
each. Row 3 has three possible secondary increase columns, each with five 
possible secondary increase amounts. Thus there are 2 sink columns × 5 sink 
weights × 3 secondary increase columns × 5 secondary increase amounts = 150 
perturbation combinations. 

• When column 4 is the increase column, columns 3 and 4 are sink columns with 
row 4 selected as the secondary row. Columns 3 and 4 again entail five sink 
weights each. As a secondary row, row 4 has five possible increase columns, each 
with five possible increase amounts. Thus there are 2 sink columns × 5 sink 
weights × 5 secondary increase columns × 5 secondary increase amounts = 250 
perturbation combinations when column 4 is the increase column. 

• When column 8 is the increase column, columns 2, 3 and 4 are sink columns. No 
secondary row may be selected, because this column is not in the transient portion 
of the matrix. Since columns 2, 3 and 4 entail five sink weights each, there are 15 
combinations to consider.  
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Thus for all selections on increase columns for row 2, there are 10 + 150 + 250 + 15 = 
425 perturbation combinations.  If vprim=0.25 and L = 0.25, each perturbation 
combination has a maximum of 25 Markov chain simulations for a total of 10625, which 
took 373.44 s to execute. 

In row 3, there are also 6 combinations for increase columns and sink columns in the 
primary row. There were a total of 460 perturbation combinations with secondary row 
perturbation. 
  

• When column 2 is the increase column, columns 3 and 4 are sink columns with 
row 2 selected as the secondary row. Columns 3 and 4 entail five sink weights 
each. As a secondary row, row 2 has four possible secondary increase columns, 
each with five possible secondary increase amounts. Thus there are 2 sink 
columns × 5 sink weights × 4 secondary increase columns × 5 secondary increase 
amounts = 200 perturbation combinations. 

• When column 3 is the increase column, columns 2 and 4 are sink columns and no 
secondary row may be selected. Since columns 3 and 4 entail five sink weights 
each, there are 10 combinations to consider. 

• When column 4 is the increase column, columns 2 and 3 are sink columns with 
row 4 selected as the secondary row. Columns 2 and 3 again entail five sink 
weights each. Row 4 has five possible increase columns, each with five possible 
increase amounts. Thus there are 2 sink columns × 5 sink weights × 5 secondary 
increase columns × 5 secondary increase amounts = 250 perturbation 
combinations when column 4 is the increase column. 

 
Thus for all selections on increase columns in row 3, there are 10 + 200 + 250 = 460 
perturbation combinations.  If vprim=0.25 and L = 0.25, each perturbation combination has 
a maximum of 25 Markov chain simulations for a total of 11500, which took 369.69 s to 
execute. 

In row 4, there are also 16 combinations of increase columns and sink columns alone 
for columns 2-5 and 8. Again column 8 is discounted as a sink column because of its 
already low value. There were a total of 785 perturbation combinations with secondary 
row perturbation. 
  

• When column 2 is the increase column, columns 3, 4 and 5 are sink columns with 
row 2 selected as the secondary row. Columns 3, 4, and 5 entail five sink weights 
each. As a secondary row, row 2 has four possible secondary increase columns, 
each with five possible secondary increase amounts. Thus there are 3 sink 
columns × 5 sink weights × 4 secondary increase columns × 5 secondary increase 
amounts = 300 perturbation combinations. 

• When column 3 is the increase column, columns 2, 4, and 5 are sink columns with 
row 3 selected as the secondary row. Columns 2, 4, and 5 entail five sink weights 
each. Row 3 has three possible secondary increase columns, each with five 
possible secondary increase amounts. Thus there are 3 sink columns × 5 sink 
weights × 3 secondary increase columns × 5 secondary increase amounts = 225 
perturbation combinations. 
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• When column 4 is the increase column, columns 2, 4, and 5 are sink columns and 
no secondary row may be selected. Since columns 2, 4, and 5 entail five sink 
weights each, there are 15 combinations to consider. 

• When column 5 is the increase column, columns 3, 4, and 5 are sink columns with 
row 3 selected as the secondary row. Columns 3, 4, and 5 entail five sink weights 
each. Row 5 has three possible secondary increase columns, each with five 
possible secondary increase amounts. Thus there are 3 sink columns × 5 sink 
weights × 3 secondary increase columns × 5 secondary increase amounts = 225 
perturbation combinations. 

• When column 8 is the increase column, columns 2-5 are sink columns. No 
secondary row may be selected, because this column is not in the transient portion 
of the matrix. Since columns 2-5 entail five sink weights each, there are 20 
combinations to consider.  

 
Thus for all selections on increase columns in row 4, there are 1300 + 225 + 15 + 225 + 
20 = 785 perturbation combinations.  If vprim=0.25 and L = 0.25, each perturbation 
combination has a maximum of 25 Markov chain simulations for a total of 19625, which 
took 789.16 s to execute. Subsequently, to provide greater range of the perturbation, L 
was increased to 0.5 and a perturbation sequence of 39250 simulations was carried out. 
This took 1480.46 s to execute. 

In row 5, there are thus 6 combinations of increase columns and sink columns for 
columns 4-6. There were a total of 270 perturbation combinations with secondary row 
perturbation. 
  

• When column 4 is the increase column, columns 5 and 6 are sink columns with 
row 4 selected as the secondary row. Columns 5 and 6 entail five sink weights 
each. As a secondary row, row 4 has five possible increase columns, each with 
five possible increase amounts. Thus there are 2 sink columns × 5 sink weights × 
5 secondary increase columns × 5 secondary increase amounts = 250 perturbation 
combinations when column 4 is the increase column. 

• When column 5 is the increase column, columns 4 and 6 are sink columns and no 
secondary row may be selected. Since columns 4 and 6 entail five sink weights 
each, there are 10 combinations to consider. 

• When column 6 is the increase column, columns 5 and 6 are sink columns. Here 
again no secondary row may be selected because column 6 is outside the transient 
portion of the matrix. Since columns 5 and 6 entail five sink weights each, there 
are 10 combinations to consider. 

 
Thus for all selections on increase columns in row 5, there are 150 + 10 + 10 = 270 
perturbation combinations.  If vprim=0.25 and L = 0.25, each perturbation combination has 
a maximum of 25 Markov chain simulations for a total of 6750 possible, which took 
260.15 s to execute. The approximately 84230 perturbation sequences for these 
perturbation combinations are executed in about 56 minutes. To execute the equivalent of 
these sequences with the simulation program would require in excess of 1 week, 
conservatively. 
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