Simulation Results Graphs and Cluster Analyses for: “The Influence of Realism on Congestion in Network Simulations”

NIST Technical Note
C. Dabrowski & K. Mills
2015
Table of Contents

• Sec. 5 Graphs for Isolated Nodes (χ) – slides 3-37
• Sec. 5 Graphs for Network Connectivity (α) – slides 38-72
• Sec. 5 Graphs for Packet Delivery Effectiveness (π) – slides 73-107
• Sec 5. Graphs for Packet Delivery Efficiency (δ) – slides 108-142
• Sec. 6 Clustering for Responses (χ, α, π and δ) – slides 143-147
• Appx A. Graphs for Congested Nodes (γ) – slides 148-182
• Appx A. Clustering for Congested Nodes (γ) – slides 183-184
Graphs for Isolated Nodes (χ) Figure 21
(Dabrowski & Mills NIST)
C0: LSS Isolated Nodes
C1: LSS Isolated Nodes
C2: LSS Isolated Nodes
C3: LSS Isolated Nodes

\[\chi \]

\[p \]

0

0.25

0.5

0.75

1

0

500

1000
C10: LSS Isolated Nodes
C19: LSS Isolated Nodes
C22: LSS Isolated Nodes
C23: LSS Isolated Nodes
C27: LSS Isolated Nodes
C30: LSS Isolated Nodes
C31: LSS Isolated Nodes
C54: LSS Isolated Nodes
C62: LSS Isolated Nodes
C63: LSS Isolated Nodes
C114: LSS Isolated Nodes
C118: LSS Isolated Nodes
C119: LSS Isolated Nodes
C122: LSS Isolated Nodes
C126: LSS Isolated Nodes
Graphs for Network Connectivity (α) Figure 22
(Dabrowski & Mills NIST)
C0: LSS Reachable Nodes
C1: LSS Reachable Nodes
C2: LSS Reachable Nodes

\(\alpha \)

\(p \)
C3: LSS Reachable Nodes
C7: LSS Reachable Nodes
C10: LSS Reachable Nodes

\[\alpha \]

\[p \]

The graph shows a plot of \(\alpha \) against \(p \), where \(\alpha \) decreases sharply as \(p \) increases.
C11: LSS Reachable Nodes
C14: LSS Reachable Nodes
C15: LSS Reachable Nodes
C18: LSS Reachable Nodes
C19: LSS Reachable Nodes
C22: LSS Reachable Nodes
C23: LSS Reachable Nodes

The figure shows a plot of α vs. ρ. The x-axis represents the parameter ρ, while the y-axis represents α. The graph appears to illustrate the relationship between these two variables, possibly indicating a diminishing return or a threshold effect as ρ increases.
C26: LSS Reachable Nodes
C27: LSS Reachable Nodes
C30: LSS Reachable Nodes
C31: LSS Reachable Nodes
C50: LSS Reachable Nodes
C51: LSS Reachable Nodes

![Graph showing the relationship between \(\alpha \) and \(p \)]
C55: LSS Reachable Nodes
C58: LSS Reachable Nodes
C59: LSS Reachable Nodes
C62: LSS Reachable Nodes

- α vs p
- The graph shows the relationship between α and p for LSS reachable nodes.
C63: LSS Reachable Nodes
C114: LSS Reachable Nodes
C115: LSS Reachable Nodes
C118: LSS Reachable Nodes
C119: LSS Reachable Nodes
C122: LSS Reachable Nodes
C123: LSS Reachable Nodes
C126: LSS Reachable Nodes
C127: LSS Reachable Nodes
Graphs for Packet Delivery Effectiveness (π) Figure 23
(Dabrowski & Mills NIST)
C0: Packets Delivered

\[\pi \]

\[p \]

\[0 \quad 500 \quad 1000 \quad 1500 \quad 2000 \quad 2500 \]
C1: Packets Delivered

\[\pi \]

\[p \]
C2: Packets Delivered
C7: Packets Delivered

\[\pi \]

\[p \]

Graph showing the relationship between \(\pi \) and \(p \). The curve indicates a decreasing trend as \(p \) increases.
C10: Packets Delivered
C15: Packets Delivered

\(\pi \) vs. \(p \)

- \(\pi \) decreases as \(p \) increases.
- The curve approaches a limit as \(p \) increases.
C18: Packets Delivered
C19: Packets Delivered

\[\pi \]

\[p \]

0 0.25 0.5 0.75 1

0 500 1000
C23: Packets Delivered
C30: Packets Delivered

\[\pi \]

\[p \]
C31: Packets Delivered

\[\pi(p) \]
C51: Packets Delivered
C54: Packets Delivered
C55: Packets Delivered

The graph shows the relationship between the variable π and p.

The function appears to be decreasing as p increases, indicating that the probability of packets being delivered decreases with larger values of p. The y-axis represents π, ranging from 0 to 1, while the x-axis represents p, ranging from 0 to 2500.
C58: Packets Delivered

\[\pi \]

\[p \]

0 0.25 0.5 0.75 1

0 500 1000
C59: Packets Delivered
C63: Packets Delivered

\[\pi \]

\[p \]

0 500 1000 1500 2000 2500
C123: Packets Delivered
C126: Packets Delivered
C127: Packets Delivered
Graphs for Packet Delivery Efficiency (δ) Figure 24
(Dabrowski & Mills NIST)
C0: Packet Delay

\[\delta \]

\[p \]

0 500 1000 1500 2000 2500

0 0.2 0.4 0.6 0.8 1.0
C1: Packet Delay

\[\delta \]

\[p \]

Values on the y-axis range from 0 to 1, and the x-axis values range from 0 to 2500.
C6: Packet Delay

\[\delta \]

\[p \]
C7: Packet Delay

\[\delta \]

\[\rho \]
C11: Packet Delay
C18: Packet Delay

\[\delta \]

\[p \]

0

500

1000

0

0.2

0.4

0.6

0.8

1
C19: Packet Delay

\[\delta \]

\[p \]

\[0 \quad 500 \quad 1000 \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]
C22: Packet Delay
C23: Packet Delay
C26: Packet Delay

\[\delta \]

\[p \]

\[0 \] \quad \[500 \] \quad \[1000 \]

\[0 \] \quad \[0.2 \] \quad \[0.4 \] \quad \[0.6 \] \quad \[0.8 \] \quad \[1.0 \]
C27: Packet Delay
C30: Packet Delay

\[\delta \]

\[p \]

\[0 \]

\[500 \]

\[1000 \]

\[1500 \]

\[2000 \]

\[2500 \]

\[0 \]

\[0.2 \]

\[0.4 \]

\[0.6 \]

\[0.8 \]

\[1.0 \]
C54: Packet Delay

\[\delta \]

\[p \]
C55: Packet Delay
C58: Packet Delay
C59: Packet Delay

\[\delta \]

\[p \]

0

0.2

0.4

0.6

0.8

1

500

1000

1500

2000

2500
C62: Packet Delay

\[\delta \]

\[\rho \]

Graph showing the relationship between \(\delta \) and \(\rho \).
C63: Packet Delay
C114: Packet Delay
C115: Packet Delay

\[\delta \]

\[\rho \]

0 500 1000 1500 2000 2500

0 0.2 0.4 0.6 0.8 1
C118: Packet Delay
C119: Packet Delay

\[\delta \]

\[\rho \]

0 500 1000 1500 2000 2500
Clustering for Each Response (χ, α, π and δ) Figures 27-30
(Dabrowski & Mills NIST)
Hierarchical Clustering 2500 Series GCC Isolated Nodes (χ)
Hierarchical Clustering 2500 Series GCC Reachable Nodes (α)
Hierarchical Clustering 2500 Series Proportion of Packets Delivered (π)
Hierarchical Clustering 2500 Series Scaled Packet Delays (δ)
Graphs for Congested Nodes (Y) Figure A1
(Dabrowski & Mills NIST)
C0: LSS Congested Nodes
C1: LSS Congested Nodes
C6: LSS Congested Nodes
C7: LSS Congested Nodes
C14: LSS Congested Nodes
C15: LSS Congested Nodes
C23: LSS Congested Nodes
C27: LSS Congested Nodes
C30: LSS Congested Nodes
C51: LSS Congested Nodes
C55: LSS Congested Nodes
C59: LSS Congested Nodes
C62: LSS Congested Nodes
C63: LSS Congested Nodes
C118: LSS Congested Nodes
C119: LSS Congested Nodes

\begin{axis}[
 xlabel={p},
 ylabel={λ},
 xmin=0, xmax=2500,
 ymin=0, ymax=1,
]
\end{axis}
C123: LSS Congested Nodes
C126: LSS Congested Nodes
C127: LSS Congested Nodes
Clustering for Congested Nodes (Y) Figure A2
(Dabrowski & Mills NIST)
Hierarchical Clustering 2500 Series Congested Nodes (γ)