NAMED DATA NETWORKING IN SCIENTIFIC APPLICATIONS

Christos Papadopoulos
Colorado State University

NIST NDN Workshop, June 1, 2016
Work supported by NSF #1345236 and #13410999
Today’s Internet Names Hosts

☐ To find content in the network
☐ ..you have to learn where the content is
☐ ..and then ask the network to take you there
☐ ..so you can tell the server what you want

☐ But no-one cares about the servers anymore..
☐ ..we care about the Data!

☐ Service model mismatch
Named Data Network (NDN)

- The main idea: **Name the data, not the hosts!**
- ..so you just tell the network what you want..
- ..and let the network find it for you
Host-centric addressing

Data-centric addressing
NDN Operation

- Publishers push **hierarchical** name prefixes into the network
- Users send **Interests** that follow path to published prefix
- “Breadcrumbs” direct **data** back to the user
- Data is **cached** into the network
Content Publishing

Routes
../pr_1902/01/
../pr_1902/02/

Server1
file: pr_19020101
announces: ../pr_1902/01

Server2
file: pr_19020201
announces: ../pr_1902/02
Data Request

- Interests for Jan 30-31 go to server1
- Interests for Feb 01-02 go to server2
- Data dynamically extracted from file
This Sounds Awfully Complex..

But it’s actually quite simple:

- First, name your datasets with a hierarchical, community-agreed name structure:
 - /store.mc/fall13/BprimeBprime_M_3000/GEN-SIM/POSTLS162_v1-v2/10000 <UUID.root>

- Then, advertise a prefix to the network:
 - I can answer any questions starting with:
 - /store.mc/fall13/BprimeBprime_M_3000/GEN-SIM/POSTLS162_v1-v2/*

- Finally, let users issue interests with the appropriate name or name prefix
Named Data is Easy to Secure

- In the Internet you secure your path..
- ..but the server may still be hacked!

- In NDN you **sign** the data with a **digital signature**..
- ..so the users know when they get bad data!
Signatures also verify integrity of the data – no need for separate checksums

Data is signed as soon as it is produced, signatures are for life – much less opportunity for data tampering

Data is immutable – if you change the data you change the name

Data name can convey access rights – today, often data inherits the access controls of the resource that hosts it
Simplifying a Complex System: xrootd Cluster

Here is how xrootd works today:
xrootd under NDN

No manager, fewer steps, more robust

Client

NDN Network

Data Servers

Colorado State University
Supporting Science Applications

- Scientific apps generate tremendous amounts of data and face challenging management issues
 - Climate science CMIP5 dataset: 3.5 PB, 10x expected for CMIP6
 - High Energy Physics (HEP): 1 PB/s raw data, ATLAS project filters to 4 PB/yr
 - Data distributed to various local repositories
 - Variety of data naming schemes
 - E.g. different units and user defined parameters
- Existing, mature, software for dataset discovery, publishing, and retrieval
 - E.g. ESGF, xrootd, etc.
 - Lots of effort to overcome fragility of IP’s host-centric paradigm
Xrootd Access Patterns

Seven day log of xrootd data access
- 115K unique records
- 10 min granularity
- Avg file size: 2GB
- Hits at dataset level

Up to 1000 duplicate hits!
User Access Patterns

Request aggregation:
6 hours
Up to eight simultaneous users request the same dataset
Bandwidth Reduction with NDN

- Bandwidth peaks to 5000GB/10minutes (64Gbps)
- With 100% aggregation bandwidth drops to 8.2Gbps
- With 50% aggregation bandwidth drops to 13.2Gbps
First Step – Build a Catalog

- Create a **shared resource** – a distributed, synchronized **catalog of names** over NDN
 - Provide common operations such as publishing, discovery, access control
 - Catalog only deals with name management, not dataset retrieval
 - Platform for further research and experimentation

- Research questions:
 - Namespace construction, distributed publishing, key management, UI design, failover, etc.
 - Functional services such as subsetting
 - Mapping of name-based routing to tunneling services (VPN, OSCARS, MPLS)
NDN Catalog

(1) Publish Dataset names

(2) Sync changes

(3) Query for Dataset names

(4) Retrieve data
Forwarding Strategies
Science NDN Testbed

- NSF CC-NIE campus infrastructure award
 - 10G testbed (courtesy of ESnet, UCAR, and CSU Research LAN)
- Currently ~50TB of CMIP5, ~20TB of HEP data
Conclusions

- NDN encourages common **data** access methods where
 IP encourages common **host** access methods
 - NDN encourages interoperability at the content level
- NDN unifies scientific data access methods
 - Eliminates repetition of functionality
 - Adds significant security leverage
 - Strongly encourages and rewards structured naming
For More Info

christos@colostate.edu

http://named-data.net

http://github.com/named-data