

NIST Fluid Metrology Group

NIST Gaithersburg Campus

2 Guest Researchers

Fluid Metrology Group (FMG) Mission

- 1. To provide calibration services for fluid flow, airspeed, liquid density and volume measurements.
- 2. To develop models, reference data, and novel techniques for improved measurements of flow, temperature, and pressure.
- 3. To determine the thermodynamic and transport properties of process gases

FMG Calibration Services

- Gas Flow Standards
- Liquid Flow Standards
- Air Speed
- Hydrometers (Liquid Density)
- Liquid Volume
- High Pressure Natural Gas

Small and Medium *PVTt*Standards

 Small PVTt Standard has a 34 L Collection Tank

> Medium PVTt Standard has a 677 L Collection Tank

Flow Capabilities

Flow Range: 0.001 – 2000 L/min Line Pressures: 0.1 – 7 MPa

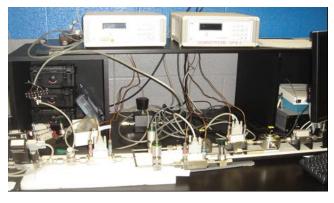
Computer Automated Ambient Temperatures

Expanded Uncertainty = < 0.025 % (k = 2)

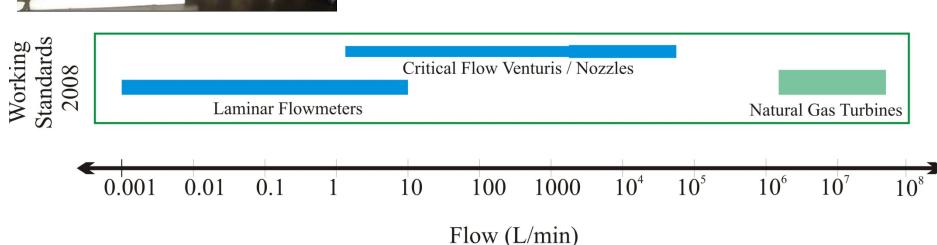
Large PVTt Gas Flow Standard

Flow Capabilities Dry Air

Flow Range: 862 to 77600 L/min


Line Pressures: 150 to 850 kPa
Ambient Temp.

Fully Automated (LabView)

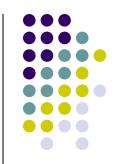

Expanded Uncertainty = 0.09 % (k = 2)

Working Gas Flow Standards

Working standards cover 0.001 to 77600 L/min with uncertainty of 0.08 % to 0.16 %

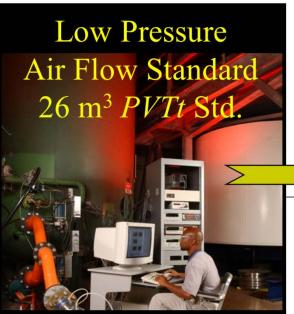
NIST Natural Gas Flow Calibrations (at CEESI Iowa)

Flow Range: 0.25 to 9 m³/s Unc = 0.24 to 0.35 % (k=2)


Turbine Meter Standards (TMS)

Test Section

Natural Gas Flow Measurements

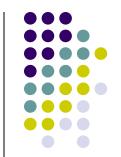


Traceable to NIST 26m³ *PVTt* standard

Flow Range: 0.25 to 9 m³/s

Expanded Uncertainty = 0.24 to 0.35 % (k=2)

High Pressure Natural Gas Calibrations



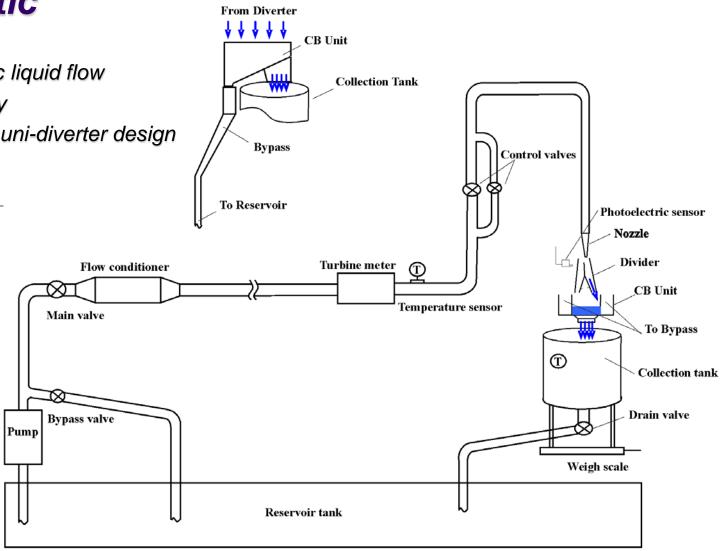
Turbine Meter Working Standards (TMWS) in Natural Gas

Water Flow Calibration Facility (65 kg/s LFS)

Flow Range: 36 – 3900 L/min

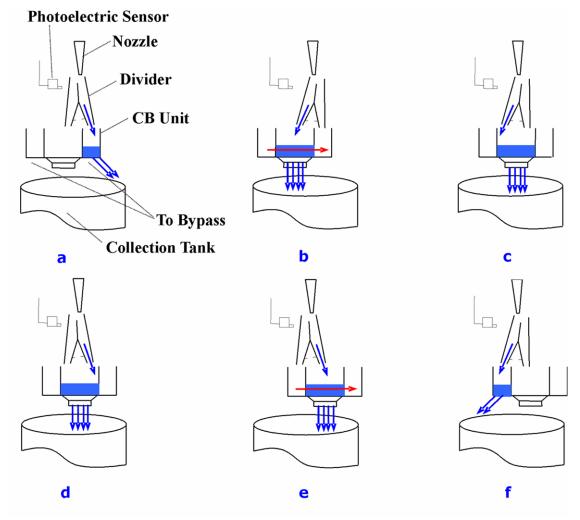
Line Pressures: 0.1 – 1 MPa

Pipe sizes: 2.5 – 20 cm


Expanded Uncertainty = 0.033 % (k = 2)

NIST 65 kg/s Liquid Flow Calibration Facility (LFCF)

Schematic


 Static-gravimetric liquid flow calibration facility

• Incorporates the uni-diverter design

- Flow range: 0.6 kg/s 65 kg/s for static method and 0.06 kg/s 65 kg/s for dynamic.
- Weigh Scale Capacity: 4500 kg with 10 g resolution

Uni-directional Diverter Operational Sequence

Diverter Error is Self-Canceling Flow Stability Required

Liquid Flow Standards

Flow Capabilities

- > Fluid: Propylene Glycol & water
- ➤ Flow Range: 0.19 120 L/min
- > Temp. Range: 22°C ± 0.5°C
- ➤ Line Pressures: 0.1 0.2 MPa
- ➢ Pipe sizes: 0.17 − 1.3 cm
- \triangleright Expanded Unc.: 0.05 0.07 % (k = 2)

2.5 L/s LFS piston prover

0.1 L/s LFS piston prover

Air Speed

- Recirculating wind tunnel
- Laser Doppler Anemometer (LDA)
- Spinning disk used to calibrate LDA

- Velocity range: 0.15 m/s to 75 m/s
- Uncertainty = $2\sqrt{(0.0032 U)^2 + 0.0018^2}$ m/s

Liquid Volume Calibration Service

Volume Range: 5 to 1900 L

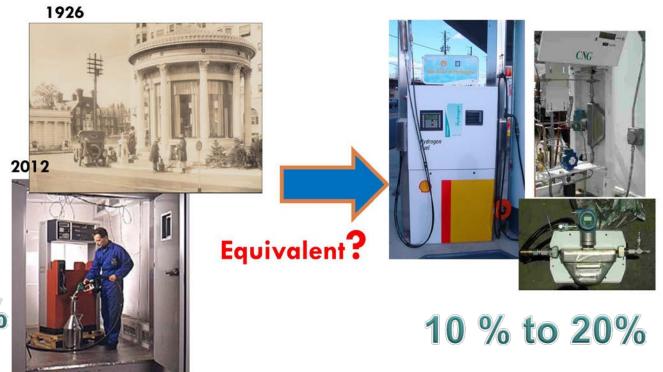
Uncertainty =

(0.012 + 0.00015 V)L

Liquid volume

Hydrometer Calibration Service

- Liquid Density Calibration
 - Hydrometer: instrument used to measure liquid density
 - Calibration Range: 0.6 to 2 g/cm³
- Liquid Density Primary Standard
 - Gravimetric hydrometer calibration system
 - Expanded Uncertainty: 0.01% (k = 2)



FMG Research

- Transient Flow Facility (TFF)
 - Evaluation of meter performance in gaseous dispensers.
 - Evaluation of gaseous refueling field test methods.

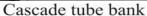
0.5 %

Facility Design

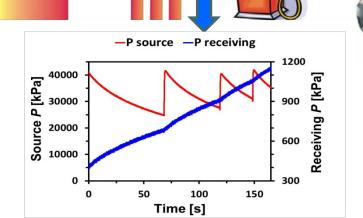
Dispenser

SUPER

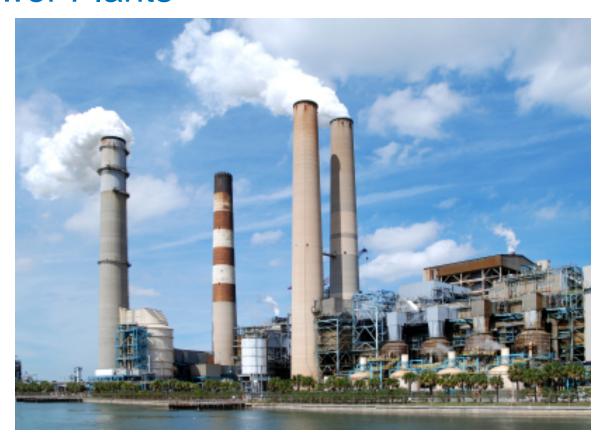
Source/Cascade Tube Bank



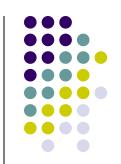
Compressor


(400 bar)

"Receiving vessel" 25, 35, 70 MPa



FMG Research

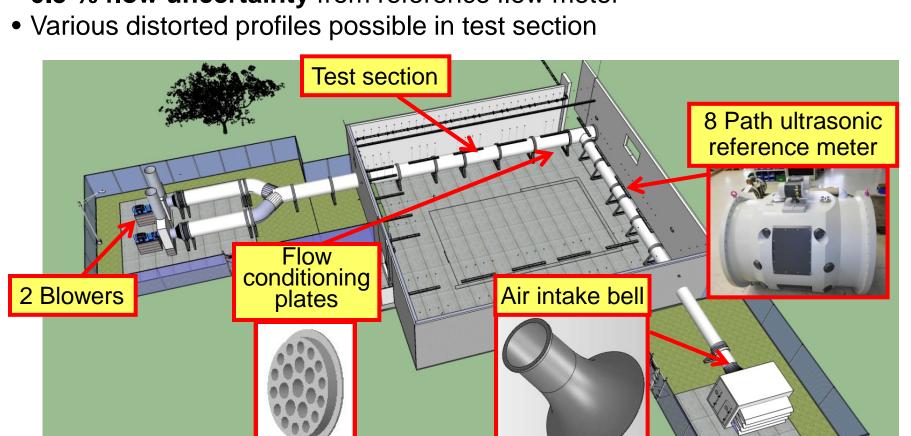

 NIST Smokestack Flow Measurement Program

 Quantifying Greenhouse Gas Emissions from Power Plants

Meeting Flow Measurement Needs (Improving CO₂ Measurement Capabilities in Smokestacks)

- Assessing carbon mitigation efforts and/or implement future carbon controls (e.g., carbon tax, cap and trade) requires accurate measurements of the CO₂ flux emitted by coal-burning power plants
- Errors in current CO₂ flux measurements (based on EPA protocols) may be as large as 10 % to 20 %
- NIST Objective: CO₂ flux measurements with 1 % uncertainty at a reasonable cost

Smokestack Flow Measurement Challenges


Measuring flow in stacks is very different Problems include:

- No lab can calibrate a 10 meter pipe
- Pipe area is not accurate
- Dirty, moist gas.
- Variable temperature and densities
- Flow is very different, usually swirling
- Flow is often changing during RATA (Relative Accuracy Test Audits)

NIST Smokestack Simulator

- Facility to research flow meters and profiling methods used in smokestacks
- "L" shaped, 1.2 m diameter test section
- Velocity in Test Section: 6 to 25 m/s
- 0.5 % flow uncertainty from reference flow meter

