Probabilistic Genotyping: The Use of the Forensic Statistical Tool (FST)

Craig O' Connor, PhD. Criminalist III/ Assistant Technical Leader, Nuclear DNA Operations Department of Forensic Biology NYC Office of Chief Medical Examiner coconnor@ocme.nyc.gov

Forensic Statistical Tool

Why Likelihood Ratio (LR)?

- National Academy of Science Report (*2009) / SWGDAM guidelines for interpretation of DNA mixtures 4.1 (2011)
 - Statistic should accompany all positive associations instead of qualitative conclusions
 - Can use RMNE (CPI) or LR
- The DNA commission of the ISFG recommends using the LR
 - More available data is utilized
 - Can incorporate DO/DI rates
- Statistics for complex and Low Template DNA mixtures

* Strengthening Forensic Science in the United States: A Path Forward (2009) The National Academies Press, Washington, DC

Forensic Statistical Tool

March 19, 2008

LRs are Ubiquitous

- Pub Med Searches
 - Over <u>5,500</u> published articles on LRs in medicine and/or genetics
 - 243 articles with Likelihood ratio directly in their title

Forensic Statistical Tool

Forensic Applications of LR already in use

- Random match probability (RMP) is a LR
 - RMP: 1 in a trillion
 - LR: sample is one trillion times more likely if suspect is the source than if a random person is the source
- LR is used for kinship calculations
 - DNA View
 - Software used for WTC identifications
- CODIS Popstats software (FBI) performs mixture analysis using LR

TWO COMPETING SCENARIOS IN FORENSICS

The suspect is a contributor to a mixture OR

The suspect is not a contributor, and an unknown person is the contributor

Forensic Statistical Tool

How did you learn about the software? Comparisons to other LR software

- TrueAllele
 - Perlin et al., J Forensic Sci, 2001, 46:1372-1378; Perlin et al., PLoS One, 2009, 4:e8327; Perlin et al., J Forensic Sci, 2011, 56:1430-1447
- LoComatioN
 - Curran et al. Forensic Science International, 2005, 148:47-53; Gill et al. Forensic Science International, 2007, 166:128-138
- Forensim
 - Haned, Forensic Science International Genetics, 2011, 5:265-268; Haned et al., Forensic Science International: Genetics, 2012, 6:762-774
- LikeLTD
 - Balding et al., Forensic Science International: Genetics, 2009, 4:1-10
- Lab Retriever
 - Lohmueller & Rudin, J Forensic Sci, 2013, 58: S243-249

Forensic Statistical Tool (FST)

- Similar LR framework as other programs
- "Semi-continuous" approach to LR calculations which incorporates drop-out and drop-in
- Differences in methods used to estimate probability of drop-out and drop-in
 - Other programs:
 - User-specified rates
 - Probabilistic models
 - Empirical estimates using peak heights
 - FST uses empirical estimates based on the quantity of DNA in the sample – *in house quant assay*

FST uses in casework

- LR statistic applied primarily to 2- and 3- person mixtures
 - Comparison sample is positively associated
 - Deconvoluted mixtures where the major/minor donor is not consistent with your suspect
 - Non-deconvoluted mixtures
- Can be used on older cases if needed
- All interpreting analysts trained

Challenges in implementing FST

- Program FST with empirically derived drop-out/ drop-in rates
- Training/testimony
 - Staff
 - Police detectives and Attorneys
 - Judges and juries

Challenges in implementing FST

- Challenge in incorporating drop-out and drop-in rates
 - Dynamic vs static? Simulated vs empirical
- OCME developed and validated FST using empirical drop-out and drop-in rate estimates
 - Drop-out
 - Locus-specific
 - Homozygote or heterozygote genotype
 - Depends on input DNA and approximate mixture ratio
 - Drop-in
 - Most drop-in occurred in -4 stutter position of a true allele
 - Not dependent on locus

Development of FST

- Modeled after LoComatioN
- Can be used with:
 - Single source samples and mixtures
 - High and low template samples
- Simultaneously consider data from one, two or three amplifications of evidence sample
- Not an expert system
- Approved for use with criminal casework samples by the New York State Forensic Science Commission, December 2010

FST Reliably Assigns a Quantitative Value to a Comparison of Forensic Samples

- 400+ samples tested over a range of template amounts and mixture ratios
 - Purposeful mixtures from blood and buccal swabs
 - Touched items
 - 2 and 3 person mixtures
- Many samples were purposefully or naturally degraded
- 500,000+ comparisons with non-contributors performed

Validation Conclusions

- LR for true contributors support qualitative assessments
- In some cases, LR is more conservative than qualitative assessment
- LRs showed a good separation between true and non-contributors*.

* Due to allele sharing, for some mixtures, chance positive associations were noted, but FST assigned an appropriate weight.

Forensic Statistical Tool

Example 1: Single Source LR with drop-out / drop-in

- Single source sample
 - S_p : Suspect; S_d : Unknown, unrelated person

- The LR is constructed with two additional factors considered
 - "If this person is a contributor to the mixture, did any of their alleles drop out?"
 - "Are there any alleles that are not explained by this set of contributors (i.e., drop-in)?"

Example 1: Single Source LR with drop-out / drop-in

- Drop-out and drop-in terms included in numerator and denominator
- Drop-out of suspect's or unknown person's allele(s) may have occurred

	Locus 1	Locus 2	Locus 3	Locus 4
Evidence	14, 15	29	8	11, 12
Suspect	14, 15	29	8, 12	11, 12

Forensic Statistical Tool

Example 1: Single Source LR with drop-out / drop-in

- When drop-out is not modeled and profiles match
 - Numerator is 1.0
 - Denominator is RMP
- When drop-out is modeled
 - Numerator < 1.0</p>
 - Unknown contributor's allele(s) may have dropped out

Example 1 – Locus 3 only

• Numerator:

- Suspect is 8, 12; evidence is 8
- Pr (Data $| S_p) = Pr$ (one drop-out from heterozygote)

x Pr (no drop-in)

Forensic Statistical Tool

Example 1 – Locus 3 only

• Denominator:

- Unknown contributor may have genotype:
 - 8, 8
 - 8, w (w is any allele other than 8)
 - w, w
- Find expected population frequency of each genotype
- Multiply by probability of drop-out and drop-in required to obtain evidence profile
- p_8^2 x Pr (no homozygote drop-out) x Pr (no drop-in) + $2p_8p_w$ x Pr (one heterozygote drop-out) x Pr (no drop-in) + p_w^2 x Pr (homozygote drop-out) x Pr (one drop-in)

LR with Drop-out / Drop-in DO and DI rates counted and programmed in FST

- $D_0 = no drop-out (heterozygote): 1 D_1 D_2$
- D₁ = one drop-out: **counted**
- D_2 = two drop-outs: **counted**
- D_{H0} = no drop-out (homozygote): 1 D_{H1}
- D_{H1} = drop-out: counted
- $C_0 = no drop-in (per locus): 1 C_1 C_{2+}$
- C₁ = one drop-in allele: **counted**
- C_{2+} = two or more drop-in alleles: **counted**

Example 1

$LR = \frac{D_1 C_0}{p_8^2 D_{H0} C_0 + 2p_8 p_w D_1 C_0 + p_w^2 D_{H1} C_1}$

Forensic Statistical Tool

- Two-person mixture
- S_p: Suspect and one unknown, unrelated person
- S_d: Two unknown, unrelated people
- Consider a single locus with three labeled alleles
- All possible genotypes for the three unknown contributors (one in numerator, two in denominator) must be generated

Example 2

- Evidence Sample: 11, 12, 14
- Suspect Profile: 11, 12
- Numerator includes one unknown person with possible genotypes:
 - 11, 1112, 1214, 14w, w11, 1212, 1414, w11, 1412, w
 - 11, w

Forensic Statistical Tool

Example 2: Numerator Evidence: 11, 12, 14; Suspect 11, 12 Drop-out? Drop-in?

Unknown Contributor Genotype	Drop-out Required? (Type?)	Drop-in Required? (Which allele(s)?)
11, 11		
11, 12		
11, 14		
11, w*		
12, 12		
12, 14		
12, w*		
14, 14		
14, w*		
W*, W*		

w is any allele other than 11, 12, 14

Example 2: Numerator Evidence: 11, 12, 14; Suspect 11, 12 Drop-out? Drop-in?

Unknown Contributor Genotype	Drop-out Required? (Type?)	Drop-in Required? (Which allele(s)?)
11, 11	No	Yes (14)
11, 12	No	Yes (14)
11, 14	No	No
11, w*	Yes (partial heterozygous)	Yes (14)
12, 12	No	Yes (14)
12, 14	No	No
12, w*	Yes (partial heterozygous)	Yes (14)
14, 14	No	No
14, w*	Yes (partial heterozygous)	No
W*, W*	Yes (total homozygous)	Yes (14)

w is any allele other than 11, 12, 14

Example 2: Numerator Evidence: 11, 12, 14; Suspect 11, 12 Unknown's genotype frequency

Unknown Contributor	Frequency	Drop-out?	Code	Drop-in?	Code
11, 11		No		Yes (14)	
11, 12		No		Yes (14)	
11, 14		No		No	
11, w*		Yes		Yes (14)	
12, 12		No		Yes (14)	
12, 14		No		No	
12, w*		Yes		Yes (14)	
14, 14		No		No	
14, w*		Yes		No	
W*, W*		Yes		Yes (14)	

Example 2: Numerator Evidence: 11, 12, 14; Suspect 11, 12 Unknown's genotype frequency

Unknown Contributor	Frequency	Drop-out?	Code	Drop-in?	Code
11, 11	P ₁₁ ²	No	D _{H0}	Yes (14)	C ₁
11, 12	2P ₁₁ P ₁₂	No	D ₀	Yes (14)	C ₁
11, 14	2P ₁₁ P ₁₄	No	D ₀	No	C ₀
11, w*	2P ₁₁ P _w	Yes	D ₁	Yes (14)	C ₁
12, 12	P ₁₂ ²	No	D _{H0}	Yes (14)	C ₁
12, 14	2P ₁₂ P ₁₄	No	D ₀	No	C ₀
12, w*	$2P_{12}P_w$	Yes	D ₁	Yes (14)	C ₁
14, 14	P ₁₄ ²	No	D _{H0}	No	C ₀
14, w*	2P ₁₄ P _w	Yes	D ₁	No	C ₀
W*, W*	P_w^2	Yes	D _{H1}	Yes (14)	C ₁

Example 2: Numerator Evidence: 11, 12, 14; Suspect 11, 12

Unknown Contributor	Frequency	Drop-out?	Code	Drop-in?	Code
11, 11	P ₁₁ ²	No	D _{H0}	Yes (14)	C ₁
11, 12	2P ₁₁ P ₁₂	No	D ₀	Yes (14)	C ₁
11, 14	2P ₁₁ P ₁₄	No	D ₀	No	C ₀
11, w	2P ₁₁ P _w	Yes	D ₁	Yes (14)	C ₁
etc					

 $p_{11}^2 \times D_{H0} \times C_1 + 2 p_{11} p_{12} \times D_0 \times C_1$ $+2p_{11}p_{14} \times D_0 \times C_0 + 2p_{11}p_w \times D_1 \times C_1$ *etc...*

Example 2: Denominator Evidence: 11, 12, 14

U1	Frequency	Drop-out	U2	Frequency	Drop-out	Drop-in
11,11			11, 11	P ₁₁ ²	No (D _{H0})	Yes (C ₂₊)
			11, 12	2P ₁₁ P ₁₂	No (D ₀)	Yes (C ₁)
	P ₁₁ ²	No (D _{H0})	etc			
			W, W	P_w^2	Yes (D _{H1})	Yes (C ₂₊)
	2P ₁₁ P ₁₂	No (D ₀)	11, 11	P ₁₁ ²	No (D _{H0})	Yes (C ₁)
			11, 12	2P ₁₁ P ₁₂	No (D ₀)	Yes (C ₁)
11, 12			etc			
			W, W	P_w^2	Yes (D _{H1})	Yes (C ₁)
etc						

Example 2: Denominator Evidence: 11, 12, 14

U1	Frequency	Drop-out	U2	Frequency	Drop-out	Drop-in
11,11	P ₁₁ ²	No (D _{H0})	11, 11	P ₁₁ ²	No (D _{H0})	Yes (C ₂₊)
			11, 12	2P ₁₁ P ₁₂	No (D ₀)	Yes (C ₁)
			etc			
			W, W	P_w^2	Yes (D _{H1})	Yes (C ₂₊)

$$p_{11}^{2} \times D_{H0} (p_{11}^{2} \times D_{H0} \times C_{2+} + 2p_{11}p_{12} \times D_{0} \times C_{1} + \dots + p_{w}^{2} \times D_{H1} \times C_{2+}) + 2p_{11}p_{12} \times D_{0} (p_{11}^{2} \times \dots etc...)$$

Forensic Statistic Comparison Report

Identifiler

FB#1: FB13-xxxx	FB#2: FBS13-xxxx	Item: 3P Pen C	Comparison: D5	DNA Template Amount (pg): 340	Input By: CSC\aamitchell
Hp: D5 (Comparison) + Ur	known	Hd: 2 Unknowns		Deducible: Yes	

Profiles

	Profile	D8S1179	D21S11	D7\$820	CSF1PO	D3S1358	TH01	D13\$317	D16S539	D2\$1338	D19S433	vWA	ΤΡΟΧ	D18S51	D5S818	FGA
D5 (Comparison)																
		13,14	29,32.2	8,10	9,13	15,16	6,9	8,13	11,11	20,25	12,14	16,16	8,8	12,16	11,11	21,23
Evidence																
	1	13, 14, 15	29, 30.2	10, 11	11	14, 16, 17	6, 7, 9	11, 12	11, 13	20, 25	12, 13, 14, 15	17	8	12, 15	10, 11, 12	22, 23
	2	13, 14, 15	29, 30.2, 31.2, 32.2	10	11	14, 15, 16, 17	6, 7, 9	8, 11, 12, 13	11, 13	20, 25	12, 13, 14, 15	16, 17	8	12, 15, 16	10, 11, 12	22
	3															

Comparison Result

Forensic Statistical Tool

v2.5

Thanks and Appreciations

 NYC Office of Chief Medical Examiner Forensic Biology Department

 National Institute of Standards and Technology

Forensic Statistical Tool