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Caution: This report quantifies face recognition performance using data supplied
by external research and development organizations. Its results are derived from
self-administered experiments on the fully public IJB-A dataset. As such the results
can be manipulated by various means that may not be operationally realistic. There-
fore, end users of face recognition technology should prefer results from NIST’s se-
questered testing campaigns, FRVT or FIVE, or on similar independent evaluations
of face recognition. Developers whose algorithms exhibit good performance here are
encouraged to submit their algorithms to those sequestered test programs.

This report is generated automatically. It will be updated as new algorithms are
evaluated, and as new analyses are added. Automated notifications can be obtained
via the mailing list. Correspondence should be directed to the authors via FaceChal-
lenges@nist.gov.
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Figure 1: Three images of one subject in the IJB-A dataset. The entire dataset is available online. Many photos were taken by photo journalists
and, as such, are well exposed, well focused, and specifically selected as suitable for public display. For face recognition, they nevertheless
remain challenging due to wide variations in pose, illumination, expression and occlusion.

1 Introduction

Three IARPA Janus Benchmark A challenges are described by Klare et al. in the paper Pushing the Frontiers of
Unconstrained Face Detection and Recognition[3]. The second of these, the IJB-A 1:N challenge, quantifies performance
of face identification algorithms (“same person or not?”) on challenging photo-journalism images of the kind shown
in Figure 1. They are considerably more difficult to recognize than the portraits mandated by facial recognition
standards'.

IJB-A 1:N is a “take-home” test in that it is based on fully public data. It follows the design of the LFW protocol in
requiring many pairs of samples to be compared in isolation®. This corresponds to recognition tasks like passport
identification or forensic comparison where there is just a pair of samples and no central database or gallery.

The IJB-A 1:N challenge departs from LFW as follows:

> Face selection: LFW contains faces that could be detected with the Viola-Jones face detection algorithm. This
limits difficulty. IJB-A on the other hand, uses manually located and annotated faces.

> Landmarks: The IJB-A tests include landmark coordinates (eyes and nose) whereas LFW provides just raw
images, and aligned (funneled) images.

> Multi-image samples: LFW compared single images. IJB-A uses richer samples containing 1 < K < 202

images, including frames from video sequences.

> More impostor pairs: IJB-A 1:N uses many more impostor comparisons that genuines. In LFW, the ratio was
1 which precluded computation of false match rates at usefully low values.

2 Metrics

This section describes the open-set one-to-many identification accuracy metrics used in this report.

I NIST maintains a challenge for such images based on the mugshots of NIST Special Database 32 (“MEDS”)[1]. This is intended as a stepping
stone prior for developers prior to entering NIST’s ongoing fully sequestered FRVT identification test.

2]JB-A 1:N does not cross-compare galleries and probesets; it has no concept of such. It does not attempt to measure both identification and
identification accuracy from the same similarity score matrix; it does not pin the prior probabilities of impostor vs. genuine pairs i.e. O(n?) vs.

O(n).
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2.1 Quantifying false alarms

False alarm incidence is computed over K searches, each involving imagery from a person who is known to not to be
present in the enrolled gallery. Each search yields a list of L = 20 candidate identities sorted in order of non-negative
scalar similarity scores. The false postitive identifcation rate (FPIR) is defined as the proportion of searches with any
candidates at or above threshold threshold T'.

EPIR(N,T) = % > H(sq—T) (1)

where H is a unit step, and s;; is the first (highest) score on the i-th nonmated candidate list. The enrolled population
(gallery) size is N.

This metric does not account for searches that produce several above-threshold candidates. The appropriate metric
there is selectivity, which counts the number of false positives expected from a nonmate search (at some threshold).

2.2 Quantifying false rejection

False rejection is computed over M searches each involing imagery from a person who is known to be present in
the enrolled gallery. Each search yields a list of L = 20 candidate identities sorted in order of non-negative scalar
similarity scores. Zero or one of the candidates will be from the search individual. The false negative identification
rate is is defined as the proportion of scores for which the known individual is outside the top R ranks, or has
similarity below threshold 7'

M
1

FNIR(N, R, T) =1 - 7= ; H(s; — T)H(R —r;) )

where s; is the mated score, and 1 < r; < L is its rank. If the mate is not present in the L candidates, s; = — inf and

The FNIR defnition supports two use cases:

> Forensic: In a high profile case, or in an application where only a few searches are ever conducted, a human
analyst might examine all L candidates or perhaps just the top R < L identities. The appropriate metric then
is the cumulative match charateristic(CMC) which gives the fraction of hits at rank R or better, CMC(N, R, L)
=1 - FNIR(N, R,0). By ignoring scores, this metric allows “weak” hits to count as strongly as high-scoring
“strong” hits. The CMC metric is relevant to operations in which (trained) human reviewers will traverse
candidate lists in pursuit of hits. This is possible when the volume of searches is low enough, and when the
CMC is favorable enough, to utilize all available labor.

> Surveillance: On the other hand, in applications such as public-space surveillance, where prior probabilities
of mates are low, or where search volumes are very high and where human labor has limited availability, it
becomes impossible to review all candidate lists. To limit workload a threshold 7" is applied so that only
candidates with score at or above threshold are flagged for examination. The appropriate metric then is
FNIR(N, N, T) because rank becomes irrelevant. High thresholds suppress false positives, but elevate false
negatives. For example, the German trial of a surveillance system in the Mainz train station[2] configured
thresholds on the algorithms to target FPIR= 0.001.

FNIR is colloquially referred to as “miss rate”. Its complement, true positive identification rate, TPIR, is the “hit
rate”.
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2.3 Non-equivalence of 1:1 and 1:N performance

A 1:N search can most simply be implemented by executing N 1:1 comparison and sorting the results. However, a
number of algorithmic techniques exist to improve 1:N accuracy and to expedite search.

From a metrics point-of-view, 1:1 accuracy is stated via a plot of false non-match vs. false match rates, FNMR(T)
vs. FMR(T). 1:N accuracy is plotted as FNIR(T) vs. FPIR(T). The difference is not just terminology because FPIR is
estimated using the highest highest nonmated score (i.e. a sample drawn from an extreme value distribution) while
FMR is estimated from scores drawn from the entire impostor distribution.

Practitioners sometimes regard a 1:N error tradeoff characteristic as being identical to a 1:1 DET with the horizontal
axis scaled by N. This is a first order model obtained from the binomial approximation when a 1:N search is indeed
the result of N 1:1s.

IJBA includes separate identification and verification tasks to encourage improved search algorithms, both with
respect to accuracy and speed. Indeed the IJBA 1:N task makes no assumptions of how search is implemented. It
regards a search as an atomic operation.

3 Results

3.1 Comparing accuracy

The graphs that follow include results for several classes of algorithms that are differentiated by their development
date, and use of landmarks and training data - see Table 1. This latter issue is nuanced and yet critical to under-
standing how and whether algorithms can be compared. Historically commercial algorithms have been provided
and used in an entirely off-the-shelf manner - the representation is fixed and the user in no way adapts (trains)
the algorithm to his native data. The academic community, meanwhile, almost always isolates some portion of the
data for the express purpose of adapting the algorithm. The result is a refined set of parameters, or explicit data
“models” (most prosaically, a PCA basis set). The academic community, ignoring marketplace practice, has noted
that recognition accuracy is improved by training, and training is improved through detailed exploitation of large
training sets. Why then do commercial implementations not roll-out training facilities within their commercial off
the shelf products. The answer partly rests on the observation that succesful training and adaptation is a fine art
that, empirically, cannot be canned in a simple function call.

That said, one particular kind of training is possible operationally: Gallery training occurs after templates have been
enrolled into a gallery. The range of techniques is varied from simple O(V) aggregation of statisics to O(N?) feature
space comparison, separation or clustering techniques. In commercial cases, it is usually a trade secret. Gallery
training is effective particularly when it can be assumed that the N enrolled items come from N distinct individuals.
The efficacy of the techniques can depend on the integrity of the ground truth identity labels, and it is potentially
retrograde to conduct this form of training on an un-consolidated set in which the same individual is present in
the gallery under several unknown identifiers. Some commercial implementations do compute data across gallery
entries. This data is used or retained to improve recognition accuracy.
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Algorithm Development Training data Gallery training Role of provided IJB-A landmarks
thru
BENCH-MK1 2010 External training data only
ANON-2013 2013 External training data only Unknown, likely Algorithm was provided only with
image cropped from bounding box
MSU-071715 2015 External training data and IJB-A | Yes Algorithm was provided only with
training splits full IJBA-specified landmarks
JANUS* 2015-09 External training data and IJB-A | Yes Algorithm was provided only with
training splits full IJBA-specified landmarks
RankOne-011816 | 2016-01 External training data No Developer asserts IJBA bounding
boxes and landmark points were not
used.

Table 1: Context of use: Comparison of the algorithms should be conducted in the context of variations in when they were developed, with
what training data and on whether the ran in fully automated mode or were assisted by the provision of geometric information. Note that
the ANON-2013 algorithm was developed before the IJB-A challenge was assembled and was provided to NIST without the expectation that it
would be run on images of this type.
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