NIST MBE PMI Validation & Conformance Testing
CTC Model Verification Results
February 2015

Doug Cheney
CAD Validation Specialist
ITI TranscenData
Doug.Cheney@TranscenData.com

www.TranscenData.com

Any mention of commercial products is for information only; it does not imply a recommendation or endorsement by NIST.
NIST is Supporting the Discrete Part Manufacturing Industry for Long-term Growth

“Our strategic direction is the Model-Based Enterprise (MBE)”

Manuf. Industry

High-Quality MBE Software

PLM Software Vendors

MBE Reference Data

MBE Test Data & Validation Testing

MBE Research Partnership

National Institute of Standards and Technology

ITI TranscenData

Neilsoft

ADV/DM Advanced Dimensional Management LLC

Sigmetrix

Kansas City Plant
NIST MBE PMI Validation and Conformance Testing
Program Objectives

Develop **test cases**, **test models** and **software algorithms** sufficient to **measure conformance** of CAD systems to American Society of Mechanical Engineers (ASME) **standards** for Product and Manufacturing Information (PMI).

ASME Y14.5 Dimensioning and Tolerancing
ASME Y14.41 Digital Product Data Definition Practices

Web site: http://go.usa.gov/mGVm
Example Combined Test Case (CTC) and Test Models
Conformance Testing Terminology

PMI element: An annotation, coordinate system, supplemental geometry entity, or saved view

Presentation: What the human user sees
 (Visual consumption)

Representation: What the downstream software receives
 (Automated consumption)

Verification: How well each PMI element is modeled
 (CAD system capability)

Validation: How well each PMI element is translated
 (Translator capability)
Verification Testing Methodology

- The representation and presentation of each PMI element is compared to the test case specification.

- Any differences, which cannot be resolved with an alternate modeling technique, are categorized as a:
 - Representation Limitation
 - Presentation Limitation
 - Style Difference (representation and presentation are correct but different between systems)

- Each limitation/difference is grouped by characteristic and type.

- An example of each characteristic-type combination is documented in this presentation.

- The following slide indexes (underlined) these examples.
Verification Characteristics (and index to examples)

<table>
<thead>
<tr>
<th>Representation Limitation</th>
<th>Presentation Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation structure</td>
<td>Annotation visibility</td>
</tr>
<tr>
<td>Annotation parameters</td>
<td>Annotation color</td>
</tr>
<tr>
<td>Annotation geometry</td>
<td>Annotation name</td>
</tr>
<tr>
<td>Coordinate system structure</td>
<td>Annotation layout</td>
</tr>
<tr>
<td>Coordinate system parameters</td>
<td>Annotation location</td>
</tr>
<tr>
<td>Supplemental geometry structure</td>
<td>Annotation orientation</td>
</tr>
<tr>
<td>Supplemental geometry parameters</td>
<td>Annotation lines</td>
</tr>
<tr>
<td>Annotation text</td>
<td>Annotation text</td>
</tr>
<tr>
<td>Coordinate system visibility</td>
<td>Coordinate system text</td>
</tr>
<tr>
<td>Coordinate system color</td>
<td>Supplemental geometry visibility</td>
</tr>
<tr>
<td>Coordinate system name</td>
<td>Supplemental geometry color</td>
</tr>
<tr>
<td>Coordinate system text</td>
<td>Saved view structure</td>
</tr>
<tr>
<td>Saved view name</td>
<td>Saved view frustum</td>
</tr>
</tbody>
</table>

If a characteristic is not underlined, no limitations were found in this dataset.
Verification Capability Measurement Methodology

- Each PMI element limitation/difference is counted by category, characteristic, and type
- The subtotal per characteristic is divided by the subtotal of PMI elements to which it applies
 - Multiple limitations/differences of the same characteristic for the same PMI element are only counted once
- The total per category is divided by the total PMI elements
 - Multiple limitations/differences of the same category for the same PMI element are only counted once, with representation > presentation
- The following slides show these statistics for this dataset
- The name of each CAD system is generalized according to the overall results (“CAD A” better than “CAD B”…)}
Representation Limitation and Style Difference Counts by Characteristic and Type (across all systems)

<table>
<thead>
<tr>
<th>Representation Limitations</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation structure</td>
<td>19</td>
</tr>
<tr>
<td>Countersink diameter DIM not defined</td>
<td>1</td>
</tr>
<tr>
<td>DIM defined as part of DTS</td>
<td>4</td>
</tr>
<tr>
<td>FCF extension line defined as separate DIM</td>
<td>9</td>
</tr>
<tr>
<td>FCF projected tolerance zone defined as separate DIM</td>
<td>1</td>
</tr>
<tr>
<td>FCF text defined as separate note</td>
<td>3</td>
</tr>
<tr>
<td>Threaded hole depth DIM not defined</td>
<td>1</td>
</tr>
<tr>
<td>Annotation parameters</td>
<td>11</td>
</tr>
<tr>
<td>DIM origin not defined</td>
<td>1</td>
</tr>
<tr>
<td>DIM parameter defined with encoded text</td>
<td>3</td>
</tr>
<tr>
<td>FCF between-basis defined with encoded text</td>
<td>4</td>
</tr>
<tr>
<td>FCF parameter defined with encoded text</td>
<td>3</td>
</tr>
<tr>
<td>Annotation geometry</td>
<td>18</td>
</tr>
<tr>
<td>DIM associated with extra face</td>
<td>1</td>
</tr>
<tr>
<td>DIM not associated with complete set of faces</td>
<td>4</td>
</tr>
<tr>
<td>DTS associated with extra face</td>
<td>1</td>
</tr>
<tr>
<td>DTS not associated with face</td>
<td>1</td>
</tr>
<tr>
<td>DTS not associated with SG point</td>
<td>3</td>
</tr>
<tr>
<td>FCF associated with extra face</td>
<td>5</td>
</tr>
<tr>
<td>FCF not associated with SG curve</td>
<td>3</td>
</tr>
<tr>
<td>Coordinate system structure</td>
<td>48</td>
</tr>
<tr>
<td>CS not linked to FCF DRF</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Style Differences</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product geometry parameters</td>
<td>1</td>
</tr>
<tr>
<td>Threaded hole diameter different than other systems</td>
<td>1</td>
</tr>
<tr>
<td>Annotation structure</td>
<td>19</td>
</tr>
<tr>
<td>DTS requires DFS to be defined</td>
<td>18</td>
</tr>
<tr>
<td>FCF requires DFS to be defined</td>
<td>1</td>
</tr>
<tr>
<td>Annotation geometry</td>
<td>11</td>
</tr>
<tr>
<td>DFS edge association is extraneous</td>
<td>2</td>
</tr>
<tr>
<td>DIM edge association is extraneous</td>
<td>9</td>
</tr>
<tr>
<td>Supplemental geometry structure</td>
<td>17</td>
</tr>
<tr>
<td>DTS target area is non-solid surface on solid face</td>
<td>6</td>
</tr>
<tr>
<td>DTS target area is subdivided solid face</td>
<td>1</td>
</tr>
<tr>
<td>DTS target area is wireframe region on solid face</td>
<td>5</td>
</tr>
<tr>
<td>FCF limited area definition inconsistent with target area</td>
<td>1</td>
</tr>
<tr>
<td>FCF limited area is non-solid surface on solid face</td>
<td>3</td>
</tr>
<tr>
<td>FCF limited area is subdivided solid face</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Annotation</td>
</tr>
<tr>
<td>CS</td>
<td>Coordinate system</td>
</tr>
<tr>
<td>DFS</td>
<td>Datum feature symbol</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimension</td>
</tr>
<tr>
<td>DRF</td>
<td>Datum reference frame</td>
</tr>
<tr>
<td>DTS</td>
<td>Datum target symbol</td>
</tr>
<tr>
<td>FCF</td>
<td>Feature control frame</td>
</tr>
<tr>
<td>PG</td>
<td>Product geometry</td>
</tr>
<tr>
<td>SG</td>
<td>Supplemental geometry</td>
</tr>
<tr>
<td>VW</td>
<td>View</td>
</tr>
</tbody>
</table>

NIST MBE PMI CTC Model Verification Results
Presentation Limitation Counts
by Characteristic and Type (across all systems)

Presentation Limitations

<table>
<thead>
<tr>
<th>Presentation Limitations</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation visibility</td>
<td>7</td>
</tr>
<tr>
<td>DFS is extraneous when DTS is defined</td>
<td>2</td>
</tr>
<tr>
<td>DFS not visible in specified view</td>
<td>1</td>
</tr>
<tr>
<td>DIM not visible in specified view</td>
<td>1</td>
</tr>
<tr>
<td>DTS visible in wrong view</td>
<td>3</td>
</tr>
<tr>
<td>Annotation layout</td>
<td>20</td>
</tr>
<tr>
<td>Counterbore DIM defined as two separate DIM's</td>
<td>4</td>
</tr>
<tr>
<td>Countersink DIM defined as two separate DIM's</td>
<td>4</td>
</tr>
<tr>
<td>DIM limits displayed in reversed order</td>
<td>1</td>
</tr>
<tr>
<td>DIM limits not displayed horizontally</td>
<td>2</td>
</tr>
<tr>
<td>DTS target area diameter defined as separate DIM</td>
<td>1</td>
</tr>
<tr>
<td>FCF text displayed above rather than below</td>
<td>2</td>
</tr>
<tr>
<td>FCF text displayed on right rather than below</td>
<td>3</td>
</tr>
<tr>
<td>Threaded hole DIM defined as two separate DIM's</td>
<td>3</td>
</tr>
<tr>
<td>Annotation location</td>
<td>12</td>
</tr>
<tr>
<td>DFS not attached to FCF</td>
<td>8</td>
</tr>
<tr>
<td>DFS overlaps DIM graphics</td>
<td>1</td>
</tr>
<tr>
<td>DFS partially buried in solid</td>
<td>1</td>
</tr>
<tr>
<td>FCF partially buried in solid</td>
<td>2</td>
</tr>
<tr>
<td>Annotation orientation</td>
<td>4</td>
</tr>
<tr>
<td>DIM text orientation is wrong</td>
<td>1</td>
</tr>
<tr>
<td>DTS text is backwards in this view</td>
<td>3</td>
</tr>
<tr>
<td>Annotation lines</td>
<td>10</td>
</tr>
<tr>
<td>DFS has no extension line</td>
<td>10</td>
</tr>
<tr>
<td>Annotation text</td>
<td>22</td>
</tr>
<tr>
<td>DIM has extraneous space</td>
<td>11</td>
</tr>
<tr>
<td>DTS text is extraneous</td>
<td>2</td>
</tr>
<tr>
<td>FCF missing note text</td>
<td>2</td>
</tr>
<tr>
<td>FCF missing projected tolerance zone length</td>
<td>1</td>
</tr>
<tr>
<td>FCF text is extraneous</td>
<td>6</td>
</tr>
</tbody>
</table>

Abbreviations

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>Annotation</td>
</tr>
<tr>
<td>CS</td>
<td>Coordinate system</td>
</tr>
<tr>
<td>DFS</td>
<td>Datum feature symbol</td>
</tr>
<tr>
<td>DIM</td>
<td>Dimension</td>
</tr>
<tr>
<td>DRF</td>
<td>Datum reference frame</td>
</tr>
<tr>
<td>DTS</td>
<td>Datum target symbol</td>
</tr>
<tr>
<td>FCF</td>
<td>Feature control frame</td>
</tr>
<tr>
<td>PG</td>
<td>Product geometry</td>
</tr>
<tr>
<td>SG</td>
<td>Supplemental geometry</td>
</tr>
<tr>
<td>VW</td>
<td>View</td>
</tr>
</tbody>
</table>

NIST MBE PMI CTC Model Verification Results
Verification Percentages by Characteristic and System

Each percentage is calculated using this ratio:

\[
\frac{\text{Element count} - \text{Limitation count}}{\text{Element count}}
\]

The limitation count excludes limitations with the same characteristic (but different types) on the same PMI element.

Percentages less than 90% are shown in **bold** font.
“No Limitations” measures the capability for both automated and visual consumption and is calculated as 100% less the other limitation percentages.

“Representation Level” measures the capability for automated consumption only and is calculated as 100% less the representation limitations percentage.

The presentation and representation limitation percentages are calculated using this ratio:

\[
\text{Limitation count} \div \text{Element count}
\]

The “Presentation Limitation Only” count excludes presentation limitations that overlap with representation limitations on the same PMI element.

The “Element Count” includes all annotations, coordinate systems, supplemental geometry entities, and saved views specified in the test cases.
Verification Percentages by System - Adjusted

<table>
<thead>
<tr>
<th>Representation Level</th>
<th>CAD A</th>
<th>CAD B</th>
<th>CAD C</th>
<th>CAD D</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Limitations</td>
<td>93%</td>
<td>82%</td>
<td>77%</td>
<td>75%</td>
</tr>
<tr>
<td>Presentation Limitations only</td>
<td>2%</td>
<td>10%</td>
<td>18%</td>
<td>14%</td>
</tr>
<tr>
<td>Representation Limitations</td>
<td>5%</td>
<td>8%</td>
<td>5%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Because all of these CAD systems had the same coordinate system structure limitation (not linked to the datum reference frames), these are the overall verification percentages if coordinate system issues are excluded.
Verification Summary

- The limitation characteristics and types are different for each system.
- All 4 CAD systems are able to represent more than 90% of the annotations, supplemental geometry entities, and saved views in this verification test.
- None of the systems are able to represent the expected coordinate system structure.
- The systems vary significantly in their ability to visually present the PMI elements as specified in the test cases.
- None of the systems are able to present the complex dimensions (counterbore, countersink, threaded hole) as specified in the test case while representing the correct geometry associations for each component of the dimension.
Verification Characteristics (and index to examples)

Representation Limitation
- **Annotation structure**
- **Annotation parameters**
- **Annotation geometry**
- **Coordinate system structure**
- **Coordinate system parameters**
- **Supplemental geometry structure**
- **Supplemental geometry parameters**

Style Difference
- **Annotation structure**
- **Annotation geometry**
- **Supplemental geometry structure**
- **Product geometry parameters**

Presentation Limitation
- **Annotation visibility**
- **Annotation color**
- **Annotation name**
- **Annotation layout**
- **Annotation location**
- **Annotation orientation**
- **Annotation lines**
- **Annotation text**
- **Coordinate system visibility**
- **Coordinate system color**
- **Coordinate system name**
- **Coordinate system text**
- **Supplemental geometry visibility**
- **Supplemental geometry color**
- **Saved view structure**
- **Saved view name**
- **Saved view frustum**

If a characteristic is not underlined, no limitations were found in this dataset.
CAD System Representation Limitations for Annotation Structure

Return to Index
Annotation Structure:
Countersink diameter DIM not defined

The diameter dimension for the outside (larger, circular) edge of this countersink is not defined.
Annotation Structure:
DIM defined as part of DTS

Test Case

The dimensions for the target area of this datum target are represented as parameters in the datum target symbol and not as separate dimensions.
The extension lines for this feature control frame, whose orientation is critical to the tolerance zone definition, are defined as a separate dimension with no displayed value.
Annotation Structure:
FCF projected tolerance zone defined as separate DIM

The length of the projected tolerance zone for this feature control frame is defined as a separate dimension.
(See related Presentation Limitation)
Annotation Structure:
FCF text defined as separate note

The text which defines the between-basis for this feature control frame is defined as a separate note annotation.
The depth dimension for each threaded hole, between the top (flat) surface and the bottom (circular) edge, is not defined.
CAD System Representation Limitations for Annotation Parameters
Annotation Parameters: DIM origin not defined

Test Case

The origin for this oriented dimension is not defined.
The thread parameters for this threaded hole dimension are defined as encoded text and not as named parameters.
The between-basis for this feature control frame is defined as encoded text and not with named parameters.
Annotation Parameters:
FCF parameter defined with encoded text

The unequally disposed modifier in this feature control frame is defined as a text symbol and not as a named parameter.
CAD System Representation Limitations for Annotation Geometry
Annotation Geometry:
DIM associated with extra face

This hole diameter dimension is associated with the bottom face of each hole and not just the side faces.
Annotation Geometry:
DIM not associated with complete set of faces

Complete Representation

Incomplete Representation

This counterbore depth dimension is not associated with both planar faces and all 4 bottom faces.
Annotation Geometry: DTS associated with extra face

This datum target symbol is associated with an extra (coplanar) face and not just the specified face.
Annotation Geometry: DTS not associated with face

This datum target symbol is not associated with the face on which the datum target is located.
Annotation Geometry:
DTS not associated with SG point

This datum target symbol is not associated with the supplemental geometry point that defines its location on the face.
Annotation Geometry: FCF associated with extra face

This feature control frame is associated with an extra (coplanar) face and not just the specified face.
Annotation Geometry: FCF not associated with SG curve

This feature control frame is not associated with the supplemental geometry curve that defines its profile direction on this face.
CAD System Representation Limitations for Coordinate System Structure
The model has no explicit (named) link from each feature control frame to the coordinate system that represents its datum reference frame.
CAD System Style Differences for Annotation Structure
Annotation Structure:
DTS requires DFS to be defined

The system requires a datum feature symbol to be defined whenever a datum target symbol is defined.
Annotation Structure:
FCF requires DFS to be defined

Test Case

Because this feature control frame references datum “B”, its datum feature symbol must be defined in this saved view, although it can be hidden (not visible).
CAD System Style Differences for Annotation Geometry
Annotation Geometry:
DFS edge association is extraneous

The association of this datum feature symbol with the edge of the hole is used to indicate graphical placement. It is not specified in the test case.
Annotation Geometry: DIM edge association is extraneous

The association of this dimension with the edge of the hole is used to indicate graphical placement. It is not specified in the test case.
CAD System Style Differences for Supplemental Geometry Structure
Supplemental Geometry Structure:
DTS target area is non-solid surface on solid face

The target area for this datum target is defined as a non-solid surface placed on the solid face.
Supplemental Geometry Structure:
DTS target area is subdivided solid face

The target area for this datum target is defined as a solid face that has been separated from the adjacent faces in this solid.
Supplemental Geometry Structure: DTS target area is wireframe region on solid face

The target area for this datum target is defined as a wireframe region placed on the solid face.
Supplemental Geometry Structure:
FCF limited area is non-solid surface on solid face

The limited area for this feature control frame is defined as a non-solid surface placed on the solid face.
Supplemental Geometry Structure:
FCF limited area is subdivided solid face

The limited area for this feature control frame is defined as a solid face that has been separated from the adjacent faces in this solid.
The limited area for this feature control frame is defined as a non-solid surface placed on the solid face. This is inconsistent with the wireframe region used to define datum target areas in this system.
CAD System Style Differences for Product Geometry Parameters
Product Geometry Parameters:
Threaded hole diameter different than other systems

The nominal diameter of the geometric hole associated with this threaded hole diameter dimension is slightly different (by default) than in other systems.
CAD System Presentation Limitations for Annotation Visibility
Annotation Visibility:
DFS is extraneous when DTS is defined

This datum feature symbol is not needed when the datum target symbol is defined. But the system will not allow it to be removed or hidden from this saved view.
This model has datum feature symbol “A” defined in the first saved view. But it cannot also be displayed in the second saved view as specified.
Annotation Visibility: DIM not visible in specified view

The length of the projected tolerance zone for this feature control frame is defined as a separate dimension. (See related Representation Limitation) This dimension cannot be displayed in this saved view.
Annotation Visibility: DTS visible in wrong view

These datum target symbols are visible in a default (unspecified) saved view which cannot be deleted from the model.
Annotation Layout:
Counterbore DIM defined as two separate DIM's

This counterbore dimension cannot be defined as a single annotation with named parameters that each have correct face associations. It must be defined as two separate dimensions.
Annotation Layout: Countersink DIM defined as two separate DIM's

Test Case

This countersink dimension cannot be defined as a single annotation with named parameters that each have correct face associations. It must be defined as two separate dimensions.
Test Case

This threaded hole dimension cannot be defined as a single annotation with named parameters that each have correct face associations. It must be defined as two separate dimensions.
The lower and upper limits of this dimension are displayed in the reverse order from what is specified.
Annotation Layout:
DIM limits not displayed horizontally

Test Case

The lower and upper limits of this dimension are not displayed horizontally as specified.
The diameter of this datum target area is defined as a separate dimension and not shown in the upper half of the datum target symbol as specified.
Annotation Layout: FCF text displayed above rather than below

Test Case

The “2 SURFACES” text is displayed above this feature control frame and not below as specified.
The “2 COPLANAR SURFACES” text is displayed on the right of this feature control frame and not below as specified.
CAD System Presentation Limitations for Annotation Location
Annotation Location: DFS not attached to FCF

Test Case

This datum feature symbol is not attached to the feature control frame as specified.
Test Case

The display of this datum feature symbol overlaps the dimension to which it is attached.
Annotation Location:
DFS partially buried in solid

A portion of this datum feature symbol extends into the solid model, obscuring its display.
Annotation Location:
FCF partially buried in solid

A portion of this feature control frame extends into the solid model, obscuring its display.
CAD System Presentation Limitations for Annotation Orientation
Annotation Orientation: DIM text orientation is wrong

Test Case

This dimension is not oriented horizontally as specified.
Annotation Orientation: DTS text is backwards in this view

Test Case

The read direction for the datum target symbols’ text is backwards in this view from what is specified.
CAD System Presentation Limitations for Annotation Lines
Annotation Lines:
DFS has no extension line

Test Case

This datum feature symbol does not have the specified extension line.
CAD System Presentation Limitations for Annotation Text
Annotation Text:
DIM has extraneous space

Test Case

This dimension has an extra space after the pattern text (“2X”) which is not specified.
The target area dimensions shown in the upper half of this datum target symbol are not specified.
The specified “COPLANAR” text is missing for this feature control frame.
The length of the projected tolerance zone for this feature control frame is not displayed as specified.
The “6X” text above this feature control frame is not specified in the test case and is extraneous with the all-around symbol.
The “(85)” text on the left of this feature control frame is not specified in the test case.

Annotation Text: FCF text is extraneous
CAD System Presentation Limitations for Coordinate System Visibility
Coordinate System Visibility: CS visible in wrong view

Test Case

The “DEF” and “GHJ” coordinate systems are visible in a saved view in which they are not referenced.
CAD System Presentation Limitations for Coordinate System Name
Coordinate System Name: CS name not same as DRF

Because none of the systems enable an explicit link between annotations and coordinate systems, the name of each coordinate system should match its datum reference frame, thus providing an implicit (visual) link. This coordinate system cannot be named with a single letter ("K").
CAD System Presentation Limitations for Coordinate System Text
Coordinate System Text: CS name displayed with extra large text

Test Case

The display name for this coordinate system is extremely large.
CAD System Presentation Limitations for Supplemental Geometry Visibility
Supplemental Geometry Visibility: SG curve visible in wrong view

Test Case

Because the profile of a line feature control frame in this model is not specified as visible in this saved view, then its associated supplemental geometry curve should not be visible.
Supplemental Geometry Visibility: SG point visible in wrong view

Test Case

Because the datum targets for this model are not specified as visible in this saved view, then their associated supplemental geometry points should not be visible.
CAD System Presentation Limitations for Saved View Structure
The PMI views in this system are limited to annotations with the same view and reading directions. The specified saved view has annotations with multiple view and reading directions.
CAD System Presentation Limitations for Saved View Frustum
Each saved view in the test case has a specified camera position (view direction and zoom level). This system is unable to store a camera position in its PMI view definition.