Standard and Metrology Needs for Surgical Robotics

William J. Peine, Ph.D.

Mechanical Engineering Purdue University

November 2006

Surgical Robotic Revolution

Enhance dexterity and precision of Minimally Invasive Surgery (MIS)

Minimally Invasive Surgery (MIS)

- Small 1cm incisions
- Inflate abdomen with CO₂
- Endoscope visualization
- Long shafted instruments
- Shortens hospital stay, quicker recovery, less \$

Difficult to perform

Teleoperated Robotic Surgery

- Fly-by-wire systems
 - Surgeon console outside sterile field
 - Robotic instruments interact with patient

- Sometimes called *master-slave* or *surgeon assistants* systems
- Surgeon is "in-the-loop" with the robot

Advantage of Surgical Robots

- Instruments move like the human hand but are *smaller* (< 10mm)
- Motion scaling and smoothing
- Better visualization
- Future applications:
 - Surgical simulation
 - Image-guided surgery
 - Telesurgery

Commercially Available Robotic Systems

Currently only one choice: daVinci from Intuitive Surgical

- Hundreds sold worldwide
- Thousands of cases performed annually

Previously Available System

Zeus System from Computer Motion

Zeus Robot Arms

PURDUE UNIVERSITY

Current Clinical Applications

<u>Urology</u>

Radical prostatectomy, pyeloplasty, cystectomy, nephrectomy, ureteral reimplantation

Cardiothoracic

 Mitral valve repair, endoscopic atrial septal defect closure, Internal mammary artery mobilization and cardiac tissue ablation

<u>OB/GYN</u>

- Hysterectomy and myomectom

Pediatrics

 pyeloplasty for ureteropelvic junction obstruction, gastroesophageal repair GERD, ligation of patent ductus arteriosus

General Surgery

 Cholecystectomy, Nissen fundoplication, Heller myotomy, gastric bypass, donor nephrectomy, adrenalectomy, splenectomy and bowel resection

[Source: Intuitive Surgical Website]

Projected Market of MRCAS (Medical Robotics and Computer Aided Surgery)

MRCAS U.S. Market

Surgical robots are the fastest growing U.S. market segment, with a projected AAGR of over 43% between 2006 and 2011.

The total *worldwide* market for MRCAS devices and equipment is expected to be \$1.3 billion in 2006 and \$5.7 billion by 2011, an AAGR of 34.7%.

BCC Research - 7/1/2006 - 163 Pages - ID: WA1331799

Room for Improvement

daVinci is a first generation system

- High initial cost (\$1.5MM)
- High per procedure costs (~\$2K)
- Large size in OR and sterile field
- Lack of haptic feedback
- Required training not defined

Current economics are not favorable for widespread adoption

(radical prostatectomy is one exception)

Standards and Metrology for Surgical Robotics

Surgical robotics is in its infancy: <u>Now</u> is the time to discuss the standard and metrology needs!

- Consistent evaluation metrics will aid device development and safety
- Standards will stimulate the industry and facilitate system integration

Challenge of Human-Machine Interface Design

Computer-assisted surgery introduces many questions and measurement needs...

Presentation Outline

1. Limitations of current robotic systems

2. Standard and Metrology needs:

- Motion control and precision
- Training systems
- Haptic feedback

3. Next generation systems

- Image-guided robotic surgery
- Telesurgery
- Endoluminal robotic systems

4. Conclusions and Priorities

Limitations of Current Robotic Systems

daVinci is a first generation device...

• Too expensive (\$1.5MM) for many hospitals

Large Footprint in OR

- Requires large OR and dedicated staff
- Significant draping and setup

What do these limitations have to do with metrology needs?

- Next generation systems will be smaller and cheaper
- This may reduce the precision and utility
- What performance is "good enough"?

Defining Adequate Performance

- Complex answer... depends on
 - Surgical procedure
 - Human in-the-loop
 - Surgeon preference and skill

Developing quantitative evaluation metrics of system performance is still needed!

Personal Example:

Development of Laprotek Robotic System

EndoVia Laprotek System

- Same intended use as daVinci
- Teleoperated surgical robot
- R & L hands for manipulation
- 7 DOF instruments with wrist
- 7 DOF force reflecting master
- Target cost: \$250K

Laprotek Clinical Trials

- Obtained UL and CE mark
- Approved for sale in Europe

EndoVia Laprotek System

- Portable console (master)
- Utilize hospital's existing laparoscopic equipment
- Monitor for visualization
- Built in storage space
- Handle based interface
- Capable of force feedback

EndoVia Laprotek System

- Instrument arms (slave) mount to OR table
- Minimize space in sterile field
- Simplified setup
- Disposable instruments

Positional Accuracy of Laprotek

Not as good as daVinci...

but adequate for lap cholecystectomy.

Causes:

- Multiple mechanical connections (slop)
- Flexible, disposable instruments
- Deflection of support structure
- Friction and cable stretch
- Variations due to manufacturing

Metrology Need for Motion

Measure overall input vs. output motion

Input Motion

Output Motion

 $\begin{array}{ccc} \Delta \mathsf{X}_{\mathsf{i}} & \Delta \mathsf{Y}_{\mathsf{i}} & \Delta \mathsf{Z}_{\mathsf{i}} \\ \Delta \theta_{\mathsf{i}} & \Delta \varphi_{\mathsf{i}} & \Delta \psi_{\mathsf{i}} \end{array}$

 $\begin{array}{ccc} \Delta \mathsf{X}_{\mathsf{o}} & \Delta \mathsf{Y}_{\mathsf{o}} & \Delta \mathsf{Z}_{\mathsf{o}} \\ \Delta \theta_{\mathsf{o}} & \Delta \varphi_{\mathsf{o}} & \Delta \psi_{\mathsf{o}} \end{array}$

Need new measurement systems and performance metrics...

Metrology Need for Motion

- Develop generic measurement system to quantify motion of <u>any</u> teleoperated surgical system
 - Attaches to master handle and instrument tip
- Analyze data to determine:
 - Precision of motion tracking
 - Quantify latency, slop, motion limits, nonlinearities
 - Determine coupling between joints
 - Quantify smoothness

Metrology Need for Motion

- Consistent motion performance metrics could be tied to required precision for specific procedures
- Not Easy! Need to understand human perception and adaptability

Robotic Surgery Training Systems

As a surgeon, how do you know when you are ready to do your first robotic case?

Robotic surgery is a big change from MIS...

- Cases 1-10:
- Cases 11-100:
- Cases 100-700+:
- STEEP learning curve
- Patient specific learning
- Still learning!

- Fly-by-wire architecture makes surgical simulators possible
- Create virtual patient and slave robot

- Surgeon uses same haptic interface
- Endoscopic images replaced with computer generated visualizations

- Improper training can lead to safety hazards
- Need Standards and Metrology to qualify and validate training systems
- Again, LOTS of questions since a human is in the loop...

- What is adequate simulation performance?
- How faithfully do tissues need to deform?
- How geometrically accurate do the organs models need to be?
- What dynamics or update rates are required?
 Obviously, answers depend on training goals...

Some Possibilities:

- Is procedure specific training possible?
- Can we teach the difference between proper and improper robot performance?
- Can we determine common mistakes and feedback improvements into future robot designs?
- Can telementoring augment simulation?

Metrology Needs for Haptic and Force Feedback

- Current robotic systems lack force feedback
- Many researchers are working on this...
- Haptic feedback introduces many challenges
 → Need for Metrology and Standards

Implementing Force Feedback

Bilateral Control Architecture:

- Positions (master \rightarrow slave)
- Forces (slave \rightarrow master)

Depending on gains and environment,

system can go unstable!!!

Metrology Needs for Haptic Feedback

- Consistently quantifying haptic performance will facilitate evaluation and development
- Many questions since there is a human in the loop...

Metrology Needs for Haptic Feedback

- How do you guarantee stability with an undefined environment and operator?
- What range / sensitivity / resolution of forces are needed be displayed?
- How many directions or DOF of forces/torques are needed?
- How faithful do the displayed forces need to be (direction and magnitude)?

Metrology Needs for Haptic Feedback

- How do you reliably measure instrument tip forces at a low cost?
- Are sensory substitution methods acceptable?
- How do you safely implement automatic motions? (Virtual constraints only?)
- Adding distributed contact pressure measurements have the same questions...

The Future of Robotic Surgery Next Generation Devices

Brining tissue manipulation under computer-assisted control enables endless possibilities...

All of these can be improved and shaped by standards and metrology...

Image-Guided Robotic Surgery

- Combine the positional accuracy of a robot with the 3D medical imaging patient "map"
- Provide enhanced geometric displays of the anatomy and real-time tool locations
- Create haptic "keep out" zones or virtual constraints to avoid delicate tissues

Robotic Telesurgery

- Teleoperation over a distance
- Surgeon and patient can be miles apart
- A few cases have been successful
- Military applications (Trauma Pod)
- Many new safety concerns arise

 Communication channel delays or failure
 Setup, training, and overall patient safety

Endoluminal Robotics

ViaCath Flexible Robotic System

Endoluminal Robotics

- Create tools enabling new procedures
- Procedure development will take time
- Applications in bariatrics, upper/lower GI
- Transgastric Surgery

"This is the next generation of surgery. ...There is no other tool that can do this."

> Dr. Jeffrey Ponsky Surgical Endoscopist, Cleveland Clinic

Transforming Healthcare...

Computer Aided Surgery adds complexity, but has great potential to...

- Improve patient outcomes and safety
- Reduce costs and minimize trauma
- Synthesize informatics with intervention
- Push healthcare toward prevention

Standards and metrology can greatly facilitate these goals!

Standard and Metrology Needs for Teleoperated Surgical Robotic Systems

Suggested Priorities

- Develop system to measure overall Input / Output motion performance of teleoperated surgical robots.
 - Passive position sensing mechanical arm
 - Optical tracking
 - Magnetic tracking
 - Should not require any modifications to robot

- Develop performance metrics to evaluate the overall Input / Output motion of teleoperated surgical robots.
 - Quantify dead band, dexterity, motion limits
 - Evaluate synchronization to visualization
 - Quantify dynamic behavior and smoothness
 - Characterize nonlinearity and deformation under loading

- Determine critical performance metrics for robotic surgical simulators.
 - Quantify virtual instrument motion versus actual robot motion
 - Quantify accuracy of virtual tissue motion versus real tissue
 - Help standardize surgeon evaluation metrics

- Determine critical performance metrics of force and haptic feedback for surgical robotic systems.
 - Develop new (disposable?) sensors to measure applied forces at the instrument tip
 - Develop system to measure overall Input / Output force feedback performance
 - Determine metrics to evaluate virtual constraints and haptic "keep out" zones

- Develop communication and data standards to link surgical robots with medical imaging systems.
 - Allow connections between systems in OR
 - Include safety mechanisms to minimize any one component's (i.e. company's) liability
 - May have application to telesurgery

DURDUE UNIVERSITY

School of Mechanical Engineering